1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{command} = mlir-opt %s --sparse-compiler=%{option} | \
// DEFINE: mlir-cpu-runner \
// DEFINE: -e entry -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_c_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{command}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = enable-runtime-library=false
// RUN: %{command}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{command}
#SV = #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>
#DV = #sparse_tensor.encoding<{ lvlTypes = [ "dense" ] }>
#trait_reduction = {
indexing_maps = [
affine_map<(i) -> (i)>, // a
affine_map<(i) -> ()> // x (scalar out)
],
iterator_types = ["reduction"],
doc = "x += PROD_CUSTOM_i a(i)"
}
// An example of vector reductions.
module {
// Custom prod reduction: stored i32 elements only.
func.func @prod_dreduction_i32(%arga: tensor<32xi32, #DV>,
%argx: tensor<i32>) -> tensor<i32> {
%c = tensor.extract %argx[] : tensor<i32>
%0 = linalg.generic #trait_reduction
ins(%arga: tensor<32xi32, #DV>)
outs(%argx: tensor<i32>) {
^bb(%a: i32, %b: i32):
%1 = sparse_tensor.reduce %a, %b, %c : i32 {
^bb0(%x: i32, %y: i32):
%2 = arith.muli %x, %y : i32
sparse_tensor.yield %2 : i32
}
linalg.yield %1 : i32
} -> tensor<i32>
return %0 : tensor<i32>
}
// Custom prod reduction: stored f32 elements only.
func.func @prod_dreduction_f32(%arga: tensor<32xf32, #DV>,
%argx: tensor<f32>) -> tensor<f32> {
%c = tensor.extract %argx[] : tensor<f32>
%0 = linalg.generic #trait_reduction
ins(%arga: tensor<32xf32, #DV>)
outs(%argx: tensor<f32>) {
^bb(%a: f32, %b: f32):
%1 = sparse_tensor.reduce %a, %b, %c : f32 {
^bb0(%x: f32, %y: f32):
%2 = arith.mulf %x, %y : f32
sparse_tensor.yield %2 : f32
}
linalg.yield %1 : f32
} -> tensor<f32>
return %0 : tensor<f32>
}
// Custom prod reduction: stored i32 elements only.
func.func @prod_sreduction_i32(%arga: tensor<32xi32, #SV>,
%argx: tensor<i32>) -> tensor<i32> {
%c = tensor.extract %argx[] : tensor<i32>
%0 = linalg.generic #trait_reduction
ins(%arga: tensor<32xi32, #SV>)
outs(%argx: tensor<i32>) {
^bb(%a: i32, %b: i32):
%1 = sparse_tensor.reduce %a, %b, %c : i32 {
^bb0(%x: i32, %y: i32):
%2 = arith.muli %x, %y : i32
sparse_tensor.yield %2 : i32
}
linalg.yield %1 : i32
} -> tensor<i32>
return %0 : tensor<i32>
}
// Custom prod reduction: stored f32 elements only.
func.func @prod_sreduction_f32(%arga: tensor<32xf32, #SV>,
%argx: tensor<f32>) -> tensor<f32> {
%c = tensor.extract %argx[] : tensor<f32>
%0 = linalg.generic #trait_reduction
ins(%arga: tensor<32xf32, #SV>)
outs(%argx: tensor<f32>) {
^bb(%a: f32, %b: f32):
%1 = sparse_tensor.reduce %a, %b, %c : f32 {
^bb0(%x: f32, %y: f32):
%2 = arith.mulf %x, %y : f32
sparse_tensor.yield %2 : f32
}
linalg.yield %1 : f32
} -> tensor<f32>
return %0 : tensor<f32>
}
// Custom prod reduction: stored i32 elements and implicit zeros.
//
// NOTE: this is a somewhat strange operation, since for most sparse
// situations the outcome would always be zero; it is added
// to test full functionality and illustrate the subtle differences
// between the various custom operations; it would make a bit more
// sense for e.g. a min/max reductions, although it still would
// "densify" the iteration space.
//
func.func @prod_xreduction_i32(%arga: tensor<32xi32, #SV>,
%argx: tensor<i32>) -> tensor<i32> {
%c = tensor.extract %argx[] : tensor<i32>
%0 = linalg.generic #trait_reduction
ins(%arga: tensor<32xi32, #SV>)
outs(%argx: tensor<i32>) {
^bb(%a: i32, %b: i32):
%u = sparse_tensor.unary %a : i32 to i32
present={
^bb0(%x: i32):
sparse_tensor.yield %x : i32
} absent={
^bb0:
%c0 = arith.constant 0 : i32
sparse_tensor.yield %c0 : i32
}
%1 = sparse_tensor.reduce %u, %b, %c : i32 {
^bb0(%x: i32, %y: i32):
%2 = arith.muli %x, %y : i32
sparse_tensor.yield %2 : i32
}
linalg.yield %1 : i32
} -> tensor<i32>
return %0 : tensor<i32>
}
func.func @dump_i32(%arg0 : tensor<i32>) {
%v = tensor.extract %arg0[] : tensor<i32>
vector.print %v : i32
return
}
func.func @dump_f32(%arg0 : tensor<f32>) {
%v = tensor.extract %arg0[] : tensor<f32>
vector.print %v : f32
return
}
func.func @entry() {
%ri = arith.constant dense< 7 > : tensor<i32>
%rf = arith.constant dense< 2.0 > : tensor<f32>
// Vectors with a few zeros.
%c_0_i32 = arith.constant dense<[
1, 1, 7, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 3, 0, 1, 1, 1, 1, 1, 0, 1, 1, 7, 3
]> : tensor<32xi32>
%c_0_f32 = arith.constant dense<[
1.0, 1.0, 1.0, 3.5, 1.0, 1.0, 1.0, 1.0,
1.0, 0.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0,
1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0
]> : tensor<32xf32>
// Vectors with no zeros.
%c_1_i32 = arith.constant dense<[
1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 3
]> : tensor<32xi32>
%c_1_f32 = arith.constant dense<[
1.0, 1.0, 1.0, 3.5, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 3.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 4.0
]> : tensor<32xf32>
// Convert constants to annotated tensors. Note that this
// particular conversion only stores nonzero elements,
// so we will have no explicit zeros, only implicit zeros.
%d0_i32 = sparse_tensor.convert %c_0_i32
: tensor<32xi32> to tensor<32xi32, #DV>
%d0_f32 = sparse_tensor.convert %c_0_f32
: tensor<32xf32> to tensor<32xf32, #DV>
%s0_i32 = sparse_tensor.convert %c_0_i32
: tensor<32xi32> to tensor<32xi32, #SV>
%s0_f32 = sparse_tensor.convert %c_0_f32
: tensor<32xf32> to tensor<32xf32, #SV>
%d1_i32 = sparse_tensor.convert %c_1_i32
: tensor<32xi32> to tensor<32xi32, #DV>
%d1_f32 = sparse_tensor.convert %c_1_f32
: tensor<32xf32> to tensor<32xf32, #DV>
%s1_i32 = sparse_tensor.convert %c_1_i32
: tensor<32xi32> to tensor<32xi32, #SV>
%s1_f32 = sparse_tensor.convert %c_1_f32
: tensor<32xf32> to tensor<32xf32, #SV>
// Special case, construct a sparse vector with an explicit zero.
%v0 = arith.constant sparse< [ [1] ], [ 0 ] > : tensor<32xi32>
%s0 = sparse_tensor.convert %v0: tensor<32xi32> to tensor<32xi32, #SV>
// Call the kernels.
%0 = call @prod_dreduction_i32(%d0_i32, %ri) : (tensor<32xi32, #DV>, tensor<i32>) -> tensor<i32>
%1 = call @prod_dreduction_f32(%d0_f32, %rf) : (tensor<32xf32, #DV>, tensor<f32>) -> tensor<f32>
%2 = call @prod_sreduction_i32(%s0_i32, %ri) : (tensor<32xi32, #SV>, tensor<i32>) -> tensor<i32>
%3 = call @prod_sreduction_f32(%s0_f32, %rf) : (tensor<32xf32, #SV>, tensor<f32>) -> tensor<f32>
%4 = call @prod_dreduction_i32(%d1_i32, %ri) : (tensor<32xi32, #DV>, tensor<i32>) -> tensor<i32>
%5 = call @prod_dreduction_f32(%d1_f32, %rf) : (tensor<32xf32, #DV>, tensor<f32>) -> tensor<f32>
%6 = call @prod_sreduction_i32(%s1_i32, %ri) : (tensor<32xi32, #SV>, tensor<i32>) -> tensor<i32>
%7 = call @prod_sreduction_f32(%s1_f32, %rf) : (tensor<32xf32, #SV>, tensor<f32>) -> tensor<f32>
%8 = call @prod_sreduction_i32(%s0, %ri) : (tensor<32xi32, #SV>, tensor<i32>) -> tensor<i32>
%9 = call @prod_xreduction_i32(%s0_i32, %ri) : (tensor<32xi32, #SV>, tensor<i32>) -> tensor<i32>
%10 = call @prod_xreduction_i32(%s1_i32, %ri) : (tensor<32xi32, #SV>, tensor<i32>) -> tensor<i32>
// Verify results. Note that the custom reduction gave permission
// to treat an explicit vs implicit zero differently to compute the
// full product reduction over stored elements. A "standard" product
// reduction would have to return 0 for any implicit zero occurrence
// too. An explicit zero nullifies the product, though, as requested.
//
// CHECK: 0
// CHECK: 0
// CHECK: 3087
// CHECK: 14
// CHECK: 3087
// CHECK: 168
// CHECK: 3087
// CHECK: 168
// CHECK: 0
// CHECK: 0
// CHECK: 3087
//
call @dump_i32(%0) : (tensor<i32>) -> ()
call @dump_f32(%1) : (tensor<f32>) -> ()
call @dump_i32(%2) : (tensor<i32>) -> ()
call @dump_f32(%3) : (tensor<f32>) -> ()
call @dump_i32(%4) : (tensor<i32>) -> ()
call @dump_f32(%5) : (tensor<f32>) -> ()
call @dump_i32(%6) : (tensor<i32>) -> ()
call @dump_f32(%7) : (tensor<f32>) -> ()
call @dump_i32(%8) : (tensor<i32>) -> ()
call @dump_i32(%9) : (tensor<i32>) -> ()
call @dump_i32(%10) : (tensor<i32>) -> ()
// Release the resources.
bufferization.dealloc_tensor %d0_i32 : tensor<32xi32, #DV>
bufferization.dealloc_tensor %d0_f32 : tensor<32xf32, #DV>
bufferization.dealloc_tensor %s0_i32 : tensor<32xi32, #SV>
bufferization.dealloc_tensor %s0_f32 : tensor<32xf32, #SV>
bufferization.dealloc_tensor %d1_i32 : tensor<32xi32, #DV>
bufferization.dealloc_tensor %d1_f32 : tensor<32xf32, #DV>
bufferization.dealloc_tensor %s1_i32 : tensor<32xi32, #SV>
bufferization.dealloc_tensor %s1_f32 : tensor<32xf32, #SV>
bufferization.dealloc_tensor %s0 : tensor<32xi32, #SV>
return
}
}
|