File: sparse_sign.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (118 lines) | stat: -rw-r--r-- 4,123 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = mlir-cpu-runner \
// DEFINE:  -e entry -entry-point-result=void  \
// DEFINE:  -shared-libs=%mlir_c_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true"
// RUN: %{compile} | %{run}

// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true vl=4 enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = %lli_host_or_aarch64_cmd \
// REDEFINE:   --entry-function=entry_lli \
// REDEFINE:   --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE:   %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE:   --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \
// REDEFINE: FileCheck %s
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}

#SparseVector = #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>

#trait_op = {
  indexing_maps = [
    affine_map<(i) -> (i)>, // a
    affine_map<(i) -> (i)>  // x (out)
  ],
  iterator_types = ["parallel"],
  doc = "x(i) = OP a(i)"
}

module {
  // Performs sign operation (using semi-ring unary op)
  // with semantics that
  // > 0 : +1.0
  // < 0 : -1.0
  // +Inf: +1.0
  // -Inf: -1.0
  // +NaN: +NaN
  // -NaN: -NaN
  // +0.0: +0.0
  // -0.0: -0.0
  func.func @sparse_sign(%arg0: tensor<?xf64, #SparseVector>)
                             -> tensor<?xf64, #SparseVector> {
    %c0 = arith.constant 0 : index
    %d = tensor.dim %arg0, %c0 : tensor<?xf64, #SparseVector>
    %xin = bufferization.alloc_tensor(%d) : tensor<?xf64, #SparseVector>
    %0 = linalg.generic #trait_op
      ins(%arg0: tensor<?xf64, #SparseVector>)
      outs(%xin: tensor<?xf64, #SparseVector>) {
      ^bb0(%a: f64, %x: f64) :
        %result = sparse_tensor.unary %a : f64 to f64
          present={
            ^bb1(%s: f64):
              %z = arith.constant 0.0 : f64
              %1 = arith.cmpf one, %s, %z : f64
              %2 = arith.uitofp %1 : i1 to f64
              %3 = math.copysign %2, %s : f64
              %4 = arith.cmpf uno, %s, %s : f64
              %5 = arith.select %4, %s, %3 : f64
              sparse_tensor.yield %5 : f64
          }
          absent={}
        linalg.yield %result : f64
    } -> tensor<?xf64, #SparseVector>
    return %0 : tensor<?xf64, #SparseVector>
  }

  // Driver method to call and verify sign kernel.
  func.func @entry() {
    %c0 = arith.constant 0 : index
    %du = arith.constant 0.0 : f64

    %pnan = arith.constant 0x7FF0000001000000 : f64
    %nnan = arith.constant 0xFFF0000001000000 : f64
    %pinf = arith.constant 0x7FF0000000000000 : f64
    %ninf = arith.constant 0xFFF0000000000000 : f64

    // Setup sparse vector.
    %v1 = arith.constant sparse<
       [ [0], [3], [5], [11], [13], [17], [18], [20], [21], [28], [29], [31] ],
         [ -1.5, 1.5, -10.2, 11.3, 1.0, -1.0,
           0x7FF0000001000000, // +NaN
           0xFFF0000001000000, // -NaN
           0x7FF0000000000000, // +Inf
           0xFFF0000000000000, // -Inf
           -0.0,               // -Zero
           0.0                 // +Zero
        ]
    > : tensor<32xf64>
    %sv1 = sparse_tensor.convert %v1
         : tensor<32xf64> to tensor<?xf64, #SparseVector>

    // Call sign kernel.
    %0 = call @sparse_sign(%sv1) : (tensor<?xf64, #SparseVector>)
                                 -> tensor<?xf64, #SparseVector>

    //
    // Verify the results.
    //
    // CHECK: ( -1, 1, -1, 1, 1, -1, nan, -nan, 1, -1, -0, 0, 0 )
    //
    %1 = sparse_tensor.values %0 : tensor<?xf64, #SparseVector> to memref<?xf64>
    %2 = vector.transfer_read %1[%c0], %du: memref<?xf64>, vector<13xf64>
    vector.print %2 : vector<13xf64>

    // Release the resources.
    bufferization.dealloc_tensor %sv1 : tensor<?xf64, #SparseVector>
    bufferization.dealloc_tensor %0 : tensor<?xf64, #SparseVector>
    return
  }
}