1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
|
// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = TENSOR0="%mlir_src_dir/test/Integration/data/test_symmetric_complex.mtx" \
// DEFINE: mlir-cpu-runner \
// DEFINE: -e entry -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_c_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = enable-runtime-library=false
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{compile} | %{run}
// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=4 enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = TENSOR0="%mlir_src_dir/test/Integration/data/test_symmetric_complex.mtx" \
// REDEFINE: %lli_host_or_aarch64_cmd \
// REDEFINE: --entry-function=entry_lli \
// REDEFINE: --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE: %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE: --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \
// REDEFINE: FileCheck %s
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}
// TODO: The test currently only operates on the triangular part of the
// symmetric matrix.
!Filename = !llvm.ptr<i8>
#SparseMatrix = #sparse_tensor.encoding<{
lvlTypes = [ "compressed", "compressed" ]
}>
#trait_sum_reduce = {
indexing_maps = [
affine_map<(i,j) -> (i,j)>, // A
affine_map<(i,j) -> ()> // x (out)
],
iterator_types = ["reduction", "reduction"],
doc = "x += A(i,j)"
}
//
// Integration test that lowers a kernel annotated as sparse to
// actual sparse code, initializes a matching sparse storage scheme
// from file, and runs the resulting code with the JIT compiler.
//
module {
//
// A kernel that sum-reduces a matrix to a single scalar.
//
func.func @kernel_sum_reduce(%arga: tensor<?x?xcomplex<f64>, #SparseMatrix>,
%argx: tensor<complex<f64>>) -> tensor<complex<f64>> {
%0 = linalg.generic #trait_sum_reduce
ins(%arga: tensor<?x?xcomplex<f64>, #SparseMatrix>)
outs(%argx: tensor<complex<f64>>) {
^bb(%a: complex<f64>, %x: complex<f64>):
%0 = complex.add %x, %a : complex<f64>
linalg.yield %0 : complex<f64>
} -> tensor<complex<f64>>
return %0 : tensor<complex<f64>>
}
func.func private @getTensorFilename(index) -> (!Filename)
//
// Main driver that reads matrix from file and calls the sparse kernel.
//
func.func @entry() {
//%d0 = arith.constant 0.0 : complex<f64>
%d0 = complex.constant [0.0 : f64, 0.0 : f64] : complex<f64>
%c0 = arith.constant 0 : index
// Setup memory for a single reduction scalar,
// initialized to zero.
// TODO: tensor.from_elements does not support complex.
%alloc = bufferization.alloc_tensor() : tensor<complex<f64>>
%x = tensor.insert %d0 into %alloc[] : tensor<complex<f64>>
// Read the sparse matrix from file, construct sparse storage.
%fileName = call @getTensorFilename(%c0) : (index) -> (!Filename)
%a = sparse_tensor.new %fileName : !Filename to tensor<?x?xcomplex<f64>, #SparseMatrix>
// Call the kernel.
%0 = call @kernel_sum_reduce(%a, %x)
: (tensor<?x?xcomplex<f64>, #SparseMatrix>, tensor<complex<f64>>) -> tensor<complex<f64>>
// Print the result for verification.
//
// CHECK: 24.1
// CHECK-NEXT: 16.1
//
%v = tensor.extract %0[] : tensor<complex<f64>>
%real = complex.re %v : complex<f64>
%imag = complex.im %v : complex<f64>
vector.print %real : f64
vector.print %imag : f64
// Release the resources.
bufferization.dealloc_tensor %a : tensor<?x?xcomplex<f64>, #SparseMatrix>
return
}
}
|