File: sparse_transpose.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (143 lines) | stat: -rw-r--r-- 4,947 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = mlir-cpu-runner \
// DEFINE:  -e entry -entry-point-result=void  \
// DEFINE:  -shared-libs=%mlir_c_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true"
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{compile} | %{run}

// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=4 enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = %lli_host_or_aarch64_cmd \
// REDEFINE:   --entry-function=entry_lli \
// REDEFINE:   --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE:   %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE:   --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \
// REDEFINE: FileCheck %s
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}

#DCSR = #sparse_tensor.encoding<{
  lvlTypes = [ "compressed", "compressed" ]
}>

#DCSC = #sparse_tensor.encoding<{
  lvlTypes = [ "compressed", "compressed" ],
  dimToLvl = affine_map<(i,j) -> (j,i)>
}>

#transpose_trait = {
  indexing_maps = [
    affine_map<(i,j) -> (j,i)>,  // A
    affine_map<(i,j) -> (i,j)>   // X
  ],
  iterator_types = ["parallel", "parallel"],
  doc = "X(i,j) = A(j,i)"
}

module {

  //
  // Transposing a sparse row-wise matrix into another sparse row-wise
  // matrix introduces a cycle in the iteration graph. This complication
  // can be avoided by manually inserting a conversion of the incoming
  // matrix into a sparse column-wise matrix first.
  //
  func.func @sparse_transpose(%arga: tensor<3x4xf64, #DCSR>)
                                  -> tensor<4x3xf64, #DCSR> {
    %t = sparse_tensor.convert %arga
      : tensor<3x4xf64, #DCSR> to tensor<3x4xf64, #DCSC>

    %i = bufferization.alloc_tensor() : tensor<4x3xf64, #DCSR>
    %0 = linalg.generic #transpose_trait
       ins(%t: tensor<3x4xf64, #DCSC>)
       outs(%i: tensor<4x3xf64, #DCSR>) {
       ^bb(%a: f64, %x: f64):
         linalg.yield %a : f64
    } -> tensor<4x3xf64, #DCSR>

    bufferization.dealloc_tensor %t : tensor<3x4xf64, #DCSC>

    return %0 : tensor<4x3xf64, #DCSR>
  }

  //
  // However, even better, the sparse compiler is able to insert such a
  // conversion automatically to resolve a cycle in the iteration graph!
  //
  func.func @sparse_transpose_auto(%arga: tensor<3x4xf64, #DCSR>)
                                       -> tensor<4x3xf64, #DCSR> {
    %i = bufferization.alloc_tensor() : tensor<4x3xf64, #DCSR>
    %0 = linalg.generic #transpose_trait
       ins(%arga: tensor<3x4xf64, #DCSR>)
       outs(%i: tensor<4x3xf64, #DCSR>) {
       ^bb(%a: f64, %x: f64):
         linalg.yield %a : f64
    } -> tensor<4x3xf64, #DCSR>
    return %0 : tensor<4x3xf64, #DCSR>
  }

  //
  // Main driver.
  //
  func.func @entry() {
    %c0 = arith.constant 0 : index
    %c1 = arith.constant 1 : index
    %c4 = arith.constant 4 : index
    %du = arith.constant 0.0 : f64

    // Setup input sparse matrix from compressed constant.
    %d = arith.constant dense <[
       [ 1.1,  1.2,  0.0,  1.4 ],
       [ 0.0,  0.0,  0.0,  0.0 ],
       [ 3.1,  0.0,  3.3,  3.4 ]
    ]> : tensor<3x4xf64>
    %a = sparse_tensor.convert %d : tensor<3x4xf64> to tensor<3x4xf64, #DCSR>

    // Call the kernels.
    %0 = call @sparse_transpose(%a)
      : (tensor<3x4xf64, #DCSR>) -> tensor<4x3xf64, #DCSR>
    %1 = call @sparse_transpose_auto(%a)
      : (tensor<3x4xf64, #DCSR>) -> tensor<4x3xf64, #DCSR>

    //
    // Verify result.
    //
    // CHECK:      ( 1.1, 0, 3.1 )
    // CHECK-NEXT: ( 1.2, 0, 0 )
    // CHECK-NEXT: ( 0, 0, 3.3 )
    // CHECK-NEXT: ( 1.4, 0, 3.4 )
    //
    // CHECK-NEXT: ( 1.1, 0, 3.1 )
    // CHECK-NEXT: ( 1.2, 0, 0 )
    // CHECK-NEXT: ( 0, 0, 3.3 )
    // CHECK-NEXT: ( 1.4, 0, 3.4 )
    //
    %x = sparse_tensor.convert %0 : tensor<4x3xf64, #DCSR> to tensor<4x3xf64>
    scf.for %i = %c0 to %c4 step %c1 {
      %v1 = vector.transfer_read %x[%i, %c0], %du: tensor<4x3xf64>, vector<3xf64>
      vector.print %v1 : vector<3xf64>
    }
    %y = sparse_tensor.convert %1 : tensor<4x3xf64, #DCSR> to tensor<4x3xf64>
    scf.for %i = %c0 to %c4 step %c1 {
      %v2 = vector.transfer_read %y[%i, %c0], %du: tensor<4x3xf64>, vector<3xf64>
      vector.print %v2 : vector<3xf64>
    }

    // Release resources.
    bufferization.dealloc_tensor %a : tensor<3x4xf64, #DCSR>
    bufferization.dealloc_tensor %0 : tensor<4x3xf64, #DCSR>
    bufferization.dealloc_tensor %1 : tensor<4x3xf64, #DCSR>

    return
  }
}