1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = mlir-cpu-runner \
// DEFINE: -e entry -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_c_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true"
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{compile} | %{run}
// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=4 enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = %lli_host_or_aarch64_cmd \
// REDEFINE: --entry-function=entry_lli \
// REDEFINE: --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE: %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE: --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \
// REDEFINE: FileCheck %s
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}
#DCSR = #sparse_tensor.encoding<{
lvlTypes = [ "compressed", "compressed" ]
}>
#DCSC = #sparse_tensor.encoding<{
lvlTypes = [ "compressed", "compressed" ],
dimToLvl = affine_map<(i,j) -> (j,i)>
}>
#transpose_trait = {
indexing_maps = [
affine_map<(i,j) -> (j,i)>, // A
affine_map<(i,j) -> (i,j)> // X
],
iterator_types = ["parallel", "parallel"],
doc = "X(i,j) = A(j,i)"
}
module {
//
// Transposing a sparse row-wise matrix into another sparse row-wise
// matrix introduces a cycle in the iteration graph. This complication
// can be avoided by manually inserting a conversion of the incoming
// matrix into a sparse column-wise matrix first.
//
func.func @sparse_transpose(%arga: tensor<3x4xf64, #DCSR>)
-> tensor<4x3xf64, #DCSR> {
%t = sparse_tensor.convert %arga
: tensor<3x4xf64, #DCSR> to tensor<3x4xf64, #DCSC>
%i = bufferization.alloc_tensor() : tensor<4x3xf64, #DCSR>
%0 = linalg.generic #transpose_trait
ins(%t: tensor<3x4xf64, #DCSC>)
outs(%i: tensor<4x3xf64, #DCSR>) {
^bb(%a: f64, %x: f64):
linalg.yield %a : f64
} -> tensor<4x3xf64, #DCSR>
bufferization.dealloc_tensor %t : tensor<3x4xf64, #DCSC>
return %0 : tensor<4x3xf64, #DCSR>
}
//
// However, even better, the sparse compiler is able to insert such a
// conversion automatically to resolve a cycle in the iteration graph!
//
func.func @sparse_transpose_auto(%arga: tensor<3x4xf64, #DCSR>)
-> tensor<4x3xf64, #DCSR> {
%i = bufferization.alloc_tensor() : tensor<4x3xf64, #DCSR>
%0 = linalg.generic #transpose_trait
ins(%arga: tensor<3x4xf64, #DCSR>)
outs(%i: tensor<4x3xf64, #DCSR>) {
^bb(%a: f64, %x: f64):
linalg.yield %a : f64
} -> tensor<4x3xf64, #DCSR>
return %0 : tensor<4x3xf64, #DCSR>
}
//
// Main driver.
//
func.func @entry() {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c4 = arith.constant 4 : index
%du = arith.constant 0.0 : f64
// Setup input sparse matrix from compressed constant.
%d = arith.constant dense <[
[ 1.1, 1.2, 0.0, 1.4 ],
[ 0.0, 0.0, 0.0, 0.0 ],
[ 3.1, 0.0, 3.3, 3.4 ]
]> : tensor<3x4xf64>
%a = sparse_tensor.convert %d : tensor<3x4xf64> to tensor<3x4xf64, #DCSR>
// Call the kernels.
%0 = call @sparse_transpose(%a)
: (tensor<3x4xf64, #DCSR>) -> tensor<4x3xf64, #DCSR>
%1 = call @sparse_transpose_auto(%a)
: (tensor<3x4xf64, #DCSR>) -> tensor<4x3xf64, #DCSR>
//
// Verify result.
//
// CHECK: ( 1.1, 0, 3.1 )
// CHECK-NEXT: ( 1.2, 0, 0 )
// CHECK-NEXT: ( 0, 0, 3.3 )
// CHECK-NEXT: ( 1.4, 0, 3.4 )
//
// CHECK-NEXT: ( 1.1, 0, 3.1 )
// CHECK-NEXT: ( 1.2, 0, 0 )
// CHECK-NEXT: ( 0, 0, 3.3 )
// CHECK-NEXT: ( 1.4, 0, 3.4 )
//
%x = sparse_tensor.convert %0 : tensor<4x3xf64, #DCSR> to tensor<4x3xf64>
scf.for %i = %c0 to %c4 step %c1 {
%v1 = vector.transfer_read %x[%i, %c0], %du: tensor<4x3xf64>, vector<3xf64>
vector.print %v1 : vector<3xf64>
}
%y = sparse_tensor.convert %1 : tensor<4x3xf64, #DCSR> to tensor<4x3xf64>
scf.for %i = %c0 to %c4 step %c1 {
%v2 = vector.transfer_read %y[%i, %c0], %du: tensor<4x3xf64>, vector<3xf64>
vector.print %v2 : vector<3xf64>
}
// Release resources.
bufferization.dealloc_tensor %a : tensor<3x4xf64, #DCSR>
bufferization.dealloc_tensor %0 : tensor<4x3xf64, #DCSR>
bufferization.dealloc_tensor %1 : tensor<4x3xf64, #DCSR>
return
}
}
|