1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
// DEFINE: %{option_vec} =
// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{run_option} =
// DEFINE: %{cpu_runner} = mlir-cpu-runner
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = %{cpu_runner} \
// DEFINE: -e entry -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_c_runner_utils %{run_option} | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true"
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option_vec} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
// REDEFINE: %{option} = "%{option_vec}"
// RUN: %{compile} | %{run}
// Do the same run, but with VLA vectorization.
// REDEFINE: %{option} = "enable-arm-sve=true %{option_vec}"
// REDEFINE: %{cpu_runner} = %mcr_aarch64_cmd
// REDEFINE: %{run_option} = %VLA_ARCH_ATTR_OPTIONS
// RUN: %if mlir_arm_sve_tests %{ %{compile} | %{run} %}
#SparseVector = #sparse_tensor.encoding<{lvlTypes = ["compressed"]}>
#DCSR = #sparse_tensor.encoding<{lvlTypes = ["compressed", "compressed"]}>
//
// Traits for tensor operations.
//
#trait_vec = {
indexing_maps = [
affine_map<(i) -> (i)>, // a (in)
affine_map<(i) -> (i)> // x (out)
],
iterator_types = ["parallel"]
}
#trait_mat = {
indexing_maps = [
affine_map<(i,j) -> (i,j)>, // A (in)
affine_map<(i,j) -> (i,j)> // X (out)
],
iterator_types = ["parallel", "parallel"]
}
module {
// Invert the structure of a sparse vector. Present values become missing.
// Missing values are filled with 1 (i32). Output is sparse.
func.func @vector_complement_sparse(%arga: tensor<?xf64, #SparseVector>) -> tensor<?xi32, #SparseVector> {
%c = arith.constant 0 : index
%ci1 = arith.constant 1 : i32
%d = tensor.dim %arga, %c : tensor<?xf64, #SparseVector>
%xv = bufferization.alloc_tensor(%d) : tensor<?xi32, #SparseVector>
%0 = linalg.generic #trait_vec
ins(%arga: tensor<?xf64, #SparseVector>)
outs(%xv: tensor<?xi32, #SparseVector>) {
^bb(%a: f64, %x: i32):
%1 = sparse_tensor.unary %a : f64 to i32
present={}
absent={
sparse_tensor.yield %ci1 : i32
}
linalg.yield %1 : i32
} -> tensor<?xi32, #SparseVector>
return %0 : tensor<?xi32, #SparseVector>
}
// Invert the structure of a sparse vector, where missing values are
// filled with 1. For a dense output, the sparse compiler initializes
// the buffer to all zero at all other places.
func.func @vector_complement_dense(%arga: tensor<?xf64, #SparseVector>) -> tensor<?xi32> {
%c = arith.constant 0 : index
%d = tensor.dim %arga, %c : tensor<?xf64, #SparseVector>
%xv = bufferization.alloc_tensor(%d) : tensor<?xi32>
%0 = linalg.generic #trait_vec
ins(%arga: tensor<?xf64, #SparseVector>)
outs(%xv: tensor<?xi32>) {
^bb(%a: f64, %x: i32):
%1 = sparse_tensor.unary %a : f64 to i32
present={}
absent={
%ci1 = arith.constant 1 : i32
sparse_tensor.yield %ci1 : i32
}
linalg.yield %1 : i32
} -> tensor<?xi32>
return %0 : tensor<?xi32>
}
// Negate existing values. Fill missing ones with +1.
func.func @vector_negation(%arga: tensor<?xf64, #SparseVector>) -> tensor<?xf64, #SparseVector> {
%c = arith.constant 0 : index
%cf1 = arith.constant 1.0 : f64
%d = tensor.dim %arga, %c : tensor<?xf64, #SparseVector>
%xv = bufferization.alloc_tensor(%d) : tensor<?xf64, #SparseVector>
%0 = linalg.generic #trait_vec
ins(%arga: tensor<?xf64, #SparseVector>)
outs(%xv: tensor<?xf64, #SparseVector>) {
^bb(%a: f64, %x: f64):
%1 = sparse_tensor.unary %a : f64 to f64
present={
^bb0(%x0: f64):
%ret = arith.negf %x0 : f64
sparse_tensor.yield %ret : f64
}
absent={
sparse_tensor.yield %cf1 : f64
}
linalg.yield %1 : f64
} -> tensor<?xf64, #SparseVector>
return %0 : tensor<?xf64, #SparseVector>
}
// Performs B[i] = i * A[i].
func.func @vector_magnify(%arga: tensor<?xf64, #SparseVector>) -> tensor<?xf64, #SparseVector> {
%c = arith.constant 0 : index
%d = tensor.dim %arga, %c : tensor<?xf64, #SparseVector>
%xv = bufferization.alloc_tensor(%d) : tensor<?xf64, #SparseVector>
%0 = linalg.generic #trait_vec
ins(%arga: tensor<?xf64, #SparseVector>)
outs(%xv: tensor<?xf64, #SparseVector>) {
^bb(%a: f64, %x: f64):
%idx = linalg.index 0 : index
%1 = sparse_tensor.unary %a : f64 to f64
present={
^bb0(%x0: f64):
%tmp = arith.index_cast %idx : index to i64
%idxf = arith.uitofp %tmp : i64 to f64
%ret = arith.mulf %x0, %idxf : f64
sparse_tensor.yield %ret : f64
}
absent={}
linalg.yield %1 : f64
} -> tensor<?xf64, #SparseVector>
return %0 : tensor<?xf64, #SparseVector>
}
// Clips values to the range [3, 7].
func.func @matrix_clip(%argx: tensor<?x?xf64, #DCSR>) -> tensor<?x?xf64, #DCSR> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%cfmin = arith.constant 3.0 : f64
%cfmax = arith.constant 7.0 : f64
%d0 = tensor.dim %argx, %c0 : tensor<?x?xf64, #DCSR>
%d1 = tensor.dim %argx, %c1 : tensor<?x?xf64, #DCSR>
%xv = bufferization.alloc_tensor(%d0, %d1) : tensor<?x?xf64, #DCSR>
%0 = linalg.generic #trait_mat
ins(%argx: tensor<?x?xf64, #DCSR>)
outs(%xv: tensor<?x?xf64, #DCSR>) {
^bb(%a: f64, %x: f64):
%1 = sparse_tensor.unary %a: f64 to f64
present={
^bb0(%x0: f64):
%mincmp = arith.cmpf "ogt", %x0, %cfmin : f64
%x1 = arith.select %mincmp, %x0, %cfmin : f64
%maxcmp = arith.cmpf "olt", %x1, %cfmax : f64
%x2 = arith.select %maxcmp, %x1, %cfmax : f64
sparse_tensor.yield %x2 : f64
}
absent={}
linalg.yield %1 : f64
} -> tensor<?x?xf64, #DCSR>
return %0 : tensor<?x?xf64, #DCSR>
}
// Slices matrix and only keep the value of the lower-right corner of the original
// matrix (i.e., A[2/d0 ..][2/d1 ..]), and set other values to 99.
func.func @matrix_slice(%argx: tensor<?x?xf64, #DCSR>) -> tensor<?x?xf64, #DCSR> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%d0 = tensor.dim %argx, %c0 : tensor<?x?xf64, #DCSR>
%d1 = tensor.dim %argx, %c1 : tensor<?x?xf64, #DCSR>
%xv = bufferization.alloc_tensor(%d0, %d1) : tensor<?x?xf64, #DCSR>
%0 = linalg.generic #trait_mat
ins(%argx: tensor<?x?xf64, #DCSR>)
outs(%xv: tensor<?x?xf64, #DCSR>) {
^bb(%a: f64, %x: f64):
%row = linalg.index 0 : index
%col = linalg.index 1 : index
%1 = sparse_tensor.unary %a: f64 to f64
present={
^bb0(%x0: f64):
%v = arith.constant 99.0 : f64
%two = arith.constant 2 : index
%r = arith.muli %two, %row : index
%c = arith.muli %two, %col : index
%cmp1 = arith.cmpi "ult", %r, %d0 : index
%tmp = arith.select %cmp1, %v, %x0 : f64
%cmp2 = arith.cmpi "ult", %c, %d1 : index
%result = arith.select %cmp2, %v, %tmp : f64
sparse_tensor.yield %result : f64
}
absent={}
linalg.yield %1 : f64
} -> tensor<?x?xf64, #DCSR>
return %0 : tensor<?x?xf64, #DCSR>
}
// Dumps a sparse vector of type f64.
func.func @dump_vec_f64(%arg0: tensor<?xf64, #SparseVector>) {
// Dump the values array to verify only sparse contents are stored.
%c0 = arith.constant 0 : index
%d0 = arith.constant 0.0 : f64
%0 = sparse_tensor.values %arg0 : tensor<?xf64, #SparseVector> to memref<?xf64>
%1 = vector.transfer_read %0[%c0], %d0: memref<?xf64>, vector<32xf64>
vector.print %1 : vector<32xf64>
// Dump the dense vector to verify structure is correct.
%dv = sparse_tensor.convert %arg0 : tensor<?xf64, #SparseVector> to tensor<?xf64>
%3 = vector.transfer_read %dv[%c0], %d0: tensor<?xf64>, vector<32xf64>
vector.print %3 : vector<32xf64>
return
}
// Dumps a sparse vector of type i32.
func.func @dump_vec_i32(%arg0: tensor<?xi32, #SparseVector>) {
// Dump the values array to verify only sparse contents are stored.
%c0 = arith.constant 0 : index
%d0 = arith.constant 0 : i32
%0 = sparse_tensor.values %arg0 : tensor<?xi32, #SparseVector> to memref<?xi32>
%1 = vector.transfer_read %0[%c0], %d0: memref<?xi32>, vector<24xi32>
vector.print %1 : vector<24xi32>
// Dump the dense vector to verify structure is correct.
%dv = sparse_tensor.convert %arg0 : tensor<?xi32, #SparseVector> to tensor<?xi32>
%3 = vector.transfer_read %dv[%c0], %d0: tensor<?xi32>, vector<32xi32>
vector.print %3 : vector<32xi32>
return
}
// Dump a sparse matrix.
func.func @dump_mat(%arg0: tensor<?x?xf64, #DCSR>) {
%c0 = arith.constant 0 : index
%d0 = arith.constant 0.0 : f64
%0 = sparse_tensor.values %arg0 : tensor<?x?xf64, #DCSR> to memref<?xf64>
%1 = vector.transfer_read %0[%c0], %d0: memref<?xf64>, vector<16xf64>
vector.print %1 : vector<16xf64>
%dm = sparse_tensor.convert %arg0 : tensor<?x?xf64, #DCSR> to tensor<?x?xf64>
%3 = vector.transfer_read %dm[%c0, %c0], %d0: tensor<?x?xf64>, vector<4x8xf64>
vector.print %3 : vector<4x8xf64>
return
}
// Driver method to call and verify vector kernels.
func.func @entry() {
%cmu = arith.constant -99 : i32
%c0 = arith.constant 0 : index
// Setup sparse vectors.
%v1 = arith.constant sparse<
[ [0], [3], [11], [17], [20], [21], [28], [29], [31] ],
[ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ]
> : tensor<32xf64>
%sv1 = sparse_tensor.convert %v1 : tensor<32xf64> to tensor<?xf64, #SparseVector>
// Setup sparse matrices.
%m1 = arith.constant sparse<
[ [0,0], [0,1], [1,7], [2,2], [2,4], [2,7], [3,0], [3,2], [3,3] ],
[ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ]
> : tensor<4x8xf64>
%sm1 = sparse_tensor.convert %m1 : tensor<4x8xf64> to tensor<?x?xf64, #DCSR>
// Call sparse vector kernels.
%0 = call @vector_complement_sparse(%sv1)
: (tensor<?xf64, #SparseVector>) -> tensor<?xi32, #SparseVector>
%1 = call @vector_negation(%sv1)
: (tensor<?xf64, #SparseVector>) -> tensor<?xf64, #SparseVector>
%2 = call @vector_magnify(%sv1)
: (tensor<?xf64, #SparseVector>) -> tensor<?xf64, #SparseVector>
// Call sparse matrix kernels.
%3 = call @matrix_clip(%sm1)
: (tensor<?x?xf64, #DCSR>) -> tensor<?x?xf64, #DCSR>
%4 = call @matrix_slice(%sm1)
: (tensor<?x?xf64, #DCSR>) -> tensor<?x?xf64, #DCSR>
// Call kernel with dense output.
%5 = call @vector_complement_dense(%sv1) : (tensor<?xf64, #SparseVector>) -> tensor<?xi32>
//
// Verify the results.
//
// CHECK: ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 5, 6, 0, 0, 0, 0, 0, 0, 7, 8, 0, 9 )
// CHECK-NEXT: ( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0 )
// CHECK-NEXT: ( 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0 )
// CHECK-NEXT: ( -1, 1, 1, -2, 1, 1, 1, 1, 1, 1, 1, -3, 1, 1, 1, 1, 1, -4, 1, 1, -5, -6, 1, 1, 1, 1, 1, 1, -7, -8, 1, -9 )
// CHECK-NEXT: ( -1, 1, 1, -2, 1, 1, 1, 1, 1, 1, 1, -3, 1, 1, 1, 1, 1, -4, 1, 1, -5, -6, 1, 1, 1, 1, 1, 1, -7, -8, 1, -9 )
// CHECK-NEXT: ( 0, 6, 33, 68, 100, 126, 196, 232, 279, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 33, 0, 0, 0, 0, 0, 68, 0, 0, 100, 126, 0, 0, 0, 0, 0, 0, 196, 232, 0, 279 )
// CHECK-NEXT: ( 3, 3, 3, 4, 5, 6, 7, 7, 7, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( ( 3, 3, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 3 ), ( 0, 0, 4, 0, 5, 0, 0, 6 ), ( 7, 0, 7, 7, 0, 0, 0, 0 ) )
// CHECK-NEXT: ( 99, 99, 99, 99, 5, 6, 99, 99, 99, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( ( 99, 99, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 99 ), ( 0, 0, 99, 0, 5, 0, 0, 6 ), ( 99, 0, 99, 99, 0, 0, 0, 0 ) )
// CHECK-NEXT: ( 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0 )
//
call @dump_vec_f64(%sv1) : (tensor<?xf64, #SparseVector>) -> ()
call @dump_vec_i32(%0) : (tensor<?xi32, #SparseVector>) -> ()
call @dump_vec_f64(%1) : (tensor<?xf64, #SparseVector>) -> ()
call @dump_vec_f64(%2) : (tensor<?xf64, #SparseVector>) -> ()
call @dump_mat(%3) : (tensor<?x?xf64, #DCSR>) -> ()
call @dump_mat(%4) : (tensor<?x?xf64, #DCSR>) -> ()
%v = vector.transfer_read %5[%c0], %cmu: tensor<?xi32>, vector<32xi32>
vector.print %v : vector<32xi32>
// Release the resources.
bufferization.dealloc_tensor %sv1 : tensor<?xf64, #SparseVector>
bufferization.dealloc_tensor %sm1 : tensor<?x?xf64, #DCSR>
bufferization.dealloc_tensor %0 : tensor<?xi32, #SparseVector>
bufferization.dealloc_tensor %1 : tensor<?xf64, #SparseVector>
bufferization.dealloc_tensor %2 : tensor<?xf64, #SparseVector>
bufferization.dealloc_tensor %3 : tensor<?x?xf64, #DCSR>
bufferization.dealloc_tensor %4 : tensor<?x?xf64, #DCSR>
bufferization.dealloc_tensor %5 : tensor<?xi32>
return
}
}
|