File: sparse-matmul-2-4-prune.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (132 lines) | stat: -rw-r--r-- 5,321 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
//
// NOTE: this test requires gpu-sm80 and cusparselt
//
// RUN: mlir-opt --sparse-compiler="enable-runtime-library=false enable-gpu-libgen=true gpu-triple=nvptx64-nvidia-cuda gpu-chip=sm_80 gpu-features=+ptx71" \
// RUN:          %s \
// RUN: | mlir-cpu-runner \
// RUN:   --shared-libs=%mlir_cuda_runtime \
// RUN:   --shared-libs=%mlir_c_runner_utils \
// RUN:   --e main --entry-point-result=void \
// RUN: | FileCheck %s

#map0 = affine_map<(d0, d1, d2) -> (d0, d2)>
#map1 = affine_map<(d0, d1, d2) -> (d2, d1)>
#map2 = affine_map<(d0, d1, d2) -> (d0, d1)>

module {

  llvm.func @mgpuCreateSparseLtEnv()
  llvm.func @mgpuDestroySparseLtEnv()

  //
  // TODO: This uses our temporary ATTRIBUTE, replace with 2:4 type!
  //
  func.func @matmul(%arg0: tensor<16x16xf16>,
                    %arg1: tensor<16x16xf16>,
		    %arg2: tensor<16x16xf16>) -> tensor<16x16xf16> {
    %0 = linalg.generic {
       DENSE24,
       indexing_maps = [#map0, #map1, #map2],
       iterator_types = ["parallel", "parallel", "reduction"]
    }
     ins(%arg0, %arg1 : tensor<16x16xf16>, tensor<16x16xf16>)
     outs(%arg2 : tensor<16x16xf16>) {
         ^bb0(%in: f16, %in_0: f16, %out: f16):
           %1 = arith.mulf %in, %in_0 : f16
           %2 = arith.addf %out, %1 : f16
           linalg.yield %2 : f16
       } -> tensor<16x16xf16>
    return %0 : tensor<16x16xf16>
  }

  func.func @main() {
    llvm.call @mgpuCreateSparseLtEnv() : () -> ()

    %c0 = arith.constant 0 : index
    %c1 = arith.constant 1 : index
    %c16 = arith.constant 16 : index

    %f0 = arith.constant 0.0 : f16
    %f1 = arith.constant 1.0 : f16
    %f4 = arith.constant 4.0 : f16

    // Initial A, B, C matrices.
    %A = tensor.generate {
    ^bb0(%i: index, %j: index):
      %val = arith.andi %j, %c1 : index
      %cmp = arith.cmpi eq, %val, %c0 : index
      %res = arith.select %cmp, %f4, %f1 : f16
      tensor.yield %res : f16
    } : tensor<16x16xf16>
    %B = tensor.generate {
    ^bb0(%i: index, %j: index):
      %cmp = arith.cmpi eq, %i, %j : index
      %res = arith.select %cmp, %f1, %f0 : f16
      tensor.yield %res : f16
    } : tensor<16x16xf16>
    %C = tensor.generate {
    ^bb0(%i: index, %j: index):
      tensor.yield %f0 : f16
    } : tensor<16x16xf16>

    // Call the kernel.
    //
    // By effectively computing D = A B + C with id(B) and zero(C)
    // the resulting matrix returns the pruned A back to the caller.
    //
    %D = call @matmul(%A, %B, %C): (tensor<16x16xf16>, tensor<16x16xf16>, tensor<16x16xf16>) -> (tensor<16x16xf16>)

    //
    // This was the original matrix.
    //
    // CHECK:      ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 )
    // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 )
    // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 )
    // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 )
    // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 )
    // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 )
    // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 )
    // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 )
    // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 )
    // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 )
    // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 )
    // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 )
    // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 )
    // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 )
    // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 )
    // CHECK-NEXT: ( 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1 )
    //
    scf.for %i = %c0 to %c16 step %c1 {
      %va = vector.transfer_read %A[%i, %c0], %f0 : tensor<16x16xf16>, vector<16xf16>
      vector.print %va : vector<16xf16>
    }

    //
    // This is the STRIP-pruned matrix.
    //
    // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 )
    // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 )
    // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 )
    // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 )
    // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 )
    // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 )
    // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 )
    // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 )
    // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 )
    // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 )
    // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 )
    // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 )
    // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 )
    // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 )
    // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 )
    // CHECK-NEXT: ( 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0 )
    //
    scf.for %i = %c0 to %c16 step %c1 {
      %vd = vector.transfer_read %D[%i, %c0], %f0 : tensor<16x16xf16>, vector<16xf16>
      vector.print %vd : vector<16xf16>
    }

    llvm.call @mgpuDestroySparseLtEnv() : () -> ()
    return
  }
}