File: sparse-matvec-lib.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (133 lines) | stat: -rw-r--r-- 5,789 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
//
// NOTE: this test requires gpu-sm80
//
// with RT lib (SoA COO):
//
// RUN: mlir-opt %s \
// RUN:   --sparse-compiler="enable-runtime-library=true enable-gpu-libgen gpu-triple=nvptx64-nvidia-cuda gpu-chip=sm_80 gpu-features=+ptx71"  \
// RUN: | mlir-cpu-runner \
// RUN:   --shared-libs=%mlir_cuda_runtime \
// RUN:   --shared-libs=%mlir_c_runner_utils \
// RUN:   --e main --entry-point-result=void \
// RUN: | FileCheck %s
//
// without RT lib (AoS COO): note, may fall back to CPU
//
// RUN: mlir-opt %s \
// RUN:   --sparse-compiler="enable-runtime-library=false enable-gpu-libgen gpu-triple=nvptx64-nvidia-cuda gpu-chip=sm_80 gpu-features=+ptx71"  \
// RUN: | mlir-cpu-runner \
// RUN:   --shared-libs=%mlir_cuda_runtime \
// RUN:   --shared-libs=%mlir_c_runner_utils \
// RUN:   --e main --entry-point-result=void \
// RUN: | FileCheck %s

#SortedCOO = #sparse_tensor.encoding<{
  lvlTypes = [ "compressed-nu", "singleton" ]
}>

#CSR = #sparse_tensor.encoding<{
  lvlTypes = [ "dense", "compressed" ],
  posWidth = 32,
  crdWidth = 32
}>

module {
  llvm.func @mgpuCreateSparseEnv()
  llvm.func @mgpuDestroySparseEnv()

  // Compute matrix vector y = Ax on COO with default index coordinates.
  func.func @matvecCOO(%A: tensor<?x?xf64, #SortedCOO>, %x: tensor<?xf64>, %y_in: tensor<?xf64>) -> tensor<?xf64> {
    %y_out = linalg.matvec
      ins(%A, %x: tensor<?x?xf64, #SortedCOO>, tensor<?xf64>)
      outs(%y_in: tensor<?xf64>) -> tensor<?xf64>
    return %y_out : tensor<?xf64>
  }

  // Compute matrix vector y = Ax on CSR with 32-bit positions and coordinates.
  func.func @matvecCSR(%A: tensor<?x?xf64, #CSR>, %x: tensor<?xf64>, %y_in: tensor<?xf64>) -> tensor<?xf64> {
    %y_out = linalg.matvec
      ins(%A, %x: tensor<?x?xf64, #CSR>, tensor<?xf64>)
      outs(%y_in: tensor<?xf64>) -> tensor<?xf64>
    return %y_out : tensor<?xf64>
  }

  func.func @main() {
    llvm.call @mgpuCreateSparseEnv() : () -> ()
    %f0 = arith.constant 0.0 : f64
    %f1 = arith.constant 1.0 : f64
    %c0 = arith.constant 0 : index
    %c1 = arith.constant 1 : index

    // Stress test with a dense matrix DA.
    %DA = tensor.generate {
    ^bb0(%i: index, %j: index):
      %k = arith.addi %i, %j : index
      %l = arith.index_cast %k : index to i64
      %f = arith.uitofp %l : i64 to f64
      tensor.yield %f : f64
    } : tensor<64x64xf64>

    // Convert to a "sparse" m x n matrix A.
    %Acoo = sparse_tensor.convert %DA : tensor<64x64xf64> to tensor<?x?xf64, #SortedCOO>
    %Acsr = sparse_tensor.convert %DA : tensor<64x64xf64> to tensor<?x?xf64, #CSR>

    // Initialize dense vector with n elements:
    //   (1, 2, 3, 4, ..., n)
    %d1 = tensor.dim %Acoo, %c1 : tensor<?x?xf64, #SortedCOO>
    %x = tensor.generate %d1 {
    ^bb0(%i : index):
      %k = arith.addi %i, %c1 : index
      %j = arith.index_cast %k : index to i64
      %f = arith.uitofp %j : i64 to f64
      tensor.yield %f : f64
    } : tensor<?xf64>

    // Initialize dense vectors to m zeros and m ones.
    %d0 = tensor.dim %Acoo, %c0 : tensor<?x?xf64, #SortedCOO>
    %y0 = tensor.generate %d0 {
    ^bb0(%i : index):
      tensor.yield %f0 : f64
    } : tensor<?xf64>
    %y1 = tensor.generate %d0 {
    ^bb0(%i : index):
      tensor.yield %f1 : f64
    } : tensor<?xf64>

    // Call the kernels.
    %0 = call @matvecCOO(%Acoo, %x, %y0) : (tensor<?x?xf64, #SortedCOO>,
                                            tensor<?xf64>,
					    tensor<?xf64>) -> tensor<?xf64>
    %1 = call @matvecCSR(%Acsr, %x, %y0) : (tensor<?x?xf64, #CSR>,
                                            tensor<?xf64>,
					    tensor<?xf64>) -> tensor<?xf64>
    %2 = call @matvecCOO(%Acoo, %x, %y1) : (tensor<?x?xf64, #SortedCOO>,
                                            tensor<?xf64>,
					    tensor<?xf64>) -> tensor<?xf64>
    %3 = call @matvecCSR(%Acsr, %x, %y1) : (tensor<?x?xf64, #CSR>,
                                            tensor<?xf64>,
					    tensor<?xf64>) -> tensor<?xf64>

    //
    // Sanity check on the results.
    //
    // CHECK-COUNT-2: ( 87360, 89440, 91520, 93600, 95680, 97760, 99840, 101920, 104000, 106080, 108160, 110240, 112320, 114400, 116480, 118560, 120640, 122720, 124800, 126880, 128960, 131040, 133120, 135200, 137280, 139360, 141440, 143520, 145600, 147680, 149760, 151840, 153920, 156000, 158080, 160160, 162240, 164320, 166400, 168480, 170560, 172640, 174720, 176800, 178880, 180960, 183040, 185120, 187200, 189280, 191360, 193440, 195520, 197600, 199680, 201760, 203840, 205920, 208000, 210080, 212160, 214240, 216320, 218400 )
    //
    // CHECK-COUNT-2: ( 87361, 89441, 91521, 93601, 95681, 97761, 99841, 101921, 104001, 106081, 108161, 110241, 112321, 114401, 116481, 118561, 120641, 122721, 124801, 126881, 128961, 131041, 133121, 135201, 137281, 139361, 141441, 143521, 145601, 147681, 149761, 151841, 153921, 156001, 158081, 160161, 162241, 164321, 166401, 168481, 170561, 172641, 174721, 176801, 178881, 180961, 183041, 185121, 187201, 189281, 191361, 193441, 195521, 197601, 199681, 201761, 203841, 205921, 208001, 210081, 212161, 214241, 216321, 218401 )
    //
    %pb0 = vector.transfer_read %0[%c0], %f0 : tensor<?xf64>, vector<64xf64>
    vector.print %pb0 : vector<64xf64>
    %pb1 = vector.transfer_read %1[%c0], %f0 : tensor<?xf64>, vector<64xf64>
    vector.print %pb1 : vector<64xf64>
    %pb2 = vector.transfer_read %2[%c0], %f0 : tensor<?xf64>, vector<64xf64>
    vector.print %pb2 : vector<64xf64>
    %pb3 = vector.transfer_read %3[%c0], %f0 : tensor<?xf64>, vector<64xf64>
    vector.print %pb3 : vector<64xf64>

    // Release the resources.
    bufferization.dealloc_tensor %Acoo : tensor<?x?xf64, #SortedCOO>
    bufferization.dealloc_tensor %Acsr : tensor<?x?xf64, #CSR>

    llvm.call @mgpuDestroySparseEnv() : () -> ()
    return
  }
}