File: test_SpMM.py

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (157 lines) | stat: -rw-r--r-- 5,613 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# RUN: env SUPPORT_LIB=%mlir_c_runner_utils \
# RUN:   %PYTHON %s | FileCheck %s

import ctypes
import numpy as np
import os
import sys

from mlir import ir
from mlir import runtime as rt

from mlir.dialects import sparse_tensor as st
from mlir.dialects import builtin
from mlir.dialects import func
from mlir.dialects.linalg.opdsl import lang as dsl

_SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__))
sys.path.append(_SCRIPT_PATH)
from tools import sparse_compiler


@dsl.linalg_structured_op
def matmul_dsl(
    A=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.K),
    B=dsl.TensorDef(dsl.T, dsl.S.K, dsl.S.N),
    C=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.N, output=True),
):
    C[dsl.D.m, dsl.D.n] += A[dsl.D.m, dsl.D.k] * B[dsl.D.k, dsl.D.n]


def build_SpMM(attr: st.EncodingAttr):
    """Build SpMM kernel.

    This method generates a linalg op with for matrix multiplication using
    just the Python API. Effectively, a generic linalg op is constructed
    that computes C(i,j) += A(i,k) * B(k,j) for annotated matrix A.
    """
    module = ir.Module.create()
    f64 = ir.F64Type.get()
    a = ir.RankedTensorType.get([3, 4], f64, attr)
    b = ir.RankedTensorType.get([4, 2], f64)
    c = ir.RankedTensorType.get([3, 2], f64)
    arguments = [a, b, c]
    with ir.InsertionPoint(module.body):

        @func.FuncOp.from_py_func(*arguments)
        def spMxM(*args):
            return matmul_dsl(args[0], args[1], outs=[args[2]])

    return module


def boilerplate(attr: st.EncodingAttr):
    """Returns boilerplate main method.

    This method sets up a boilerplate main method that takes three tensors
    (a, b, c), converts the first tensor a into s sparse tensor, and then
    calls the sparse kernel for matrix multiplication. For convenience,
    this part is purely done as string input.
    """
    return f"""
func.func @main(%ad: tensor<3x4xf64>, %b: tensor<4x2xf64>, %c: tensor<3x2xf64>) -> tensor<3x2xf64>
  attributes {{ llvm.emit_c_interface }} {{
  %a = sparse_tensor.convert %ad : tensor<3x4xf64> to tensor<3x4xf64, {attr}>
  %0 = call @spMxM(%a, %b, %c) : (tensor<3x4xf64, {attr}>,
                                  tensor<4x2xf64>,
                                  tensor<3x2xf64>) -> tensor<3x2xf64>
  return %0 : tensor<3x2xf64>
}}
"""


def build_compile_and_run_SpMM(attr: st.EncodingAttr, compiler):
    # Build.
    module = build_SpMM(attr)
    func = str(module.operation.regions[0].blocks[0].operations[0].operation)
    module = ir.Module.parse(func + boilerplate(attr))

    # Compile.
    engine = compiler.compile_and_jit(module)

    # Set up numpy input and buffer for output.
    a = np.array(
        [[1.1, 0.0, 0.0, 1.4], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 3.3, 0.0]], np.float64
    )
    b = np.array([[1.0, 2.0], [4.0, 3.0], [5.0, 6.0], [8.0, 7.0]], np.float64)
    c = np.zeros((3, 2), np.float64)

    mem_a = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(a)))
    mem_b = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(b)))
    mem_c = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(c)))
    # Allocate a MemRefDescriptor to receive the output tensor.
    # The buffer itself is allocated inside the MLIR code generation.
    ref_out = rt.make_nd_memref_descriptor(2, ctypes.c_double)()
    mem_out = ctypes.pointer(ctypes.pointer(ref_out))

    # Invoke the kernel and get numpy output.
    # Built-in bufferization uses in-out buffers.
    # TODO: replace with inplace comprehensive bufferization.
    engine.invoke("main", mem_out, mem_a, mem_b, mem_c)

    # Sanity check on computed result.
    expected = np.matmul(a, b)
    c = rt.ranked_memref_to_numpy(mem_out[0])
    if np.allclose(c, expected):
        pass
    else:
        quit(f"FAILURE")


def main():
    support_lib = os.getenv("SUPPORT_LIB")
    assert support_lib is not None, "SUPPORT_LIB is undefined"
    if not os.path.exists(support_lib):
        raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), support_lib)

    # CHECK-LABEL: TEST: testSpMM
    print("\nTEST: testSpMM")
    with ir.Context() as ctx, ir.Location.unknown():
        count = 0
        # Loop over various ways to compile and annotate the SpMM kernel with
        # a *single* sparse tensor. Note that we deliberate do not exhaustively
        # search the full state space to reduce runtime of the test. It is
        # straightforward to adapt the code below to explore more combinations.

        vl = 1
        e = False
        opt = f"parallelization-strategy=none"
        levels = [
            [st.DimLevelType.dense, st.DimLevelType.dense],
            [st.DimLevelType.dense, st.DimLevelType.compressed],
            [st.DimLevelType.compressed, st.DimLevelType.dense],
            [st.DimLevelType.compressed, st.DimLevelType.compressed],
        ]
        orderings = [
            ir.AffineMap.get_permutation([0, 1]),
            ir.AffineMap.get_permutation([1, 0]),
        ]
        bitwidths = [0]
        compiler = sparse_compiler.SparseCompiler(
            options=opt, opt_level=0, shared_libs=[support_lib]
        )
        for level in levels:
            for ordering in orderings:
                for pwidth in bitwidths:
                    for iwidth in bitwidths:
                        attr = st.EncodingAttr.get(
                            level, ordering, pwidth, iwidth
                        )
                        build_compile_and_run_SpMM(attr, compiler)
                        count = count + 1
        # CHECK: Passed 8 tests
        print("Passed ", count, "tests")


if __name__ == "__main__":
    main()