1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
// RUN: mlir-opt %s --test-transform-dialect-interpreter --verify-diagnostics
module attributes { transform.with_named_sequence } {
transform.named_sequence @_reduce_leading_trailing(%entry: !transform.any_op {transform.readonly})
-> (!transform.any_op) {
%c1 = transform.param.constant 1 : i64 -> !transform.param<i64>
transform.match.structured %entry : !transform.any_op {
^bb0(%struct: !transform.any_op):
transform.match.structured.dim %struct[all] {parallel} : !transform.any_op
transform.match.structured.input %struct[all] {projected_permutation} : !transform.any_op
transform.match.structured.init %struct[all] {permutation} : !transform.any_op
%ni = transform.match.structured.num_inits %struct : (!transform.any_op) -> !transform.param<i64>
transform.match.param.cmpi eq %ni, %c1 : !transform.param<i64>
}
transform.yield %entry : !transform.any_op
}
transform.named_sequence @fill_reduce_leading_trailing(%entry: !transform.any_op {transform.readonly})
-> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op,
!transform.param<i64>, !transform.param<i64>, !transform.param<i64>) {
%c1 = transform.param.constant 1 : i64 -> !transform.param<i64>
%c2 = transform.param.constant 2 : i64 -> !transform.param<i64>
%c4 = transform.param.constant 4 : i64 -> !transform.param<i64>
%rk, %dms, %bw, %operand_o, %init_v, %trailing_o = transform.match.structured failures(propagate) %entry
: (!transform.any_op) -> (!transform.param<i64>, !transform.param<i64>, !transform.param<i64>,
!transform.any_op, !transform.any_value, !transform.any_op) {
^bb0(%struct: !transform.any_op):
%rank = transform.match.structured.rank %struct : (!transform.any_op) -> !transform.param<i64>
transform.match.param.cmpi ge %rank, %c2 : !transform.param<i64>
transform.match.param.cmpi le %rank, %c4 : !transform.param<i64>
transform.match.structured.dim %struct[-1] {reduction} : !transform.any_op
transform.match.structured.dim %struct[except(-1)] {parallel} : !transform.any_op
%dims = transform.match.structured.dim %struct[all] : (!transform.any_op) -> !transform.param<i64>
%n_inputs = transform.match.structured.num_inputs %struct : (!transform.any_op) -> !transform.param<i64>
%n_outputs = transform.match.structured.num_inits %struct : (!transform.any_op) -> !transform.param<i64>
transform.match.param.cmpi eq %n_inputs, %c1 : !transform.param<i64>
transform.match.param.cmpi eq %n_outputs, %c1 : !transform.param<i64>
transform.match.structured.input %struct[0] {projected_permutation} : !transform.any_op
transform.match.structured.init %struct[0] {projected_permutation} : !transform.any_op
%init = transform.match.structured.init %struct[0] : (!transform.any_op) -> !transform.any_value
// This danse is necessary to create an empty handle if there is no single
// user without failing the entire match
%trailing_optional = transform.sequence %struct : (!transform.any_op) -> !transform.any_op failures(suppress) {
^bb0(%struct_inner: !transform.any_op):
%result = transform.match.structured failures(propagate) %struct_inner : (!transform.any_op) -> !transform.any_op {
^bb0(%struct_inner_inner: !transform.any_op):
%result_inner = transform.match.structured.result %struct_inner_inner[0] {single} : (!transform.any_op) -> !transform.any_op
%trailing = transform.include @_reduce_leading_trailing failures(propagate) (%result_inner) : (!transform.any_op) -> !transform.any_op
transform.match.structured.yield %trailing : !transform.any_op
}
transform.yield %result: !transform.any_op
}
// Suppress errors as a way to implement optionality. We cannot suppress them in
// the include because it keeps matching after "get_defining_op" fails, which
// breaks the single-op precondition of the following ops. We don't want to
// propagate that failure though.
//
// Additionally, we cannot put the sequence inside the call because its first
// operand must be an operation handle (the verifier asserts!) and there is
// no such handle available there.
//
// TODO: extend the structured matching to gracefully handle empty handles
// or provide the suppress-errors-but-stop failure mode for includes to
// implement optionality.
%operand_optional = transform.sequence %struct : (!transform.any_op) -> !transform.any_op failures(suppress) {
^bb0(%struct_inner: !transform.any_op):
%operand3 = transform.match.structured failures(propagate) %struct_inner : (!transform.any_op) -> !transform.any_op {
^bb1(%struct_inner_inner: !transform.any_op):
%operand = transform.match.structured.input %struct_inner_inner[0] : (!transform.any_op) -> !transform.any_op
%operand2 = transform.include @_reduce_leading_trailing failures(propagate) (%operand) : (!transform.any_op) -> !transform.any_op
transform.match.structured.yield %operand2 : !transform.any_op
}
transform.yield %operand3 : !transform.any_op
}
%bitwidth = transform.match.structured.elemental_bitwidth %init : (!transform.any_value) -> !transform.param<i64>
transform.match.structured.body %struct { reduction_position = 0 } : !transform.any_op
transform.match.structured.yield %rank, %dims, %bitwidth, %operand_optional, %init, %trailing_optional
: !transform.param<i64>, !transform.param<i64>, !transform.param<i64>,
!transform.any_op, !transform.any_value, !transform.any_op
}
%init_o = transform.get_defining_op %init_v : (!transform.any_value) -> !transform.any_op
transform.match.operation_name %init_o ["linalg.fill"] : !transform.any_op
transform.yield %operand_o, %init_o, %entry, %trailing_o, %rk, %dms, %bw
: !transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op,
!transform.param<i64>, !transform.param<i64>, !transform.param<i64>
}
transform.named_sequence @print_reduce_leading_trailing(
%leading: !transform.any_op {transform.readonly},
%fill: !transform.any_op {transform.readonly},
%reduction: !transform.any_op {transform.readonly},
%trailing: !transform.any_op {transform.readonly},
%rank: !transform.param<i64> {transform.readonly},
%dims: !transform.param<i64> {transform.readonly},
%bitwidth: !transform.param<i64> {transform.readonly}) {
transform.test_print_remark_at_operand %leading, "leading" : !transform.any_op
transform.test_print_remark_at_operand %fill, "fill" : !transform.any_op
transform.test_print_remark_at_operand %reduction, "reduction" : !transform.any_op
transform.test_print_remark_at_operand %trailing, "trailing" : !transform.any_op
transform.test_print_param %rank, "rank" at %reduction : !transform.param<i64>, !transform.any_op
transform.test_print_param %dims, "dimensions" at %reduction : !transform.param<i64>, !transform.any_op
transform.test_print_param %bitwidth, "bitwidth" at %reduction : !transform.param<i64>, !transform.any_op
transform.yield
}
transform.sequence failures(propagate) {
^bb(%root: !transform.any_op):
foreach_match in %root
@fill_reduce_leading_trailing -> @print_reduce_leading_trailing
: (!transform.any_op) -> !transform.any_op
}
}
!in_tensor_t = tensor<8x64xf32>
!out_tensor_t = tensor<8xf32>
func.func @eltwise_reduce(%arg : !in_tensor_t) -> (!out_tensor_t) {
%cst = arith.constant -0.000000e+00 : f32
%0 = tensor.empty() : !out_tensor_t
// expected-remark @below {{fill}}
%1 = linalg.fill ins(%cst : f32) outs(%0 : !out_tensor_t) -> !out_tensor_t
%2 = tensor.empty() : !in_tensor_t
// expected-remark @below {{leading}}
%3 = linalg.generic {
indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0, d1)>],
iterator_types = ["parallel", "parallel"]}
ins(%arg : !in_tensor_t) outs(%2 : !in_tensor_t) {
^bb0(%arg3: f32, %arg4: f32):
%4 = arith.addf %arg3, %arg3 : f32
%5 = arith.addf %4, %4 : f32
linalg.yield %5 : f32
} -> !in_tensor_t
// expected-remark @below {{reduction}}
// expected-remark @below {{rank 2}}
// expected-remark @below {{dimensions 8 : i64, 64 : i64}}
// expected-remark @below {{bitwidth 32 : i64}}
%6 = linalg.generic {
indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0)>],
iterator_types = ["parallel", "reduction"]}
ins(%3 : !in_tensor_t) outs(%1 : !out_tensor_t) {
^bb0(%arg3: f32, %arg4: f32):
%4 = arith.addf %arg3, %arg4 : f32
linalg.yield %4 : f32
} -> !out_tensor_t
return %6 : !out_tensor_t
}
func.func @reduce_eltwise(%arg : !in_tensor_t) -> (!out_tensor_t) {
%cst = arith.constant -0.000000e+00 : f32
%0 = tensor.empty() : !out_tensor_t
// expected-remark @below {{fill}}
%1 = linalg.fill ins(%cst : f32) outs(%0 : !out_tensor_t) -> !out_tensor_t
// expected-remark @below {{reduction}}
// expected-remark @below {{rank 2}}
// expected-remark @below {{dimensions 8 : i64, 64 : i64}}
// expected-remark @below {{bitwidth 32 : i64}}
%5 = linalg.generic {
indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0)>],
iterator_types = ["parallel", "reduction"]}
ins(%arg : !in_tensor_t) outs(%1 : !out_tensor_t) {
^bb0(%arg3: f32, %arg4: f32):
%4 = arith.addf %arg3, %arg4 : f32
linalg.yield %4 : f32
} -> !out_tensor_t
%6 = tensor.empty() : !out_tensor_t
// expected-remark @below {{trailing}}
%7 = linalg.generic {
indexing_maps = [affine_map<(d0) -> (d0)>,
affine_map<(d0) -> (d0)>],
iterator_types = ["parallel"]}
ins(%5 : !out_tensor_t) outs(%6 : !out_tensor_t) {
^bb0(%arg3: f32, %arg4: f32):
%4 = math.sqrt %arg3 : f32
linalg.yield %4 : f32
} -> !out_tensor_t
return %7 : !out_tensor_t
}
func.func @eltwise_reduce_eltwise(%arg : !in_tensor_t) -> (!out_tensor_t) {
%cst = arith.constant -0.000000e+00 : f32
%0 = tensor.empty() : !out_tensor_t
// expected-remark @below {{fill}}
%1 = linalg.fill ins(%cst : f32) outs(%0 : !out_tensor_t) -> !out_tensor_t
%2 = tensor.empty() : !in_tensor_t
// expected-remark @below {{leading}}
%3 = linalg.generic {
indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0, d1)>],
iterator_types = ["parallel", "parallel"]}
ins(%arg : !in_tensor_t) outs(%2 : !in_tensor_t) {
^bb0(%arg3: f32, %arg4: f32):
%4 = arith.addf %arg3, %arg3 : f32
%5 = arith.addf %4, %4 : f32
linalg.yield %5 : f32
} -> !in_tensor_t
// expected-remark @below {{reduction}}
// expected-remark @below {{rank 2}}
// expected-remark @below {{dimensions 8 : i64, 64 : i64}}
// expected-remark @below {{bitwidth 32 : i64}}
%6 = linalg.generic {
indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0)>],
iterator_types = ["parallel", "reduction"]}
ins(%3 : !in_tensor_t) outs(%1 : !out_tensor_t) {
^bb0(%arg3: f32, %arg4: f32):
%4 = arith.addf %arg3, %arg4 : f32
linalg.yield %4 : f32
} -> !out_tensor_t
%7 = tensor.empty() : !out_tensor_t
// expected-remark @below {{trailing}}
%8 = linalg.generic {
indexing_maps = [affine_map<(d0) -> (d0)>,
affine_map<(d0) -> (d0)>],
iterator_types = ["parallel"]}
ins(%6 : !out_tensor_t) outs(%7 : !out_tensor_t) {
^bb0(%arg3: f32, %arg4: f32):
%4 = math.sqrt %arg3 : f32
linalg.yield %4 : f32
} -> !out_tensor_t
return %8 : !out_tensor_t
}
func.func @eltwise_reduce_eltwise_swapped(%arg : !in_tensor_t) -> (!out_tensor_t) {
%cst = arith.constant -0.000000e+00 : f32
%2 = tensor.empty() : !in_tensor_t
// expected-remark @below {{leading}}
%3 = linalg.generic {
indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0, d1)>],
iterator_types = ["parallel", "parallel"]}
ins(%arg : !in_tensor_t) outs(%2 : !in_tensor_t) {
^bb0(%arg3: f32, %arg4: f32):
%4 = arith.addf %arg3, %arg3 : f32
%5 = arith.addf %4, %4 : f32
linalg.yield %5 : f32
} -> !in_tensor_t
%0 = tensor.empty() : !out_tensor_t
// expected-remark @below {{fill}}
%1 = linalg.fill ins(%cst : f32) outs(%0 : !out_tensor_t) -> !out_tensor_t
// expected-remark @below {{reduction}}
// expected-remark @below {{rank 2}}
// expected-remark @below {{dimensions 8 : i64, 64 : i64}}
// expected-remark @below {{bitwidth 32 : i64}}
%6 = linalg.generic {
indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0)>],
iterator_types = ["parallel", "reduction"]}
ins(%3 : !in_tensor_t) outs(%1 : !out_tensor_t) {
^bb0(%arg3: f32, %arg4: f32):
%4 = arith.addf %arg3, %arg4 : f32
linalg.yield %4 : f32
} -> !out_tensor_t
%7 = tensor.empty() : !out_tensor_t
// expected-remark @below {{trailing}}
%8 = linalg.generic {
indexing_maps = [affine_map<(d0) -> (d0)>,
affine_map<(d0) -> (d0)>],
iterator_types = ["parallel"]}
ins(%6 : !out_tensor_t) outs(%7 : !out_tensor_t) {
^bb0(%arg3: f32, %arg4: f32):
%4 = math.sqrt %arg3 : f32
linalg.yield %4 : f32
} -> !out_tensor_t
return %8 : !out_tensor_t
}
func.func @reduction_with_extra_op_in_func(%arg0: tensor<8x479xf32>, %arg1: tensor<32x32xf32>) -> (tensor<8xf32>, tensor<32xf32>) {
%cst = arith.constant 0.0 : f32
%empty = tensor.empty() : tensor<8xf32>
// expected-remark @below {{fill}}
%fill = linalg.fill ins(%cst : f32) outs(%empty : tensor<8xf32>) -> tensor<8xf32>
// expected-remark @below {{reduction}}
// expected-remark @below {{rank 2}}
// expected-remark @below {{dimensions 8 : i64, 479 : i64}}
// expected-remark @below {{bitwidth 32 : i64}}
%result = linalg.generic {
indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0)>],
iterator_types = ["parallel", "reduction"]}
ins(%arg0 : tensor<8x479xf32>)
outs(%fill : tensor<8xf32>) {
^bb0(%in: f32, %out: f32):
%6 = arith.addf %in, %out : f32
linalg.yield %6 : f32
} -> tensor<8xf32>
%empty2 = tensor.empty() : tensor<32xf32>
%fill2 = linalg.fill ins(%cst : f32) outs(%empty2 : tensor<32xf32>) -> tensor<32xf32>
return %result, %fill2 : tensor<8xf32>, tensor<32xf32>
}
|