File: tile-pad-using-interface.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (140 lines) | stat: -rw-r--r-- 7,288 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
// RUN: mlir-opt -test-tiling-interface=tile-using-scf-for -resolve-shaped-type-result-dims -cse -split-input-file %s | FileCheck %s

// 2D tiling of dynamic 2D pad tensor op.
func.func @dynamic_2d_pad_tensor(%input_tensor: tensor<?x?xf32>,
                         %pad_value: f32) -> tensor<?x?xf32> {
  %0 = tensor.pad %input_tensor low[3, 4] high[5, 3] {
    ^bb0(%arg1: index, %arg2: index):
      tensor.yield %pad_value : f32
    } {__internal_linalg_transform__ = "pad_2dtiling"}: tensor<?x?xf32> to tensor<?x?xf32>
  return %0 : tensor<?x?xf32>
}
//  CHECK-DAG:  #[[MAP0:.+]] = affine_map<()[s0] -> (s0 + 8)>
//  CHECK-DAG:  #[[MAP1:.+]] = affine_map<()[s0] -> (s0 + 7)>
//       CHECK: func @dynamic_2d_pad_tensor(
//  CHECK-SAME:     %[[IN:[a-zA-Z0-9]+]]: tensor<?x?xf32>
//   CHECK-DAG:   %[[C0:.+]] = arith.constant 0 : index
//   CHECK-DAG:   %[[C1:.+]] = arith.constant 1 : index
//   CHECK-DAG:   %[[C2:.+]] = arith.constant 2 : index
//   CHECK-DAG:   %[[C3:.+]] = arith.constant 3 : index
//       CHECK:   %[[DIM_IN0:.+]] = tensor.dim %[[IN]], %[[C0]]
//       CHECK:   %[[DIM0:.+]] = affine.apply #[[MAP0]]()[%[[DIM_IN0]]]
//       CHECK:   %[[DIM_IN1:.+]] = tensor.dim %[[IN]], %[[C1]]
//       CHECK:   %[[DIM1:.+]] = affine.apply #[[MAP1]]()[%[[DIM_IN1]]]
//       CHECK:   %[[RESULT:[a-zA-Z0-9]+]] = scf.for %[[IV0:[a-zA-Z0-9]+]] = %[[C0]] to %[[DIM0]] step %[[C2]]
//       CHECK:     scf.for {{.*}} = %[[C0]] to %[[DIM1]] step %[[C3]] iter_args(%[[INNER_OUT:.*]] =
//       CHECK:       %[[SWAP_RESULT:.*]] = scf.if
//       CHECK:         tensor.generate
//       CHECK:       else
//       CHECK:         %[[SLICE:.*]] = tensor.extract_slice %[[IN]][{{.*}}, {{.*}}] [{{.*}}, {{.*}}] [1, 1]
//       CHECK:         %[[PAD:.*]] = tensor.pad %[[SLICE]]
//       CHECK:       tensor.insert_slice %[[SWAP_RESULT]] into %[[INNER_OUT]][{{.*}}, {{.*}}] [{{.*}}, {{.*}}] [1, 1]
//       CHECK:   return %[[RESULT]]

// -----

func.func @dynamic_2d_pad_tensor_inner_tiling(%input_tensor: tensor<?x?xf32>,
                         %pad_value: f32) -> tensor<?x?xf32> {
  %0 = tensor.pad %input_tensor low[3, 4] high[5, 3] {
    ^bb0(%arg1: index, %arg2: index):
      tensor.yield %pad_value : f32
    } {__internal_linalg_transform__ = "pad_inner_tiling"}: tensor<?x?xf32> to tensor<?x?xf32>
  return %0 : tensor<?x?xf32>
}
//   CHECK-DAG: #[[MAP0:.*]] = affine_map<()[s0] -> (s0 + 8)>
//   CHECK-DAG: #[[MAP1:.*]] = affine_map<()[s0] -> (s0 + 7)>
//       CHECK: func @dynamic_2d_pad_tensor_inner_tiling(
//  CHECK-SAME:     %[[IN:.*]]: tensor<?x?xf32>
//   CHECK-DAG:   %[[C0:.*]] = arith.constant 0 : index
//   CHECK-DAG:   %[[C1:.*]] = arith.constant 1 : index
//   CHECK-DAG:   %[[C3:.*]] = arith.constant 3 : index
//       CHECK:   %[[DIM_IN0:.*]] = tensor.dim %[[IN]], %[[C0]]
//       CHECK:   %[[DIM0:.*]] = affine.apply #[[MAP0]]()[%[[DIM_IN0]]]
//       CHECK:   %[[DIM_IN1:.*]] = tensor.dim %[[IN]], %[[C1]]
//       CHECK:   %[[DIM1:.*]] = affine.apply #[[MAP1]]()[%[[DIM_IN1]]]
//       CHECK:   %[[RESULT:.*]] = scf.for {{.*}} = %[[C0]] to %[[DIM1]] step %[[C3]] iter_args(%[[INNER_OUT:.*]] =
//       CHECK:     %[[SWAP_RESULT:.*]] = scf.if
//       CHECK:       tensor.generate
//       CHECK:     else
//       CHECK:       %[[SLICE:.*]] = tensor.extract_slice %[[IN]][{{.*}}, {{.*}}] [{{.*}}, {{.*}}] [1, 1]
//       CHECK:       %[[PAD:.*]] = tensor.pad %[[SLICE]] low[3, %{{.*}}] high[{{.*}}, {{.*}}]
//       CHECK:     tensor.insert_slice %[[SWAP_RESULT]] into %[[INNER_OUT]][%[[C0]], {{.*}}] [%[[DIM0]], {{.*}}] [1, 1]
//       CHECK:   return %[[RESULT]]

// -----

func.func @static_pad_tensor(%input_tensor: tensor<7x9xf32>,
                        %pad_value: f32) -> tensor<15x16xf32> {
  %0 = tensor.pad %input_tensor low[3, 4] high[5, 3] {
    ^bb0(%arg1: index, %arg2: index):
      tensor.yield %pad_value : f32
    } {__internal_linalg_transform__ = "pad_2dtiling"} : tensor<7x9xf32> to tensor<15x16xf32>
  return %0 : tensor<15x16xf32>
}
// CHECK-LABEL: func @static_pad_tensor(
//  CHECK-SAME:     %[[IN:.*]]: tensor<7x9xf32>
//   CHECK-DAG:   %[[C0:.*]] = arith.constant 0 : index
//   CHECK-DAG:   %[[C2:.*]] = arith.constant 2 : index
//   CHECK-DAG:   %[[C3:.*]] = arith.constant 3 : index
//   CHECK-DAG:   %[[C15:.*]] = arith.constant 15 : index
//   CHECK-DAG:   %[[C16:.*]] = arith.constant 16 : index
//       CHECK:   %[[RESULT:.*]] = scf.for {{.*}} = %[[C0]] to %[[C15]] step %[[C2]]
//       CHECK:     scf.for {{.*}} = %[[C0]] to %[[C16]] step %[[C3]] iter_args(%[[INNER_OUT:.*]] =
//       CHECK:       %[[SWAP_RESULT:.*]] = scf.if
//       CHECK:         tensor.generate
//       CHECK:       else
//       CHECK:         %[[SLICE:.*]] = tensor.extract_slice %[[IN]][{{.*}}, {{.*}}] [{{.*}}, {{.*}}] [1, 1]
//       CHECK:         %[[PAD:.*]] = tensor.pad %[[SLICE]]
//       CHECK:       tensor.insert_slice %[[SWAP_RESULT]] into %[[INNER_OUT]][{{.*}}, {{.*}}] [{{.*}}, {{.*}}] [1, 1]
//       CHECK:   return %[[RESULT]]

// -----

func.func @static_pad_tensor_inner_tiling(%input_tensor: tensor<7x9xf32>,
                        %pad_value: f32) -> tensor<15x16xf32> {
  %0 = tensor.pad %input_tensor low[3, 4] high[5, 3] {
    ^bb0(%arg1: index, %arg2: index):
      tensor.yield %pad_value : f32
    } {__internal_linalg_transform__ = "pad_inner_tiling"} : tensor<7x9xf32> to tensor<15x16xf32>
  return %0 : tensor<15x16xf32>
}
// CHECK-LABEL: func @static_pad_tensor_inner_tiling(
//  CHECK-SAME:     %[[IN:.*]]: tensor<7x9xf32>
//   CHECK-DAG:   %[[C0:.*]] = arith.constant 0 : index
//   CHECK-DAG:   %[[C3:.*]] = arith.constant 3 : index
//   CHECK-DAG:   %[[C15:.*]] = arith.constant 15 : index
//   CHECK-DAG:   %[[C16:.*]] = arith.constant 16 : index
//       CHECK:   %[[RESULT:.*]] = scf.for {{.*}} = %[[C0]] to %[[C16]] step %[[C3]] iter_args(%[[INNER_OUT:.*]] =
//       CHECK:     %[[SWAP_RESULT:.*]] = scf.if
//       CHECK:       tensor.generate
//       CHECK:     else
//       CHECK:       %[[SLICE:.*]] = tensor.extract_slice %[[IN]][0, {{.*}}] [7, {{.*}}] [1, 1]
//       CHECK:       %[[PAD:.*]] = tensor.pad %[[SLICE]] low[3, %{{.*}}] high[5, {{.*}}]
//       CHECK:     tensor.insert_slice %[[SWAP_RESULT]] into %[[INNER_OUT]][%[[C0]], {{.*}}] [%[[C15]], {{.*}}] [1, 1]
//       CHECK:   return %[[RESULT]]

/// Rest of the tests only check that they dont fail.

// -----

func.func @dynamic_2d_pad_tensor_outer_tiling(%input_tensor: tensor<?x?xf32>,
                         %pad_value: f32) -> tensor<?x?xf32> {
  %0 = tensor.pad %input_tensor low[3, 4] high[5, 3] {
    ^bb0(%arg1: index, %arg2: index):
      tensor.yield %pad_value : f32
    } {__internal_linalg_transform__ = "pad_outer_tiling"}: tensor<?x?xf32> to tensor<?x?xf32>
  return %0 : tensor<?x?xf32>
}
// CHECK-LABEL: func @dynamic_2d_pad_tensor_outer_tiling

// -----

func.func @static_pad_tensor_outer_tiling(%input_tensor: tensor<7x9xf32>,
                        %pad_value: f32) -> tensor<15x16xf32> {
  %0 = tensor.pad %input_tensor low[3, 4] high[5, 3] {
    ^bb0(%arg1: index, %arg2: index):
      tensor.yield %pad_value : f32
    } {__internal_linalg_transform__ = "pad_inner_tiling"} : tensor<7x9xf32> to tensor<15x16xf32>
  return %0 : tensor<15x16xf32>
}
// CHECK-LABEL: func @static_pad_tensor_outer_tiling