1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
; RUN: mlir-translate -import-llvm -split-input-file %s | FileCheck %s
; CHECK-LABEL: @int_constants
define void @int_constants(i16 %arg0, i32 %arg1, i1 %arg2) {
; CHECK: %[[C0:.+]] = llvm.mlir.constant(42 : i16) : i16
; CHECK: %[[C1:.+]] = llvm.mlir.constant(7 : i32) : i32
; CHECK: %[[C2:.+]] = llvm.mlir.constant(true) : i1
; CHECK: llvm.add %[[C0]], %{{.*}} : i16
%1 = add i16 42, %arg0
; CHECK: llvm.add %[[C1]], %{{.*}} : i32
%2 = add i32 7, %arg1
; CHECK: llvm.or %[[C2]], %{{.*}} : i1
%3 = or i1 1, %arg2
ret void
}
; // -----
; CHECK-LABEL: @float_constants
define void @float_constants(half %arg0, bfloat %arg1, fp128 %arg2, x86_fp80 %arg3) {
; CHECK: %[[C0:.+]] = llvm.mlir.constant(1.000000e+00 : f16) : f16
; CHECK: %[[C1:.+]] = llvm.mlir.constant(1.000000e+00 : bf16) : bf16
; CHECK: %[[C2:.+]] = llvm.mlir.constant(0.000000e+00 : f128) : f128
; CHECK: %[[C3:.+]] = llvm.mlir.constant(7.000000e+00 : f80) : f80
; CHECK: llvm.fadd %[[C0]], %{{.*}} : f16
%1 = fadd half 1.0, %arg0
; CHECK: llvm.fadd %[[C1]], %{{.*}} : bf16
%2 = fadd bfloat 1.0, %arg1
; CHECK: llvm.fadd %[[C2]], %{{.*}} : f128
%3 = fadd fp128 0xL00000000000000000000000000000000, %arg2
; CHECK: llvm.fadd %[[C3]], %{{.*}} : f80
%4 = fadd x86_fp80 0xK4001E000000000000000, %arg3
ret void
}
; // -----
; CHECK-LABEL: @undef_constant
define void @undef_constant(i32 %arg0) {
; CHECK: %[[UNDEF:.+]] = llvm.mlir.undef : i32
; CHECK: llvm.add %[[UNDEF]], %{{.*}} : i32
%1 = add i32 undef, %arg0
ret void
}
; // -----
; CHECK-LABEL: @null_constant
define ptr @null_constant() {
; CHECK: %[[NULL:[0-9]+]] = llvm.mlir.null : !llvm.ptr
; CHECK: llvm.return %[[NULL]] : !llvm.ptr
ret ptr null
}
; // -----
@global = external global i32, align 8
; CHECK-LABEL: @gep_const_expr
define ptr @gep_const_expr() {
; CHECK-DAG: %[[ADDR:[0-9]+]] = llvm.mlir.addressof @global : !llvm.ptr
; CHECK-DAG: %[[IDX:[0-9]+]] = llvm.mlir.constant(2 : i32) : i32
; CHECK-DAG: %[[GEP:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX]]] : (!llvm.ptr, i32) -> !llvm.ptr
; CHECK-DAG: llvm.return %[[GEP]] : !llvm.ptr
ret ptr getelementptr (i32, ptr @global, i32 2)
}
; // -----
@global = external global i32, align 8
; CHECK-LABEL: @const_expr_with_duplicate
define i64 @const_expr_with_duplicate() {
; CHECK-DAG: %[[ADDR:[0-9]+]] = llvm.mlir.addressof @global : !llvm.ptr
; CHECK-DAG: %[[IDX:[0-9]+]] = llvm.mlir.constant(7 : i32) : i32
; CHECK-DAG: %[[GEP:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX]]] : (!llvm.ptr, i32) -> !llvm.ptr
; CHECK-DAG: %[[DUP:[0-9]+]] = llvm.ptrtoint %[[GEP]] : !llvm.ptr to i64
; Verify the duplicate sub expression is converted only once.
; CHECK-DAG: %[[SUM:[0-9]+]] = llvm.add %[[DUP]], %[[DUP]] : i64
; CHECK-DAG: llvm.return %[[SUM]] : i64
ret i64 add (i64 ptrtoint (ptr getelementptr (i32, ptr @global, i32 7) to i64),
i64 ptrtoint (ptr getelementptr (i32, ptr @global, i32 7) to i64))
}
; // -----
@global = external global i32, align 8
; CHECK-LABEL: @const_expr_with_aggregate()
define i64 @const_expr_with_aggregate() {
; Compute the vector elements.
; CHECK-DAG: %[[VAL1:[0-9]+]] = llvm.mlir.constant(33 : i64) : i64
; CHECK-DAG: %[[ADDR:[0-9]+]] = llvm.mlir.addressof @global : !llvm.ptr
; CHECK-DAG: %[[IDX1:[0-9]+]] = llvm.mlir.constant(7 : i32) : i32
; CHECK-DAG: %[[GEP1:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX1]]] : (!llvm.ptr, i32) -> !llvm.ptr
; CHECK-DAG: %[[VAL2:[0-9]+]] = llvm.ptrtoint %[[GEP1]] : !llvm.ptr to i64
; Fill the vector.
; CHECK-DAG: %[[VEC1:[0-9]+]] = llvm.mlir.undef : vector<2xi64>
; CHECK-DAG: %[[IDX2:[0-9]+]] = llvm.mlir.constant(0 : i32) : i32
; CHECK-DAG: %[[VEC2:[0-9]+]] = llvm.insertelement %[[VAL1]], %[[VEC1]][%[[IDX2]] : i32] : vector<2xi64>
; CHECK-DAG: %[[IDX3:[0-9]+]] = llvm.mlir.constant(1 : i32) : i32
; CHECK-DAG: %[[VEC3:[0-9]+]] = llvm.insertelement %[[VAL2]], %[[VEC2]][%[[IDX3]] : i32] : vector<2xi64>
; CHECK-DAG: %[[IDX4:[0-9]+]] = llvm.mlir.constant(42 : i32) : i32
; Compute the extract index.
; CHECK-DAG: %[[GEP2:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX4]]] : (!llvm.ptr, i32) -> !llvm.ptr
; CHECK-DAG: %[[IDX5:[0-9]+]] = llvm.ptrtoint %[[GEP2]] : !llvm.ptr to i64
; Extract the vector element.
; CHECK-DAG: %[[ELEM:[0-9]+]] = llvm.extractelement %[[VEC3]][%[[IDX5]] : i64] : vector<2xi64>
; CHECK-DAG: llvm.return %[[ELEM]] : i64
ret i64 extractelement (
<2 x i64> <i64 33, i64 ptrtoint (ptr getelementptr (i32, ptr @global, i32 7) to i64)>,
i64 ptrtoint (ptr getelementptr (i32, ptr @global, i32 42) to i64))
}
; // -----
; Verify the function constant import.
; Calling a function that has not been defined yet.
; CHECK-LABEL: @function_address_before_def
define i32 @function_address_before_def() {
%1 = alloca ptr
; CHECK: %[[FUN:.*]] = llvm.mlir.addressof @callee : !llvm.ptr
; CHECK: llvm.store %[[FUN]], %[[PTR:.*]] : !llvm.ptr, !llvm.ptr
store ptr @callee, ptr %1
; CHECK: %[[INDIR:.*]] = llvm.load %[[PTR]] : !llvm.ptr -> !llvm.ptr
%2 = load ptr, ptr %1
; CHECK: llvm.call %[[INDIR]]() : !llvm.ptr, () -> i32
%3 = call i32 %2()
ret i32 %3
}
define i32 @callee() {
ret i32 42
}
; Calling a function that has been defined.
; CHECK-LABEL: @function_address_after_def
define i32 @function_address_after_def() {
%1 = alloca ptr
; CHECK: %[[FUN:.*]] = llvm.mlir.addressof @callee : !llvm.ptr
; CHECK: llvm.store %[[FUN]], %[[PTR:.*]] : !llvm.ptr, !llvm.ptr
store ptr @callee, ptr %1
; CHECK: %[[INDIR:.*]] = llvm.load %[[PTR]] : !llvm.ptr -> !llvm.ptr
%2 = load ptr, ptr %1
; CHECK: llvm.call %[[INDIR]]() : !llvm.ptr, () -> i32
%3 = call i32 %2()
ret i32 %3
}
; // -----
; Verify the aggregate constant import.
; CHECK-DAG: %[[C0:.+]] = llvm.mlir.constant(9 : i32) : i32
; CHECK-DAG: %[[C1:.+]] = llvm.mlir.constant(4 : i8) : i8
; CHECK-DAG: %[[C2:.+]] = llvm.mlir.constant(8 : i16) : i16
; CHECK-DAG: %[[C3:.+]] = llvm.mlir.constant(7 : i32) : i32
; CHECK-DAG: %[[ROOT:.+]] = llvm.mlir.undef : !llvm.struct<"simple_agg_type", (i32, i8, i16, i32)>
; CHECK-DAG: %[[CHAIN0:.+]] = llvm.insertvalue %[[C0]], %[[ROOT]][0]
; CHECK-DAG: %[[CHAIN1:.+]] = llvm.insertvalue %[[C1]], %[[CHAIN0]][1]
; CHECK-DAG: %[[CHAIN2:.+]] = llvm.insertvalue %[[C2]], %[[CHAIN1]][2]
; CHECK-DAG: %[[CHAIN3:.+]] = llvm.insertvalue %[[C3]], %[[CHAIN2]][3]
; CHECK-DAG: llvm.return %[[CHAIN3]]
%simple_agg_type = type {i32, i8, i16, i32}
@simple_agg = global %simple_agg_type {i32 9, i8 4, i16 8, i32 7}
; CHECK-DAG: %[[C1:.+]] = llvm.mlir.constant(1 : i32) : i32
; CHECK-DAG: %[[C2:.+]] = llvm.mlir.constant(2 : i8) : i8
; CHECK-DAG: %[[C3:.+]] = llvm.mlir.constant(3 : i16) : i16
; CHECK-DAG: %[[C4:.+]] = llvm.mlir.constant(4 : i32) : i32
; CHECK-DAG: %[[NESTED:.+]] = llvm.mlir.undef : !llvm.struct<"simple_agg_type", (i32, i8, i16, i32)>
; CHECK-DAG: %[[CHAIN0:.+]] = llvm.insertvalue %[[C1]], %[[NESTED]][0]
; CHECK-DAG: %[[CHAIN1:.+]] = llvm.insertvalue %[[C2]], %[[CHAIN0]][1]
; CHECK-DAG: %[[CHAIN2:.+]] = llvm.insertvalue %[[C3]], %[[CHAIN1]][2]
; CHECK-DAG: %[[CHAIN3:.+]] = llvm.insertvalue %[[C4]], %[[CHAIN2]][3]
; CHECK-DAG: %[[NULL:.+]] = llvm.mlir.null : !llvm.ptr
; CHECK-DAG: %[[ROOT:.+]] = llvm.mlir.undef : !llvm.struct<"nested_agg_type", (struct<"simple_agg_type", (i32, i8, i16, i32)>, ptr)>
; CHECK-DAG: %[[CHAIN4:.+]] = llvm.insertvalue %[[CHAIN3]], %[[ROOT]][0]
; CHECK-DAG: %[[CHAIN5:.+]] = llvm.insertvalue %[[NULL]], %[[CHAIN4]][1]
; CHECK-DAG: llvm.return %[[CHAIN5]]
%nested_agg_type = type {%simple_agg_type, ptr}
@nested_agg = global %nested_agg_type { %simple_agg_type{i32 1, i8 2, i16 3, i32 4}, ptr null }
; CHECK-DAG: %[[NULL:.+]] = llvm.mlir.null : !llvm.ptr
; CHECK-DAG: %[[ROOT:.+]] = llvm.mlir.undef : !llvm.vec<2 x ptr>
; CHECK-DAG: %[[P0:.+]] = llvm.mlir.constant(0 : i32) : i32
; CHECK-DAG: %[[CHAIN0:.+]] = llvm.insertelement %[[NULL]], %[[ROOT]][%[[P0]] : i32] : !llvm.vec<2 x ptr>
; CHECK-DAG: %[[P1:.+]] = llvm.mlir.constant(1 : i32) : i32
; CHECK-DAG: %[[CHAIN1:.+]] = llvm.insertelement %[[NULL]], %[[CHAIN0]][%[[P1]] : i32] : !llvm.vec<2 x ptr>
; CHECK-DAG: llvm.return %[[CHAIN1]] : !llvm.vec<2 x ptr>
@vector_agg = global <2 x ptr> <ptr null, ptr null>
; // -----
; Verfiy the import of subsequent constant expressions with duplicates.
@global = external global i32, align 8
; CHECK-LABEL: @const_exprs_with_duplicate
define i64 @const_exprs_with_duplicate() {
; CHECK: %[[ADDR:.+]] = llvm.mlir.addressof @global : !llvm.ptr
; CHECK: llvm.getelementptr %[[ADDR]][%{{.*}}] : (!llvm.ptr, i32) -> !llvm.ptr
%1 = add i64 1, ptrtoint (ptr getelementptr (i32, ptr @global, i32 7) to i64)
; Verify the address value is reused.
; CHECK: llvm.getelementptr %[[ADDR]][%{{.*}}] : (!llvm.ptr, i32) -> !llvm.ptr
%2 = add i64 %1, ptrtoint (ptr getelementptr (i32, ptr @global, i32 42) to i64)
ret i64 %2
}
; // -----
; Verify the import of constant expressions with cyclic dependencies.
@cyclic = internal constant i64 mul (i64 ptrtoint (ptr @cyclic to i64), i64 ptrtoint (ptr @cyclic to i64))
; CHECK-LABEL: @cyclic
; CHECK: %[[ADDR:.+]] = llvm.mlir.addressof @cyclic
; CHECK: %[[VAL0:.+]] = llvm.ptrtoint %[[ADDR]]
; CHECK: %[[VAL1:.+]] = llvm.mul %[[VAL0]], %[[VAL0]]
; CHECK: llvm.return %[[VAL1]]
|