1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
// RUN: mlir-opt %s -test-memref-bound-check -split-input-file -verify-diagnostics | FileCheck %s
// -----
// CHECK-LABEL: func @test() {
func.func @test() {
%zero = arith.constant 0 : index
%minusone = arith.constant -1 : index
%sym = arith.constant 111 : index
%A = memref.alloc() : memref<9 x 9 x i32>
%B = memref.alloc() : memref<111 x i32>
affine.for %i = -1 to 10 {
affine.for %j = -1 to 10 {
%idx0 = affine.apply affine_map<(d0, d1) -> (d0)>(%i, %j)
%idx1 = affine.apply affine_map<(d0, d1) -> (d1)>(%i, %j)
// Out of bound access.
%x = affine.load %A[%idx0, %idx1] : memref<9 x 9 x i32>
// expected-error@-1 {{'affine.load' op memref out of upper bound access along dimension #1}}
// expected-error@-2 {{'affine.load' op memref out of lower bound access along dimension #1}}
// expected-error@-3 {{'affine.load' op memref out of upper bound access along dimension #2}}
// expected-error@-4 {{'affine.load' op memref out of lower bound access along dimension #2}}
// This will access 0 to 110 - hence an overflow.
%idy = affine.apply affine_map<(d0, d1) -> (10*d0 - d1 + 19)>(%i, %j)
%y = affine.load %B[%idy] : memref<111 x i32>
}
}
affine.for %k = 0 to 10 {
// In bound.
%u = affine.load %B[%zero] : memref<111 x i32>
// Out of bounds.
%v = affine.load %B[%sym] : memref<111 x i32> // expected-error {{'affine.load' op memref out of upper bound access along dimension #1}}
// Out of bounds.
affine.store %v, %B[%minusone] : memref<111 x i32> // expected-error {{'affine.store' op memref out of lower bound access along dimension #1}}
}
return
}
// CHECK-LABEL: func @test_mod_floordiv_ceildiv
func.func @test_mod_floordiv_ceildiv() {
%zero = arith.constant 0 : index
%A = memref.alloc() : memref<128 x 64 x 64 x i32>
affine.for %i = 0 to 256 {
affine.for %j = 0 to 256 {
%idx0 = affine.apply affine_map<(d0, d1, d2) -> (d0 mod 128 + 1)>(%i, %j, %j)
%idx1 = affine.apply affine_map<(d0, d1, d2) -> (d1 floordiv 4 + 1)>(%i, %j, %j)
%idx2 = affine.apply affine_map<(d0, d1, d2) -> (d2 ceildiv 4)>(%i, %j, %j)
%x = affine.load %A[%idx0, %idx1, %idx2] : memref<128 x 64 x 64 x i32>
// expected-error@-1 {{'affine.load' op memref out of upper bound access along dimension #1}}
// expected-error@-2 {{'affine.load' op memref out of upper bound access along dimension #2}}
// expected-error@-3 {{'affine.load' op memref out of upper bound access along dimension #3}}
%idy0 = affine.apply affine_map<(d0, d1, d2) -> (d0 mod 128)>(%i, %j, %j)
%idy1 = affine.apply affine_map<(d0, d1, d2) -> (d1 floordiv 4)>(%i, %j, %j)
%idy2 = affine.apply affine_map<(d0, d1, d2) -> (d2 ceildiv 4 - 1)>(%i, %j, %j)
affine.store %x, %A[%idy0, %idy1, %idy2] : memref<128 x 64 x 64 x i32> // expected-error {{'affine.store' op memref out of lower bound access along dimension #3}}
} // CHECK: }
} // CHECK: }
return
}
// CHECK-LABEL: func @test_no_out_of_bounds()
func.func @test_no_out_of_bounds() {
%zero = arith.constant 0 : index
%A = memref.alloc() : memref<257 x 256 x i32>
%C = memref.alloc() : memref<257 x i32>
%B = memref.alloc() : memref<1 x i32>
affine.for %i = 0 to 256 {
affine.for %j = 0 to 256 {
// All of these accesses are in bound; check that no errors are emitted.
// CHECK: %{{.*}} = affine.apply {{#map.*}}(%{{.*}}, %{{.*}})
// CHECK-NEXT: %{{.*}} = affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<257x256xi32>
// CHECK-NEXT: %{{.*}} = affine.apply {{#map.*}}(%{{.*}}, %{{.*}})
// CHECK-NEXT: %{{.*}} = affine.load %{{.*}}[%{{.*}}] : memref<1xi32>
%idx0 = affine.apply affine_map<(d0, d1) -> ( 64 * (d0 ceildiv 64))>(%i, %j)
// Without GCDTightenInequalities(), the upper bound on the region
// accessed along first memref dimension would have come out as d0 <= 318
// (instead of d0 <= 256), and led to a false positive out of bounds.
%x = affine.load %A[%idx0, %zero] : memref<257 x 256 x i32>
%idy = affine.apply affine_map<(d0, d1) -> (d0 floordiv 256)>(%i, %i)
%y = affine.load %B[%idy] : memref<1 x i32>
} // CHECK-NEXT: }
}
return
}
// CHECK-LABEL: func @mod_div
func.func @mod_div() {
%zero = arith.constant 0 : index
%A = memref.alloc() : memref<128 x 64 x 64 x i32>
affine.for %i = 0 to 256 {
affine.for %j = 0 to 256 {
%idx0 = affine.apply affine_map<(d0, d1, d2) -> (d0 mod 128 + 1)>(%i, %j, %j)
%idx1 = affine.apply affine_map<(d0, d1, d2) -> (d1 floordiv 4 + 1)>(%i, %j, %j)
%idx2 = affine.apply affine_map<(d0, d1, d2) -> (d2 ceildiv 4)>(%i, %j, %j)
%x = affine.load %A[%idx0, %idx1, %idx2] : memref<128 x 64 x 64 x i32>
// expected-error@-1 {{'affine.load' op memref out of upper bound access along dimension #1}}
// expected-error@-2 {{'affine.load' op memref out of upper bound access along dimension #2}}
// expected-error@-3 {{'affine.load' op memref out of upper bound access along dimension #3}}
%idy0 = affine.apply affine_map<(d0, d1, d2) -> (d0 mod 128)>(%i, %j, %j)
%idy1 = affine.apply affine_map<(d0, d1, d2) -> (d1 floordiv 4)>(%i, %j, %j)
%idy2 = affine.apply affine_map<(d0, d1, d2) -> (d2 ceildiv 4 - 1)>(%i, %j, %j)
affine.store %x, %A[%idy0, %idy1, %idy2] : memref<128 x 64 x 64 x i32> // expected-error {{'affine.store' op memref out of lower bound access along dimension #3}}
}
}
return
}
// Tests with nested mod's and floordiv's.
// CHECK-LABEL: func @mod_floordiv_nested() {
func.func @mod_floordiv_nested() {
%A = memref.alloc() : memref<256 x 256 x i32>
affine.for %i = 0 to 256 {
affine.for %j = 0 to 256 {
%idx0 = affine.apply affine_map<(d0, d1) -> ((d0 mod 1024) floordiv 4)>(%i, %j)
%idx1 = affine.apply affine_map<(d0, d1) -> ((((d1 mod 128) mod 32) ceildiv 4) * 32)>(%i, %j)
affine.load %A[%idx0, %idx1] : memref<256 x 256 x i32> // expected-error {{'affine.load' op memref out of upper bound access along dimension #2}}
}
}
return
}
// CHECK-LABEL: func @test_semi_affine_bailout
func.func @test_semi_affine_bailout(%N : index) {
%B = memref.alloc() : memref<10 x i32>
affine.for %i = 0 to 10 {
%idx = affine.apply affine_map<(d0)[s0] -> (d0 * s0)>(%i)[%N]
%y = affine.load %B[%idx] : memref<10 x i32>
// expected-error@-1 {{getMemRefRegion: compose affine map failed}}
}
return
}
// CHECK-LABEL: func @multi_mod_floordiv
func.func @multi_mod_floordiv() {
%A = memref.alloc() : memref<2x2xi32>
affine.for %ii = 0 to 64 {
%idx0 = affine.apply affine_map<(d0) -> ((d0 mod 147456) floordiv 1152)> (%ii)
%idx1 = affine.apply affine_map<(d0) -> (((d0 mod 147456) mod 1152) floordiv 384)> (%ii)
%v = affine.load %A[%idx0, %idx1] : memref<2x2xi32>
}
return
}
// CHECK-LABEL: func @delinearize_mod_floordiv
func.func @delinearize_mod_floordiv() {
%c0 = arith.constant 0 : index
%in = memref.alloc() : memref<2x2x3x3x16x1xi32>
%out = memref.alloc() : memref<64x9xi32>
// Reshape '%in' into '%out'.
affine.for %ii = 0 to 64 {
affine.for %jj = 0 to 9 {
%a0 = affine.apply affine_map<(d0, d1) -> (d0 * (9 * 1024) + d1 * 128)> (%ii, %jj)
%a10 = affine.apply affine_map<(d0) ->
(d0 floordiv (2 * 3 * 3 * 128 * 128))> (%a0)
%a11 = affine.apply affine_map<(d0) ->
((d0 mod 294912) floordiv (3 * 3 * 128 * 128))> (%a0)
%a12 = affine.apply affine_map<(d0) ->
((((d0 mod 294912) mod 147456) floordiv 1152) floordiv 8)> (%a0)
%a13 = affine.apply affine_map<(d0) ->
((((d0 mod 294912) mod 147456) mod 1152) floordiv 384)> (%a0)
%a14 = affine.apply affine_map<(d0) ->
(((((d0 mod 294912) mod 147456) mod 1152) mod 384) floordiv 128)> (%a0)
%a15 = affine.apply affine_map<(d0) ->
((((((d0 mod 294912) mod 147456) mod 1152) mod 384) mod 128)
floordiv 128)> (%a0)
%v0 = affine.load %in[%a10, %a11, %a13, %a14, %a12, %a15]
: memref<2x2x3x3x16x1xi32>
}
}
return
}
// CHECK-LABEL: func @zero_d_memref
func.func @zero_d_memref(%arg0: memref<i32>) {
%c0 = arith.constant 0 : i32
// A 0-d memref always has in-bound accesses!
affine.store %c0, %arg0[] : memref<i32>
return
}
// CHECK-LABEL: func @out_of_bounds
func.func @out_of_bounds() {
%in = memref.alloc() : memref<1xi32>
%c9 = arith.constant 9 : i32
affine.for %i0 = 10 to 11 {
%idy = affine.apply affine_map<(d0) -> (100 * d0 floordiv 1000)> (%i0)
affine.store %c9, %in[%idy] : memref<1xi32> // expected-error {{'affine.store' op memref out of upper bound access along dimension #1}}
}
return
}
// -----
// This test case accesses within bounds. Without removal of a certain type of
// trivially redundant constraints (those differing only in their constant
// term), the number of constraints here explodes, and this would return out of
// bounds errors conservatively due to IntegerRelation::kExplosionFactor.
#map3 = affine_map<(d0, d1) -> ((d0 * 72 + d1) floordiv 2304 + ((((d0 * 72 + d1) mod 2304) mod 1152) mod 9) floordiv 3)>
#map4 = affine_map<(d0, d1) -> ((d0 * 72 + d1) mod 2304 - (((d0 * 72 + d1) mod 2304) floordiv 1152) * 1151 - ((((d0 * 72 + d1) mod 2304) mod 1152) floordiv 9) * 9 - (((((d0 * 72 + d1) mod 2304) mod 1152) mod 9) floordiv 3) * 3)>
#map5 = affine_map<(d0, d1) -> (((((d0 * 72 + d1) mod 2304) mod 1152) floordiv 9) floordiv 8)>
// CHECK-LABEL: func @test_complex_mod_floordiv
func.func @test_complex_mod_floordiv(%arg0: memref<4x4x16x1xf32>) {
%c0 = arith.constant 0 : index
%0 = memref.alloc() : memref<1x2x3x3x16x1xf32>
affine.for %i0 = 0 to 64 {
affine.for %i1 = 0 to 9 {
%2 = affine.apply #map3(%i0, %i1)
%3 = affine.apply #map4(%i0, %i1)
%4 = affine.apply #map5(%i0, %i1)
%5 = affine.load %arg0[%2, %c0, %4, %c0] : memref<4x4x16x1xf32>
}
}
return
}
// -----
// The first load is within bounds, but not the second one.
#map0 = affine_map<(d0) -> (d0 mod 4)>
#map1 = affine_map<(d0) -> (d0 mod 4 + 4)>
// CHECK-LABEL: func @test_mod_bound
func.func @test_mod_bound() {
%0 = memref.alloc() : memref<7 x f32>
%1 = memref.alloc() : memref<6 x f32>
affine.for %i0 = 0 to 4096 {
affine.for %i1 = #map0(%i0) to #map1(%i0) {
affine.load %0[%i1] : memref<7 x f32>
affine.load %1[%i1] : memref<6 x f32>
// expected-error@-1 {{'affine.load' op memref out of upper bound access along dimension #1}}
}
}
return
}
// -----
#map0 = affine_map<(d0) -> (d0 floordiv 4)>
#map1 = affine_map<(d0) -> (d0 floordiv 4 + 4)>
#map2 = affine_map<(d0) -> (4 * (d0 floordiv 4) + d0 mod 4)>
// CHECK-LABEL: func @test_floordiv_bound
func.func @test_floordiv_bound() {
%0 = memref.alloc() : memref<1027 x f32>
%1 = memref.alloc() : memref<1026 x f32>
%2 = memref.alloc() : memref<4096 x f32>
%N = arith.constant 2048 : index
affine.for %i0 = 0 to 4096 {
affine.for %i1 = #map0(%i0) to #map1(%i0) {
affine.load %0[%i1] : memref<1027 x f32>
affine.load %1[%i1] : memref<1026 x f32>
// expected-error@-1 {{'affine.load' op memref out of upper bound access along dimension #1}}
}
affine.for %i2 = 0 to #map2(%N) {
// Within bounds.
%v = affine.load %2[%i2] : memref<4096 x f32>
}
}
return
}
// -----
// This should not give an out of bounds error. The result of the affine.apply
// is composed into the bound map during analysis.
#map_lb = affine_map<(d0) -> (d0)>
#map_ub = affine_map<(d0) -> (d0 + 4)>
// CHECK-LABEL: func @non_composed_bound_operand
func.func @non_composed_bound_operand(%arg0: memref<1024xf32>) {
affine.for %i0 = 4 to 1028 step 4 {
%i1 = affine.apply affine_map<(d0) -> (d0 - 4)> (%i0)
affine.for %i2 = #map_lb(%i1) to #map_ub(%i1) {
%0 = affine.load %arg0[%i2] : memref<1024xf32>
}
}
return
}
// CHECK-LABEL: func @zero_d_memref
func.func @zero_d_memref() {
%Z = memref.alloc() : memref<f32>
affine.for %i = 0 to 100 {
affine.load %Z[] : memref<f32>
}
return
}
// CHECK-LABEL: func @affine_parallel
func.func @affine_parallel(%M: memref<2048x2048xf64>) {
affine.parallel (%i) = (0) to (3000) {
affine.for %j = 0 to 2048 {
affine.load %M[%i, %j] : memref<2048x2048xf64>
// expected-error@above {{'affine.load' op memref out of upper bound access along dimension #1}}
}
}
return
}
|