1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
//===- TestDenseBackwardDataFlowAnalysis.cpp - Test pass ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Test pass for backward dense dataflow analysis.
//
//===----------------------------------------------------------------------===//
#include "TestDenseDataFlowAnalysis.h"
#include "TestDialect.h"
#include "mlir/Analysis/DataFlow/ConstantPropagationAnalysis.h"
#include "mlir/Analysis/DataFlow/DeadCodeAnalysis.h"
#include "mlir/Analysis/DataFlow/DenseAnalysis.h"
#include "mlir/Analysis/DataFlowFramework.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/SymbolTable.h"
#include "mlir/Interfaces/CallInterfaces.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/TypeID.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
using namespace mlir::dataflow;
using namespace mlir::dataflow::test;
namespace {
class NextAccess : public AbstractDenseLattice, public AccessLatticeBase {
public:
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(NextAccess)
using dataflow::AbstractDenseLattice::AbstractDenseLattice;
ChangeResult meet(const AbstractDenseLattice &lattice) override {
return AccessLatticeBase::merge(static_cast<AccessLatticeBase>(
static_cast<const NextAccess &>(lattice)));
}
void print(raw_ostream &os) const override {
return AccessLatticeBase::print(os);
}
};
class NextAccessAnalysis : public DenseBackwardDataFlowAnalysis<NextAccess> {
public:
using DenseBackwardDataFlowAnalysis::DenseBackwardDataFlowAnalysis;
void visitOperation(Operation *op, const NextAccess &after,
NextAccess *before) override;
void visitCallControlFlowTransfer(CallOpInterface call,
CallControlFlowAction action,
const NextAccess &after,
NextAccess *before) override;
void visitRegionBranchControlFlowTransfer(RegionBranchOpInterface branch,
std::optional<unsigned> regionFrom,
std::optional<unsigned> regionTo,
const NextAccess &after,
NextAccess *before) override;
// TODO: this isn't ideal for the analysis. When there is no next access, it
// means "we don't know what the next access is" rather than "there is no next
// access". But it's unclear how to differentiate the two cases...
void setToExitState(NextAccess *lattice) override {
propagateIfChanged(lattice, lattice->reset());
}
};
} // namespace
void NextAccessAnalysis::visitOperation(Operation *op, const NextAccess &after,
NextAccess *before) {
auto memory = dyn_cast<MemoryEffectOpInterface>(op);
// If we can't reason about the memory effects, conservatively assume we can't
// say anything about the next access.
if (!memory)
return setToExitState(before);
SmallVector<MemoryEffects::EffectInstance> effects;
memory.getEffects(effects);
ChangeResult result = before->meet(after);
for (const MemoryEffects::EffectInstance &effect : effects) {
Value value = effect.getValue();
// Effects with unspecified value are treated conservatively and we cannot
// assume anything about the next access.
if (!value)
return setToExitState(before);
// If cannot find the most underlying value, we cannot assume anything about
// the next accesses.
value = UnderlyingValueAnalysis::getMostUnderlyingValue(
value, [&](Value value) {
return getOrCreateFor<UnderlyingValueLattice>(op, value);
});
if (!value)
return setToExitState(before);
result |= before->set(value, op);
}
propagateIfChanged(before, result);
}
void NextAccessAnalysis::visitCallControlFlowTransfer(
CallOpInterface call, CallControlFlowAction action, const NextAccess &after,
NextAccess *before) {
auto testCallAndStore =
dyn_cast<::test::TestCallAndStoreOp>(call.getOperation());
if (testCallAndStore && ((action == CallControlFlowAction::EnterCallee &&
testCallAndStore.getStoreBeforeCall()) ||
(action == CallControlFlowAction::ExitCallee &&
!testCallAndStore.getStoreBeforeCall()))) {
visitOperation(call, after, before);
} else {
AbstractDenseBackwardDataFlowAnalysis::visitCallControlFlowTransfer(
call, action, after, before);
}
}
void NextAccessAnalysis::visitRegionBranchControlFlowTransfer(
RegionBranchOpInterface branch, std::optional<unsigned> regionFrom,
std::optional<unsigned> regionTo, const NextAccess &after,
NextAccess *before) {
auto testStoreWithARegion =
dyn_cast<::test::TestStoreWithARegion>(branch.getOperation());
if (testStoreWithARegion &&
((!regionTo && !testStoreWithARegion.getStoreBeforeRegion()) ||
(!regionFrom && testStoreWithARegion.getStoreBeforeRegion()))) {
visitOperation(branch, static_cast<const NextAccess &>(after),
static_cast<NextAccess *>(before));
} else {
propagateIfChanged(before, before->meet(after));
}
}
namespace {
struct TestNextAccessPass
: public PassWrapper<TestNextAccessPass, OperationPass<>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestNextAccessPass)
StringRef getArgument() const override { return "test-next-access"; }
static constexpr llvm::StringLiteral kTagAttrName = "name";
static constexpr llvm::StringLiteral kNextAccessAttrName = "next_access";
static constexpr llvm::StringLiteral kAtEntryPointAttrName =
"next_at_entry_point";
static Attribute makeNextAccessAttribute(Operation *op,
const DataFlowSolver &solver,
const NextAccess *nextAccess) {
if (!nextAccess)
return StringAttr::get(op->getContext(), "not computed");
SmallVector<Attribute> attrs;
for (Value operand : op->getOperands()) {
Value value = UnderlyingValueAnalysis::getMostUnderlyingValue(
operand, [&](Value value) {
return solver.lookupState<UnderlyingValueLattice>(value);
});
std::optional<ArrayRef<Operation *>> nextAcc =
nextAccess->getAdjacentAccess(value);
if (!nextAcc) {
attrs.push_back(StringAttr::get(op->getContext(), "unknown"));
continue;
}
SmallVector<Attribute> innerAttrs;
innerAttrs.reserve(nextAcc->size());
for (Operation *nextAccOp : *nextAcc) {
if (auto nextAccTag =
nextAccOp->getAttrOfType<StringAttr>(kTagAttrName)) {
innerAttrs.push_back(nextAccTag);
continue;
}
std::string repr;
llvm::raw_string_ostream os(repr);
nextAccOp->print(os);
innerAttrs.push_back(StringAttr::get(op->getContext(), os.str()));
}
attrs.push_back(ArrayAttr::get(op->getContext(), innerAttrs));
}
return ArrayAttr::get(op->getContext(), attrs);
}
void runOnOperation() override {
Operation *op = getOperation();
SymbolTableCollection symbolTable;
DataFlowSolver solver;
solver.load<DeadCodeAnalysis>();
solver.load<NextAccessAnalysis>(symbolTable);
solver.load<SparseConstantPropagation>();
solver.load<UnderlyingValueAnalysis>();
if (failed(solver.initializeAndRun(op))) {
emitError(op->getLoc(), "dataflow solver failed");
return signalPassFailure();
}
op->walk([&](Operation *op) {
auto tag = op->getAttrOfType<StringAttr>(kTagAttrName);
if (!tag)
return;
const NextAccess *nextAccess = solver.lookupState<NextAccess>(
op->getNextNode() == nullptr ? ProgramPoint(op->getBlock())
: op->getNextNode());
op->setAttr(kNextAccessAttrName,
makeNextAccessAttribute(op, solver, nextAccess));
auto iface = dyn_cast<RegionBranchOpInterface>(op);
if (!iface)
return;
SmallVector<Attribute> entryPointNextAccess;
SmallVector<RegionSuccessor> regionSuccessors;
iface.getSuccessorRegions(std::nullopt, regionSuccessors);
for (const RegionSuccessor &successor : regionSuccessors) {
if (!successor.getSuccessor() || successor.getSuccessor()->empty())
continue;
Block &successorBlock = successor.getSuccessor()->front();
ProgramPoint successorPoint = successorBlock.empty()
? ProgramPoint(&successorBlock)
: &successorBlock.front();
entryPointNextAccess.push_back(makeNextAccessAttribute(
op, solver, solver.lookupState<NextAccess>(successorPoint)));
}
op->setAttr(kAtEntryPointAttrName,
ArrayAttr::get(op->getContext(), entryPointNextAccess));
});
}
};
} // namespace
namespace mlir::test {
void registerTestNextAccessPass() { PassRegistration<TestNextAccessPass>(); }
} // namespace mlir::test
|