1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
//===- TestSCFUtils.cpp --- Pass to test independent SCF dialect utils ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to test SCF dialect utils.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Patterns.h"
#include "mlir/Dialect/SCF/Utils/Utils.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
using namespace mlir;
namespace {
struct TestSCFForUtilsPass
: public PassWrapper<TestSCFForUtilsPass, OperationPass<func::FuncOp>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestSCFForUtilsPass)
StringRef getArgument() const final { return "test-scf-for-utils"; }
StringRef getDescription() const final { return "test scf.for utils"; }
explicit TestSCFForUtilsPass() = default;
TestSCFForUtilsPass(const TestSCFForUtilsPass &pass) : PassWrapper(pass) {}
Option<bool> testReplaceWithNewYields{
*this, "test-replace-with-new-yields",
llvm::cl::desc("Test replacing a loop with a new loop that returns new "
"additional yield values"),
llvm::cl::init(false)};
void runOnOperation() override {
func::FuncOp func = getOperation();
SmallVector<scf::ForOp, 4> toErase;
if (testReplaceWithNewYields) {
func.walk([&](scf::ForOp forOp) {
if (forOp.getNumResults() == 0)
return;
auto newInitValues = forOp.getInitArgs();
if (newInitValues.empty())
return;
NewYieldValueFn fn = [&](OpBuilder &b, Location loc,
ArrayRef<BlockArgument> newBBArgs) {
Block *block = newBBArgs.front().getOwner();
SmallVector<Value> newYieldValues;
for (auto yieldVal :
cast<scf::YieldOp>(block->getTerminator()).getResults()) {
newYieldValues.push_back(
b.create<arith::AddFOp>(loc, yieldVal, yieldVal));
}
return newYieldValues;
};
OpBuilder b(forOp);
replaceLoopWithNewYields(b, forOp, newInitValues, fn);
});
}
}
};
struct TestSCFIfUtilsPass
: public PassWrapper<TestSCFIfUtilsPass, OperationPass<ModuleOp>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestSCFIfUtilsPass)
StringRef getArgument() const final { return "test-scf-if-utils"; }
StringRef getDescription() const final { return "test scf.if utils"; }
explicit TestSCFIfUtilsPass() = default;
void runOnOperation() override {
int count = 0;
getOperation().walk([&](scf::IfOp ifOp) {
auto strCount = std::to_string(count++);
func::FuncOp thenFn, elseFn;
OpBuilder b(ifOp);
IRRewriter rewriter(b);
if (failed(outlineIfOp(rewriter, ifOp, &thenFn,
std::string("outlined_then") + strCount, &elseFn,
std::string("outlined_else") + strCount))) {
this->signalPassFailure();
return WalkResult::interrupt();
}
return WalkResult::advance();
});
}
};
static const StringLiteral kTestPipeliningLoopMarker =
"__test_pipelining_loop__";
static const StringLiteral kTestPipeliningStageMarker =
"__test_pipelining_stage__";
/// Marker to express the order in which operations should be after
/// pipelining.
static const StringLiteral kTestPipeliningOpOrderMarker =
"__test_pipelining_op_order__";
static const StringLiteral kTestPipeliningAnnotationPart =
"__test_pipelining_part";
static const StringLiteral kTestPipeliningAnnotationIteration =
"__test_pipelining_iteration";
struct TestSCFPipeliningPass
: public PassWrapper<TestSCFPipeliningPass, OperationPass<func::FuncOp>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestSCFPipeliningPass)
TestSCFPipeliningPass() = default;
TestSCFPipeliningPass(const TestSCFPipeliningPass &) {}
StringRef getArgument() const final { return "test-scf-pipelining"; }
StringRef getDescription() const final { return "test scf.forOp pipelining"; }
Option<bool> annotatePipeline{
*this, "annotate",
llvm::cl::desc("Annote operations during loop pipelining transformation"),
llvm::cl::init(false)};
Option<bool> noEpiloguePeeling{
*this, "no-epilogue-peeling",
llvm::cl::desc("Use predicates instead of peeling the epilogue."),
llvm::cl::init(false)};
static void
getSchedule(scf::ForOp forOp,
std::vector<std::pair<Operation *, unsigned>> &schedule) {
if (!forOp->hasAttr(kTestPipeliningLoopMarker))
return;
schedule.resize(forOp.getBody()->getOperations().size() - 1);
forOp.walk([&schedule](Operation *op) {
auto attrStage =
op->getAttrOfType<IntegerAttr>(kTestPipeliningStageMarker);
auto attrCycle =
op->getAttrOfType<IntegerAttr>(kTestPipeliningOpOrderMarker);
if (attrCycle && attrStage) {
// TODO: Index can be out-of-bounds if ops of the loop body disappear
// due to folding.
schedule[attrCycle.getInt()] =
std::make_pair(op, unsigned(attrStage.getInt()));
}
});
}
/// Helper to generate "predicated" version of `op`. For simplicity we just
/// wrap the operation in a scf.ifOp operation.
static Operation *predicateOp(RewriterBase &rewriter, Operation *op,
Value pred) {
Location loc = op->getLoc();
auto ifOp =
rewriter.create<scf::IfOp>(loc, op->getResultTypes(), pred, true);
// True branch.
op->moveBefore(&ifOp.getThenRegion().front(),
ifOp.getThenRegion().front().begin());
rewriter.setInsertionPointAfter(op);
if (op->getNumResults() > 0)
rewriter.create<scf::YieldOp>(loc, op->getResults());
// False branch.
rewriter.setInsertionPointToStart(&ifOp.getElseRegion().front());
SmallVector<Value> elseYieldOperands;
elseYieldOperands.reserve(ifOp.getNumResults());
if (auto viewOp = dyn_cast<memref::SubViewOp>(op)) {
// For sub-views, just clone the op.
// NOTE: This is okay in the test because we use dynamic memref sizes, so
// the verifier will not complain. Otherwise, we may create a logically
// out-of-bounds view and a different technique should be used.
Operation *opClone = rewriter.clone(*op);
elseYieldOperands.append(opClone->result_begin(), opClone->result_end());
} else {
// Default to assuming constant numeric values.
for (Type type : op->getResultTypes()) {
elseYieldOperands.push_back(rewriter.create<arith::ConstantOp>(
loc, rewriter.getZeroAttr(type)));
}
}
if (op->getNumResults() > 0)
rewriter.create<scf::YieldOp>(loc, elseYieldOperands);
return ifOp.getOperation();
}
static void annotate(Operation *op,
mlir::scf::PipeliningOption::PipelinerPart part,
unsigned iteration) {
OpBuilder b(op);
switch (part) {
case mlir::scf::PipeliningOption::PipelinerPart::Prologue:
op->setAttr(kTestPipeliningAnnotationPart, b.getStringAttr("prologue"));
break;
case mlir::scf::PipeliningOption::PipelinerPart::Kernel:
op->setAttr(kTestPipeliningAnnotationPart, b.getStringAttr("kernel"));
break;
case mlir::scf::PipeliningOption::PipelinerPart::Epilogue:
op->setAttr(kTestPipeliningAnnotationPart, b.getStringAttr("epilogue"));
break;
}
op->setAttr(kTestPipeliningAnnotationIteration,
b.getI32IntegerAttr(iteration));
}
void getDependentDialects(DialectRegistry ®istry) const override {
registry.insert<arith::ArithDialect, memref::MemRefDialect>();
}
void runOnOperation() override {
RewritePatternSet patterns(&getContext());
mlir::scf::PipeliningOption options;
options.getScheduleFn = getSchedule;
if (annotatePipeline)
options.annotateFn = annotate;
if (noEpiloguePeeling) {
options.peelEpilogue = false;
options.predicateFn = predicateOp;
}
scf::populateSCFLoopPipeliningPatterns(patterns, options);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
getOperation().walk([](Operation *op) {
// Clean up the markers.
op->removeAttr(kTestPipeliningStageMarker);
op->removeAttr(kTestPipeliningOpOrderMarker);
});
}
};
} // namespace
namespace mlir {
namespace test {
void registerTestSCFUtilsPass() {
PassRegistration<TestSCFForUtilsPass>();
PassRegistration<TestSCFIfUtilsPass>();
PassRegistration<TestSCFPipeliningPass>();
}
} // namespace test
} // namespace mlir
|