1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
|
//===- TestPatterns.cpp - Test dialect pattern driver ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "TestDialect.h"
#include "TestTypes.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Func/Transforms/FuncConversions.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
using namespace mlir;
using namespace test;
// Native function for testing NativeCodeCall
static Value chooseOperand(Value input1, Value input2, BoolAttr choice) {
return choice.getValue() ? input1 : input2;
}
static void createOpI(PatternRewriter &rewriter, Location loc, Value input) {
rewriter.create<OpI>(loc, input);
}
static void handleNoResultOp(PatternRewriter &rewriter,
OpSymbolBindingNoResult op) {
// Turn the no result op to a one-result op.
rewriter.create<OpSymbolBindingB>(op.getLoc(), op.getOperand().getType(),
op.getOperand());
}
static bool getFirstI32Result(Operation *op, Value &value) {
if (!Type(op->getResult(0).getType()).isSignlessInteger(32))
return false;
value = op->getResult(0);
return true;
}
static Value bindNativeCodeCallResult(Value value) { return value; }
static SmallVector<Value, 2> bindMultipleNativeCodeCallResult(Value input1,
Value input2) {
return SmallVector<Value, 2>({input2, input1});
}
// Test that natives calls are only called once during rewrites.
// OpM_Test will return Pi, increased by 1 for each subsequent calls.
// This let us check the number of times OpM_Test was called by inspecting
// the returned value in the MLIR output.
static int64_t opMIncreasingValue = 314159265;
static Attribute opMTest(PatternRewriter &rewriter, Value val) {
int64_t i = opMIncreasingValue++;
return rewriter.getIntegerAttr(rewriter.getIntegerType(32), i);
}
namespace {
#include "TestPatterns.inc"
} // namespace
//===----------------------------------------------------------------------===//
// Test Reduce Pattern Interface
//===----------------------------------------------------------------------===//
void test::populateTestReductionPatterns(RewritePatternSet &patterns) {
populateWithGenerated(patterns);
}
//===----------------------------------------------------------------------===//
// Canonicalizer Driver.
//===----------------------------------------------------------------------===//
namespace {
struct FoldingPattern : public RewritePattern {
public:
FoldingPattern(MLIRContext *context)
: RewritePattern(TestOpInPlaceFoldAnchor::getOperationName(),
/*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
// Exercise createOrFold API for a single-result operation that is folded
// upon construction. The operation being created has an in-place folder,
// and it should be still present in the output. Furthermore, the folder
// should not crash when attempting to recover the (unchanged) operation
// result.
Value result = rewriter.createOrFold<TestOpInPlaceFold>(
op->getLoc(), rewriter.getIntegerType(32), op->getOperand(0));
assert(result);
rewriter.replaceOp(op, result);
return success();
}
};
/// This pattern creates a foldable operation at the entry point of the block.
/// This tests the situation where the operation folder will need to replace an
/// operation with a previously created constant that does not initially
/// dominate the operation to replace.
struct FolderInsertBeforePreviouslyFoldedConstantPattern
: public OpRewritePattern<TestCastOp> {
public:
using OpRewritePattern<TestCastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(TestCastOp op,
PatternRewriter &rewriter) const override {
if (!op->hasAttr("test_fold_before_previously_folded_op"))
return failure();
rewriter.setInsertionPointToStart(op->getBlock());
auto constOp = rewriter.create<arith::ConstantOp>(
op.getLoc(), rewriter.getBoolAttr(true));
rewriter.replaceOpWithNewOp<TestCastOp>(op, rewriter.getI32Type(),
Value(constOp));
return success();
}
};
/// This pattern matches test.op_commutative2 with the first operand being
/// another test.op_commutative2 with a constant on the right side and fold it
/// away by propagating it as its result. This is intend to check that patterns
/// are applied after the commutative property moves constant to the right.
struct FolderCommutativeOp2WithConstant
: public OpRewritePattern<TestCommutative2Op> {
public:
using OpRewritePattern<TestCommutative2Op>::OpRewritePattern;
LogicalResult matchAndRewrite(TestCommutative2Op op,
PatternRewriter &rewriter) const override {
auto operand =
dyn_cast_or_null<TestCommutative2Op>(op->getOperand(0).getDefiningOp());
if (!operand)
return failure();
Attribute constInput;
if (!matchPattern(operand->getOperand(1), m_Constant(&constInput)))
return failure();
rewriter.replaceOp(op, operand->getOperand(1));
return success();
}
};
/// This pattern matches test.any_attr_of_i32_str ops. In case of an integer
/// attribute with value smaller than MaxVal, it increments the value by 1.
template <int MaxVal>
struct IncrementIntAttribute : public OpRewritePattern<AnyAttrOfOp> {
using OpRewritePattern<AnyAttrOfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AnyAttrOfOp op,
PatternRewriter &rewriter) const override {
auto intAttr = dyn_cast<IntegerAttr>(op.getAttr());
if (!intAttr)
return failure();
int64_t val = intAttr.getInt();
if (val >= MaxVal)
return failure();
rewriter.updateRootInPlace(
op, [&]() { op.setAttrAttr(rewriter.getI32IntegerAttr(val + 1)); });
return success();
}
};
/// This patterns adds an "eligible" attribute to "foo.maybe_eligible_op".
struct MakeOpEligible : public RewritePattern {
MakeOpEligible(MLIRContext *context)
: RewritePattern("foo.maybe_eligible_op", /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
if (op->hasAttr("eligible"))
return failure();
rewriter.updateRootInPlace(
op, [&]() { op->setAttr("eligible", rewriter.getUnitAttr()); });
return success();
}
};
/// This pattern hoists eligible ops out of a "test.one_region_op".
struct HoistEligibleOps : public OpRewritePattern<test::OneRegionOp> {
using OpRewritePattern<test::OneRegionOp>::OpRewritePattern;
LogicalResult matchAndRewrite(test::OneRegionOp op,
PatternRewriter &rewriter) const override {
Operation *terminator = op.getRegion().front().getTerminator();
Operation *toBeHoisted = terminator->getOperands()[0].getDefiningOp();
if (toBeHoisted->getParentOp() != op)
return failure();
if (!toBeHoisted->hasAttr("eligible"))
return failure();
// Hoisting means removing an op from the enclosing op. I.e., the enclosing
// op is modified.
rewriter.updateRootInPlace(op, [&]() { toBeHoisted->moveBefore(op); });
return success();
}
};
struct TestPatternDriver
: public PassWrapper<TestPatternDriver, OperationPass<>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestPatternDriver)
TestPatternDriver() = default;
TestPatternDriver(const TestPatternDriver &other) : PassWrapper(other) {}
StringRef getArgument() const final { return "test-patterns"; }
StringRef getDescription() const final { return "Run test dialect patterns"; }
void runOnOperation() override {
mlir::RewritePatternSet patterns(&getContext());
populateWithGenerated(patterns);
// Verify named pattern is generated with expected name.
patterns.add<FoldingPattern, TestNamedPatternRule,
FolderInsertBeforePreviouslyFoldedConstantPattern,
FolderCommutativeOp2WithConstant, HoistEligibleOps,
MakeOpEligible>(&getContext());
// Additional patterns for testing the GreedyPatternRewriteDriver.
patterns.insert<IncrementIntAttribute<3>>(&getContext());
GreedyRewriteConfig config;
config.useTopDownTraversal = this->useTopDownTraversal;
config.maxIterations = this->maxIterations;
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns),
config);
}
Option<bool> useTopDownTraversal{
*this, "top-down",
llvm::cl::desc("Seed the worklist in general top-down order"),
llvm::cl::init(GreedyRewriteConfig().useTopDownTraversal)};
Option<int> maxIterations{
*this, "max-iterations",
llvm::cl::desc("Max. iterations in the GreedyRewriteConfig"),
llvm::cl::init(GreedyRewriteConfig().maxIterations)};
};
struct TestStrictPatternDriver
: public PassWrapper<TestStrictPatternDriver, OperationPass<func::FuncOp>> {
public:
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestStrictPatternDriver)
TestStrictPatternDriver() = default;
TestStrictPatternDriver(const TestStrictPatternDriver &other) {
strictMode = other.strictMode;
}
StringRef getArgument() const final { return "test-strict-pattern-driver"; }
StringRef getDescription() const final {
return "Test strict mode of pattern driver";
}
void runOnOperation() override {
MLIRContext *ctx = &getContext();
mlir::RewritePatternSet patterns(ctx);
patterns.add<
// clang-format off
InsertSameOp,
ReplaceWithNewOp,
EraseOp,
ChangeBlockOp,
ImplicitChangeOp
// clang-format on
>(ctx);
SmallVector<Operation *> ops;
getOperation()->walk([&](Operation *op) {
StringRef opName = op->getName().getStringRef();
if (opName == "test.insert_same_op" || opName == "test.change_block_op" ||
opName == "test.replace_with_new_op" || opName == "test.erase_op") {
ops.push_back(op);
}
});
GreedyRewriteConfig config;
if (strictMode == "AnyOp") {
config.strictMode = GreedyRewriteStrictness::AnyOp;
} else if (strictMode == "ExistingAndNewOps") {
config.strictMode = GreedyRewriteStrictness::ExistingAndNewOps;
} else if (strictMode == "ExistingOps") {
config.strictMode = GreedyRewriteStrictness::ExistingOps;
} else {
llvm_unreachable("invalid strictness option");
}
// Check if these transformations introduce visiting of operations that
// are not in the `ops` set (The new created ops are valid). An invalid
// operation will trigger the assertion while processing.
bool changed = false;
bool allErased = false;
(void)applyOpPatternsAndFold(ArrayRef(ops), std::move(patterns), config,
&changed, &allErased);
Builder b(ctx);
getOperation()->setAttr("pattern_driver_changed", b.getBoolAttr(changed));
getOperation()->setAttr("pattern_driver_all_erased",
b.getBoolAttr(allErased));
}
Option<std::string> strictMode{
*this, "strictness",
llvm::cl::desc("Can be {AnyOp, ExistingAndNewOps, ExistingOps}"),
llvm::cl::init("AnyOp")};
private:
// New inserted operation is valid for further transformation.
class InsertSameOp : public RewritePattern {
public:
InsertSameOp(MLIRContext *context)
: RewritePattern("test.insert_same_op", /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
if (op->hasAttr("skip"))
return failure();
Operation *newOp =
rewriter.create(op->getLoc(), op->getName().getIdentifier(),
op->getOperands(), op->getResultTypes());
rewriter.updateRootInPlace(
op, [&]() { op->setAttr("skip", rewriter.getBoolAttr(true)); });
newOp->setAttr("skip", rewriter.getBoolAttr(true));
return success();
}
};
// Replace an operation may introduce the re-visiting of its users.
class ReplaceWithNewOp : public RewritePattern {
public:
ReplaceWithNewOp(MLIRContext *context)
: RewritePattern("test.replace_with_new_op", /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
Operation *newOp;
if (op->hasAttr("create_erase_op")) {
newOp = rewriter.create(
op->getLoc(),
OperationName("test.erase_op", op->getContext()).getIdentifier(),
ValueRange(), TypeRange());
} else {
newOp = rewriter.create(
op->getLoc(),
OperationName("test.new_op", op->getContext()).getIdentifier(),
op->getOperands(), op->getResultTypes());
}
rewriter.replaceOp(op, newOp->getResults());
return success();
}
};
// Remove an operation may introduce the re-visiting of its operands.
class EraseOp : public RewritePattern {
public:
EraseOp(MLIRContext *context)
: RewritePattern("test.erase_op", /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
rewriter.eraseOp(op);
return success();
}
};
// The following two patterns test RewriterBase::replaceAllUsesWith.
//
// That function replaces all usages of a Block (or a Value) with another one
// *and tracks these changes in the rewriter.* The GreedyPatternRewriteDriver
// with GreedyRewriteStrictness::AnyOp uses that tracking to construct its
// worklist: when an op is modified, it is added to the worklist. The two
// patterns below make the tracking observable: ChangeBlockOp replaces all
// usages of a block and that pattern is applied because the corresponding ops
// are put on the initial worklist (see above). ImplicitChangeOp does an
// unrelated change but ops of the corresponding type are *not* on the initial
// worklist, so the effect of the second pattern is only visible if the
// tracking and subsequent adding to the worklist actually works.
// Replace all usages of the first successor with the second successor.
class ChangeBlockOp : public RewritePattern {
public:
ChangeBlockOp(MLIRContext *context)
: RewritePattern("test.change_block_op", /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
if (op->getNumSuccessors() < 2)
return failure();
Block *firstSuccessor = op->getSuccessor(0);
Block *secondSuccessor = op->getSuccessor(1);
if (firstSuccessor == secondSuccessor)
return failure();
// This is the function being tested:
rewriter.replaceAllUsesWith(firstSuccessor, secondSuccessor);
// Using the following line instead would make the test fail:
// firstSuccessor->replaceAllUsesWith(secondSuccessor);
return success();
}
};
// Changes the successor to the parent block.
class ImplicitChangeOp : public RewritePattern {
public:
ImplicitChangeOp(MLIRContext *context)
: RewritePattern("test.implicit_change_op", /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
if (op->getNumSuccessors() < 1 || op->getSuccessor(0) == op->getBlock())
return failure();
rewriter.updateRootInPlace(
op, [&]() { op->setSuccessor(op->getBlock(), 0); });
return success();
}
};
};
} // namespace
//===----------------------------------------------------------------------===//
// ReturnType Driver.
//===----------------------------------------------------------------------===//
namespace {
// Generate ops for each instance where the type can be successfully inferred.
template <typename OpTy>
static void invokeCreateWithInferredReturnType(Operation *op) {
auto *context = op->getContext();
auto fop = op->getParentOfType<func::FuncOp>();
auto location = UnknownLoc::get(context);
OpBuilder b(op);
b.setInsertionPointAfter(op);
// Use permutations of 2 args as operands.
assert(fop.getNumArguments() >= 2);
for (int i = 0, e = fop.getNumArguments(); i < e; ++i) {
for (int j = 0; j < e; ++j) {
std::array<Value, 2> values = {{fop.getArgument(i), fop.getArgument(j)}};
SmallVector<Type, 2> inferredReturnTypes;
if (succeeded(OpTy::inferReturnTypes(
context, std::nullopt, values, op->getDiscardableAttrDictionary(),
op->getPropertiesStorage(), op->getRegions(),
inferredReturnTypes))) {
OperationState state(location, OpTy::getOperationName());
// TODO: Expand to regions.
OpTy::build(b, state, values, op->getAttrs());
(void)b.create(state);
}
}
}
}
static void reifyReturnShape(Operation *op) {
OpBuilder b(op);
// Use permutations of 2 args as operands.
auto shapedOp = cast<OpWithShapedTypeInferTypeInterfaceOp>(op);
SmallVector<Value, 2> shapes;
if (failed(shapedOp.reifyReturnTypeShapes(b, op->getOperands(), shapes)) ||
!llvm::hasSingleElement(shapes))
return;
for (const auto &it : llvm::enumerate(shapes)) {
op->emitRemark() << "value " << it.index() << ": "
<< it.value().getDefiningOp();
}
}
struct TestReturnTypeDriver
: public PassWrapper<TestReturnTypeDriver, OperationPass<func::FuncOp>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestReturnTypeDriver)
void getDependentDialects(DialectRegistry ®istry) const override {
registry.insert<tensor::TensorDialect>();
}
StringRef getArgument() const final { return "test-return-type"; }
StringRef getDescription() const final { return "Run return type functions"; }
void runOnOperation() override {
if (getOperation().getName() == "testCreateFunctions") {
std::vector<Operation *> ops;
// Collect ops to avoid triggering on inserted ops.
for (auto &op : getOperation().getBody().front())
ops.push_back(&op);
// Generate test patterns for each, but skip terminator.
for (auto *op : llvm::ArrayRef(ops).drop_back()) {
// Test create method of each of the Op classes below. The resultant
// output would be in reverse order underneath `op` from which
// the attributes and regions are used.
invokeCreateWithInferredReturnType<OpWithInferTypeInterfaceOp>(op);
invokeCreateWithInferredReturnType<OpWithInferTypeAdaptorInterfaceOp>(
op);
invokeCreateWithInferredReturnType<
OpWithShapedTypeInferTypeInterfaceOp>(op);
};
return;
}
if (getOperation().getName() == "testReifyFunctions") {
std::vector<Operation *> ops;
// Collect ops to avoid triggering on inserted ops.
for (auto &op : getOperation().getBody().front())
if (isa<OpWithShapedTypeInferTypeInterfaceOp>(op))
ops.push_back(&op);
// Generate test patterns for each, but skip terminator.
for (auto *op : ops)
reifyReturnShape(op);
}
}
};
} // namespace
namespace {
struct TestDerivedAttributeDriver
: public PassWrapper<TestDerivedAttributeDriver,
OperationPass<func::FuncOp>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestDerivedAttributeDriver)
StringRef getArgument() const final { return "test-derived-attr"; }
StringRef getDescription() const final {
return "Run test derived attributes";
}
void runOnOperation() override;
};
} // namespace
void TestDerivedAttributeDriver::runOnOperation() {
getOperation().walk([](DerivedAttributeOpInterface dOp) {
auto dAttr = dOp.materializeDerivedAttributes();
if (!dAttr)
return;
for (auto d : dAttr)
dOp.emitRemark() << d.getName().getValue() << " = " << d.getValue();
});
}
//===----------------------------------------------------------------------===//
// Legalization Driver.
//===----------------------------------------------------------------------===//
namespace {
//===----------------------------------------------------------------------===//
// Region-Block Rewrite Testing
/// This pattern is a simple pattern that inlines the first region of a given
/// operation into the parent region.
struct TestRegionRewriteBlockMovement : public ConversionPattern {
TestRegionRewriteBlockMovement(MLIRContext *ctx)
: ConversionPattern("test.region", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Inline this region into the parent region.
auto &parentRegion = *op->getParentRegion();
auto &opRegion = op->getRegion(0);
if (op->getAttr("legalizer.should_clone"))
rewriter.cloneRegionBefore(opRegion, parentRegion, parentRegion.end());
else
rewriter.inlineRegionBefore(opRegion, parentRegion, parentRegion.end());
if (op->getAttr("legalizer.erase_old_blocks")) {
while (!opRegion.empty())
rewriter.eraseBlock(&opRegion.front());
}
// Drop this operation.
rewriter.eraseOp(op);
return success();
}
};
/// This pattern is a simple pattern that generates a region containing an
/// illegal operation.
struct TestRegionRewriteUndo : public RewritePattern {
TestRegionRewriteUndo(MLIRContext *ctx)
: RewritePattern("test.region_builder", 1, ctx) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
// Create the region operation with an entry block containing arguments.
OperationState newRegion(op->getLoc(), "test.region");
newRegion.addRegion();
auto *regionOp = rewriter.create(newRegion);
auto *entryBlock = rewriter.createBlock(®ionOp->getRegion(0));
entryBlock->addArgument(rewriter.getIntegerType(64),
rewriter.getUnknownLoc());
// Add an explicitly illegal operation to ensure the conversion fails.
rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32));
rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>());
// Drop this operation.
rewriter.eraseOp(op);
return success();
}
};
/// A simple pattern that creates a block at the end of the parent region of the
/// matched operation.
struct TestCreateBlock : public RewritePattern {
TestCreateBlock(MLIRContext *ctx)
: RewritePattern("test.create_block", /*benefit=*/1, ctx) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
Region ®ion = *op->getParentRegion();
Type i32Type = rewriter.getIntegerType(32);
Location loc = op->getLoc();
rewriter.createBlock(®ion, region.end(), {i32Type, i32Type}, {loc, loc});
rewriter.create<TerminatorOp>(loc);
rewriter.eraseOp(op);
return success();
}
};
/// A simple pattern that creates a block containing an invalid operation in
/// order to trigger the block creation undo mechanism.
struct TestCreateIllegalBlock : public RewritePattern {
TestCreateIllegalBlock(MLIRContext *ctx)
: RewritePattern("test.create_illegal_block", /*benefit=*/1, ctx) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
Region ®ion = *op->getParentRegion();
Type i32Type = rewriter.getIntegerType(32);
Location loc = op->getLoc();
rewriter.createBlock(®ion, region.end(), {i32Type, i32Type}, {loc, loc});
// Create an illegal op to ensure the conversion fails.
rewriter.create<ILLegalOpF>(loc, i32Type);
rewriter.create<TerminatorOp>(loc);
rewriter.eraseOp(op);
return success();
}
};
/// A simple pattern that tests the undo mechanism when replacing the uses of a
/// block argument.
struct TestUndoBlockArgReplace : public ConversionPattern {
TestUndoBlockArgReplace(MLIRContext *ctx)
: ConversionPattern("test.undo_block_arg_replace", /*benefit=*/1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
auto illegalOp =
rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
rewriter.replaceUsesOfBlockArgument(op->getRegion(0).getArgument(0),
illegalOp->getResult(0));
rewriter.updateRootInPlace(op, [] {});
return success();
}
};
/// A rewrite pattern that tests the undo mechanism when erasing a block.
struct TestUndoBlockErase : public ConversionPattern {
TestUndoBlockErase(MLIRContext *ctx)
: ConversionPattern("test.undo_block_erase", /*benefit=*/1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
Block *secondBlock = &*std::next(op->getRegion(0).begin());
rewriter.setInsertionPointToStart(secondBlock);
rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
rewriter.eraseBlock(secondBlock);
rewriter.updateRootInPlace(op, [] {});
return success();
}
};
//===----------------------------------------------------------------------===//
// Type-Conversion Rewrite Testing
/// This patterns erases a region operation that has had a type conversion.
struct TestDropOpSignatureConversion : public ConversionPattern {
TestDropOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter)
: ConversionPattern(converter, "test.drop_region_op", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
Region ®ion = op->getRegion(0);
Block *entry = ®ion.front();
// Convert the original entry arguments.
TypeConverter &converter = *getTypeConverter();
TypeConverter::SignatureConversion result(entry->getNumArguments());
if (failed(converter.convertSignatureArgs(entry->getArgumentTypes(),
result)) ||
failed(rewriter.convertRegionTypes(®ion, converter, &result)))
return failure();
// Convert the region signature and just drop the operation.
rewriter.eraseOp(op);
return success();
}
};
/// This pattern simply updates the operands of the given operation.
struct TestPassthroughInvalidOp : public ConversionPattern {
TestPassthroughInvalidOp(MLIRContext *ctx)
: ConversionPattern("test.invalid", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
rewriter.replaceOpWithNewOp<TestValidOp>(op, std::nullopt, operands,
std::nullopt);
return success();
}
};
/// This pattern handles the case of a split return value.
struct TestSplitReturnType : public ConversionPattern {
TestSplitReturnType(MLIRContext *ctx)
: ConversionPattern("test.return", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Check for a return of F32.
if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32())
return failure();
// Check if the first operation is a cast operation, if it is we use the
// results directly.
auto *defOp = operands[0].getDefiningOp();
if (auto packerOp =
llvm::dyn_cast_or_null<UnrealizedConversionCastOp>(defOp)) {
rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands());
return success();
}
// Otherwise, fail to match.
return failure();
}
};
//===----------------------------------------------------------------------===//
// Multi-Level Type-Conversion Rewrite Testing
struct TestChangeProducerTypeI32ToF32 : public ConversionPattern {
TestChangeProducerTypeI32ToF32(MLIRContext *ctx)
: ConversionPattern("test.type_producer", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// If the type is I32, change the type to F32.
if (!Type(*op->result_type_begin()).isSignlessInteger(32))
return failure();
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type());
return success();
}
};
struct TestChangeProducerTypeF32ToF64 : public ConversionPattern {
TestChangeProducerTypeF32ToF64(MLIRContext *ctx)
: ConversionPattern("test.type_producer", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// If the type is F32, change the type to F64.
if (!Type(*op->result_type_begin()).isF32())
return rewriter.notifyMatchFailure(op, "expected single f32 operand");
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type());
return success();
}
};
struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern {
TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx)
: ConversionPattern("test.type_producer", 10, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Always convert to B16, even though it is not a legal type. This tests
// that values are unmapped correctly.
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type());
return success();
}
};
struct TestUpdateConsumerType : public ConversionPattern {
TestUpdateConsumerType(MLIRContext *ctx)
: ConversionPattern("test.type_consumer", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Verify that the incoming operand has been successfully remapped to F64.
if (!operands[0].getType().isF64())
return failure();
rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]);
return success();
}
};
//===----------------------------------------------------------------------===//
// Non-Root Replacement Rewrite Testing
/// This pattern generates an invalid operation, but replaces it before the
/// pattern is finished. This checks that we don't need to legalize the
/// temporary op.
struct TestNonRootReplacement : public RewritePattern {
TestNonRootReplacement(MLIRContext *ctx)
: RewritePattern("test.replace_non_root", 1, ctx) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
auto resultType = *op->result_type_begin();
auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType);
auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType);
rewriter.replaceOp(illegalOp, legalOp);
rewriter.replaceOp(op, illegalOp);
return success();
}
};
//===----------------------------------------------------------------------===//
// Recursive Rewrite Testing
/// This pattern is applied to the same operation multiple times, but has a
/// bounded recursion.
struct TestBoundedRecursiveRewrite
: public OpRewritePattern<TestRecursiveRewriteOp> {
using OpRewritePattern<TestRecursiveRewriteOp>::OpRewritePattern;
void initialize() {
// The conversion target handles bounding the recursion of this pattern.
setHasBoundedRewriteRecursion();
}
LogicalResult matchAndRewrite(TestRecursiveRewriteOp op,
PatternRewriter &rewriter) const final {
// Decrement the depth of the op in-place.
rewriter.updateRootInPlace(op, [&] {
op->setAttr("depth", rewriter.getI64IntegerAttr(op.getDepth() - 1));
});
return success();
}
};
struct TestNestedOpCreationUndoRewrite
: public OpRewritePattern<IllegalOpWithRegionAnchor> {
using OpRewritePattern<IllegalOpWithRegionAnchor>::OpRewritePattern;
LogicalResult matchAndRewrite(IllegalOpWithRegionAnchor op,
PatternRewriter &rewriter) const final {
// rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
return success();
};
};
// This pattern matches `test.blackhole` and delete this op and its producer.
struct TestReplaceEraseOp : public OpRewritePattern<BlackHoleOp> {
using OpRewritePattern<BlackHoleOp>::OpRewritePattern;
LogicalResult matchAndRewrite(BlackHoleOp op,
PatternRewriter &rewriter) const final {
Operation *producer = op.getOperand().getDefiningOp();
// Always erase the user before the producer, the framework should handle
// this correctly.
rewriter.eraseOp(op);
rewriter.eraseOp(producer);
return success();
};
};
// This pattern replaces explicitly illegal op with explicitly legal op,
// but in addition creates unregistered operation.
struct TestCreateUnregisteredOp : public OpRewritePattern<ILLegalOpG> {
using OpRewritePattern<ILLegalOpG>::OpRewritePattern;
LogicalResult matchAndRewrite(ILLegalOpG op,
PatternRewriter &rewriter) const final {
IntegerAttr attr = rewriter.getI32IntegerAttr(0);
Value val = rewriter.create<arith::ConstantOp>(op->getLoc(), attr);
rewriter.replaceOpWithNewOp<LegalOpC>(op, val);
return success();
};
};
} // namespace
namespace {
struct TestTypeConverter : public TypeConverter {
using TypeConverter::TypeConverter;
TestTypeConverter() {
addConversion(convertType);
addArgumentMaterialization(materializeCast);
addSourceMaterialization(materializeCast);
}
static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) {
// Drop I16 types.
if (t.isSignlessInteger(16))
return success();
// Convert I64 to F64.
if (t.isSignlessInteger(64)) {
results.push_back(FloatType::getF64(t.getContext()));
return success();
}
// Convert I42 to I43.
if (t.isInteger(42)) {
results.push_back(IntegerType::get(t.getContext(), 43));
return success();
}
// Split F32 into F16,F16.
if (t.isF32()) {
results.assign(2, FloatType::getF16(t.getContext()));
return success();
}
// Otherwise, convert the type directly.
results.push_back(t);
return success();
}
/// Hook for materializing a conversion. This is necessary because we generate
/// 1->N type mappings.
static std::optional<Value> materializeCast(OpBuilder &builder,
Type resultType,
ValueRange inputs, Location loc) {
return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
}
};
struct TestLegalizePatternDriver
: public PassWrapper<TestLegalizePatternDriver, OperationPass<>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestLegalizePatternDriver)
StringRef getArgument() const final { return "test-legalize-patterns"; }
StringRef getDescription() const final {
return "Run test dialect legalization patterns";
}
/// The mode of conversion to use with the driver.
enum class ConversionMode { Analysis, Full, Partial };
TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {}
void getDependentDialects(DialectRegistry ®istry) const override {
registry.insert<func::FuncDialect, test::TestDialect>();
}
void runOnOperation() override {
TestTypeConverter converter;
mlir::RewritePatternSet patterns(&getContext());
populateWithGenerated(patterns);
patterns
.add<TestRegionRewriteBlockMovement, TestRegionRewriteUndo,
TestCreateBlock, TestCreateIllegalBlock, TestUndoBlockArgReplace,
TestUndoBlockErase, TestPassthroughInvalidOp, TestSplitReturnType,
TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64,
TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType,
TestNonRootReplacement, TestBoundedRecursiveRewrite,
TestNestedOpCreationUndoRewrite, TestReplaceEraseOp,
TestCreateUnregisteredOp>(&getContext());
patterns.add<TestDropOpSignatureConversion>(&getContext(), converter);
mlir::populateAnyFunctionOpInterfaceTypeConversionPattern(patterns,
converter);
mlir::populateCallOpTypeConversionPattern(patterns, converter);
// Define the conversion target used for the test.
ConversionTarget target(getContext());
target.addLegalOp<ModuleOp>();
target.addLegalOp<LegalOpA, LegalOpB, LegalOpC, TestCastOp, TestValidOp,
TerminatorOp>();
target
.addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>();
target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) {
// Don't allow F32 operands.
return llvm::none_of(op.getOperandTypes(),
[](Type type) { return type.isF32(); });
});
target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) {
return converter.isSignatureLegal(op.getFunctionType()) &&
converter.isLegal(&op.getBody());
});
target.addDynamicallyLegalOp<func::CallOp>(
[&](func::CallOp op) { return converter.isLegal(op); });
// TestCreateUnregisteredOp creates `arith.constant` operation,
// which was not added to target intentionally to test
// correct error code from conversion driver.
target.addDynamicallyLegalOp<ILLegalOpG>([](ILLegalOpG) { return false; });
// Expect the type_producer/type_consumer operations to only operate on f64.
target.addDynamicallyLegalOp<TestTypeProducerOp>(
[](TestTypeProducerOp op) { return op.getType().isF64(); });
target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
return op.getOperand().getType().isF64();
});
// Check support for marking certain operations as recursively legal.
target.markOpRecursivelyLegal<func::FuncOp, ModuleOp>([](Operation *op) {
return static_cast<bool>(
op->getAttrOfType<UnitAttr>("test.recursively_legal"));
});
// Mark the bound recursion operation as dynamically legal.
target.addDynamicallyLegalOp<TestRecursiveRewriteOp>(
[](TestRecursiveRewriteOp op) { return op.getDepth() == 0; });
// Handle a partial conversion.
if (mode == ConversionMode::Partial) {
DenseSet<Operation *> unlegalizedOps;
if (failed(applyPartialConversion(
getOperation(), target, std::move(patterns), &unlegalizedOps))) {
getOperation()->emitRemark() << "applyPartialConversion failed";
}
// Emit remarks for each legalizable operation.
for (auto *op : unlegalizedOps)
op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
return;
}
// Handle a full conversion.
if (mode == ConversionMode::Full) {
// Check support for marking unknown operations as dynamically legal.
target.markUnknownOpDynamicallyLegal([](Operation *op) {
return (bool)op->getAttrOfType<UnitAttr>("test.dynamically_legal");
});
if (failed(applyFullConversion(getOperation(), target,
std::move(patterns)))) {
getOperation()->emitRemark() << "applyFullConversion failed";
}
return;
}
// Otherwise, handle an analysis conversion.
assert(mode == ConversionMode::Analysis);
// Analyze the convertible operations.
DenseSet<Operation *> legalizedOps;
if (failed(applyAnalysisConversion(getOperation(), target,
std::move(patterns), legalizedOps)))
return signalPassFailure();
// Emit remarks for each legalizable operation.
for (auto *op : legalizedOps)
op->emitRemark() << "op '" << op->getName() << "' is legalizable";
}
/// The mode of conversion to use.
ConversionMode mode;
};
} // namespace
static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode>
legalizerConversionMode(
"test-legalize-mode",
llvm::cl::desc("The legalization mode to use with the test driver"),
llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial),
llvm::cl::values(
clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis,
"analysis", "Perform an analysis conversion"),
clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full",
"Perform a full conversion"),
clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial,
"partial", "Perform a partial conversion")));
//===----------------------------------------------------------------------===//
// ConversionPatternRewriter::getRemappedValue testing. This method is used
// to get the remapped value of an original value that was replaced using
// ConversionPatternRewriter.
namespace {
struct TestRemapValueTypeConverter : public TypeConverter {
using TypeConverter::TypeConverter;
TestRemapValueTypeConverter() {
addConversion(
[](Float32Type type) { return Float64Type::get(type.getContext()); });
addConversion([](Type type) { return type; });
}
};
/// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with
/// a one-operand two-result OneVResOneVOperandOp1 by replicating its original
/// operand twice.
///
/// Example:
/// %1 = test.one_variadic_out_one_variadic_in1"(%0)
/// is replaced with:
/// %1 = test.one_variadic_out_one_variadic_in1"(%0, %0)
struct OneVResOneVOperandOp1Converter
: public OpConversionPattern<OneVResOneVOperandOp1> {
using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern;
LogicalResult
matchAndRewrite(OneVResOneVOperandOp1 op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto origOps = op.getOperands();
assert(std::distance(origOps.begin(), origOps.end()) == 1 &&
"One operand expected");
Value origOp = *origOps.begin();
SmallVector<Value, 2> remappedOperands;
// Replicate the remapped original operand twice. Note that we don't used
// the remapped 'operand' since the goal is testing 'getRemappedValue'.
remappedOperands.push_back(rewriter.getRemappedValue(origOp));
remappedOperands.push_back(rewriter.getRemappedValue(origOp));
rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, op.getResultTypes(),
remappedOperands);
return success();
}
};
/// A rewriter pattern that tests that blocks can be merged.
struct TestRemapValueInRegion
: public OpConversionPattern<TestRemappedValueRegionOp> {
using OpConversionPattern<TestRemappedValueRegionOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(TestRemappedValueRegionOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
Block &block = op.getBody().front();
Operation *terminator = block.getTerminator();
// Merge the block into the parent region.
Block *parentBlock = op->getBlock();
Block *finalBlock = rewriter.splitBlock(parentBlock, op->getIterator());
rewriter.mergeBlocks(&block, parentBlock, ValueRange());
rewriter.mergeBlocks(finalBlock, parentBlock, ValueRange());
// Replace the results of this operation with the remapped terminator
// values.
SmallVector<Value> terminatorOperands;
if (failed(rewriter.getRemappedValues(terminator->getOperands(),
terminatorOperands)))
return failure();
rewriter.eraseOp(terminator);
rewriter.replaceOp(op, terminatorOperands);
return success();
}
};
struct TestRemappedValue
: public mlir::PassWrapper<TestRemappedValue, OperationPass<>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestRemappedValue)
StringRef getArgument() const final { return "test-remapped-value"; }
StringRef getDescription() const final {
return "Test public remapped value mechanism in ConversionPatternRewriter";
}
void runOnOperation() override {
TestRemapValueTypeConverter typeConverter;
mlir::RewritePatternSet patterns(&getContext());
patterns.add<OneVResOneVOperandOp1Converter>(&getContext());
patterns.add<TestChangeProducerTypeF32ToF64, TestUpdateConsumerType>(
&getContext());
patterns.add<TestRemapValueInRegion>(typeConverter, &getContext());
mlir::ConversionTarget target(getContext());
target.addLegalOp<ModuleOp, func::FuncOp, TestReturnOp>();
// Expect the type_producer/type_consumer operations to only operate on f64.
target.addDynamicallyLegalOp<TestTypeProducerOp>(
[](TestTypeProducerOp op) { return op.getType().isF64(); });
target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
return op.getOperand().getType().isF64();
});
// We make OneVResOneVOperandOp1 legal only when it has more that one
// operand. This will trigger the conversion that will replace one-operand
// OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1.
target.addDynamicallyLegalOp<OneVResOneVOperandOp1>(
[](Operation *op) { return op->getNumOperands() > 1; });
if (failed(mlir::applyFullConversion(getOperation(), target,
std::move(patterns)))) {
signalPassFailure();
}
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Test patterns without a specific root operation kind
//===----------------------------------------------------------------------===//
namespace {
/// This pattern matches and removes any operation in the test dialect.
struct RemoveTestDialectOps : public RewritePattern {
RemoveTestDialectOps(MLIRContext *context)
: RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
if (!isa<TestDialect>(op->getDialect()))
return failure();
rewriter.eraseOp(op);
return success();
}
};
struct TestUnknownRootOpDriver
: public mlir::PassWrapper<TestUnknownRootOpDriver, OperationPass<>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestUnknownRootOpDriver)
StringRef getArgument() const final {
return "test-legalize-unknown-root-patterns";
}
StringRef getDescription() const final {
return "Test public remapped value mechanism in ConversionPatternRewriter";
}
void runOnOperation() override {
mlir::RewritePatternSet patterns(&getContext());
patterns.add<RemoveTestDialectOps>(&getContext());
mlir::ConversionTarget target(getContext());
target.addIllegalDialect<TestDialect>();
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Test patterns that uses operations and types defined at runtime
//===----------------------------------------------------------------------===//
namespace {
/// This pattern matches dynamic operations 'test.one_operand_two_results' and
/// replace them with dynamic operations 'test.generic_dynamic_op'.
struct RewriteDynamicOp : public RewritePattern {
RewriteDynamicOp(MLIRContext *context)
: RewritePattern("test.dynamic_one_operand_two_results", /*benefit=*/1,
context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
assert(op->getName().getStringRef() ==
"test.dynamic_one_operand_two_results" &&
"rewrite pattern should only match operations with the right name");
OperationState state(op->getLoc(), "test.dynamic_generic",
op->getOperands(), op->getResultTypes(),
op->getAttrs());
auto *newOp = rewriter.create(state);
rewriter.replaceOp(op, newOp->getResults());
return success();
}
};
struct TestRewriteDynamicOpDriver
: public PassWrapper<TestRewriteDynamicOpDriver, OperationPass<>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestRewriteDynamicOpDriver)
void getDependentDialects(DialectRegistry ®istry) const override {
registry.insert<TestDialect>();
}
StringRef getArgument() const final { return "test-rewrite-dynamic-op"; }
StringRef getDescription() const final {
return "Test rewritting on dynamic operations";
}
void runOnOperation() override {
RewritePatternSet patterns(&getContext());
patterns.add<RewriteDynamicOp>(&getContext());
ConversionTarget target(getContext());
target.addIllegalOp(
OperationName("test.dynamic_one_operand_two_results", &getContext()));
target.addLegalOp(OperationName("test.dynamic_generic", &getContext()));
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Test type conversions
//===----------------------------------------------------------------------===//
namespace {
struct TestTypeConversionProducer
: public OpConversionPattern<TestTypeProducerOp> {
using OpConversionPattern<TestTypeProducerOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(TestTypeProducerOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
Type resultType = op.getType();
Type convertedType = getTypeConverter()
? getTypeConverter()->convertType(resultType)
: resultType;
if (isa<FloatType>(resultType))
resultType = rewriter.getF64Type();
else if (resultType.isInteger(16))
resultType = rewriter.getIntegerType(64);
else if (isa<test::TestRecursiveType>(resultType) &&
convertedType != resultType)
resultType = convertedType;
else
return failure();
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, resultType);
return success();
}
};
/// Call signature conversion and then fail the rewrite to trigger the undo
/// mechanism.
struct TestSignatureConversionUndo
: public OpConversionPattern<TestSignatureConversionUndoOp> {
using OpConversionPattern<TestSignatureConversionUndoOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(TestSignatureConversionUndoOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
(void)rewriter.convertRegionTypes(&op->getRegion(0), *getTypeConverter());
return failure();
}
};
/// Call signature conversion without providing a type converter to handle
/// materializations.
struct TestTestSignatureConversionNoConverter
: public OpConversionPattern<TestSignatureConversionNoConverterOp> {
TestTestSignatureConversionNoConverter(TypeConverter &converter,
MLIRContext *context)
: OpConversionPattern<TestSignatureConversionNoConverterOp>(context),
converter(converter) {}
LogicalResult
matchAndRewrite(TestSignatureConversionNoConverterOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
Region ®ion = op->getRegion(0);
Block *entry = ®ion.front();
// Convert the original entry arguments.
TypeConverter::SignatureConversion result(entry->getNumArguments());
if (failed(
converter.convertSignatureArgs(entry->getArgumentTypes(), result)))
return failure();
rewriter.updateRootInPlace(
op, [&] { rewriter.applySignatureConversion(®ion, result); });
return success();
}
TypeConverter &converter;
};
/// Just forward the operands to the root op. This is essentially a no-op
/// pattern that is used to trigger target materialization.
struct TestTypeConsumerForward
: public OpConversionPattern<TestTypeConsumerOp> {
using OpConversionPattern<TestTypeConsumerOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(TestTypeConsumerOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
rewriter.updateRootInPlace(op,
[&] { op->setOperands(adaptor.getOperands()); });
return success();
}
};
struct TestTypeConversionAnotherProducer
: public OpRewritePattern<TestAnotherTypeProducerOp> {
using OpRewritePattern<TestAnotherTypeProducerOp>::OpRewritePattern;
LogicalResult matchAndRewrite(TestAnotherTypeProducerOp op,
PatternRewriter &rewriter) const final {
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, op.getType());
return success();
}
};
struct TestTypeConversionDriver
: public PassWrapper<TestTypeConversionDriver, OperationPass<>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestTypeConversionDriver)
void getDependentDialects(DialectRegistry ®istry) const override {
registry.insert<TestDialect>();
}
StringRef getArgument() const final {
return "test-legalize-type-conversion";
}
StringRef getDescription() const final {
return "Test various type conversion functionalities in DialectConversion";
}
void runOnOperation() override {
// Initialize the type converter.
TypeConverter converter;
/// Add the legal set of type conversions.
converter.addConversion([](Type type) -> Type {
// Treat F64 as legal.
if (type.isF64())
return type;
// Allow converting BF16/F16/F32 to F64.
if (type.isBF16() || type.isF16() || type.isF32())
return FloatType::getF64(type.getContext());
// Otherwise, the type is illegal.
return nullptr;
});
converter.addConversion([](IntegerType type, SmallVectorImpl<Type> &) {
// Drop all integer types.
return success();
});
converter.addConversion(
// Convert a recursive self-referring type into a non-self-referring
// type named "outer_converted_type" that contains a SimpleAType.
[&](test::TestRecursiveType type, SmallVectorImpl<Type> &results,
ArrayRef<Type> callStack) -> std::optional<LogicalResult> {
// If the type is already converted, return it to indicate that it is
// legal.
if (type.getName() == "outer_converted_type") {
results.push_back(type);
return success();
}
// If the type is on the call stack more than once (it is there at
// least once because of the _current_ call, which is always the last
// element on the stack), we've hit the recursive case. Just return
// SimpleAType here to create a non-recursive type as a result.
if (llvm::is_contained(callStack.drop_back(), type)) {
results.push_back(test::SimpleAType::get(type.getContext()));
return success();
}
// Convert the body recursively.
auto result = test::TestRecursiveType::get(type.getContext(),
"outer_converted_type");
if (failed(result.setBody(converter.convertType(type.getBody()))))
return failure();
results.push_back(result);
return success();
});
/// Add the legal set of type materializations.
converter.addSourceMaterialization([](OpBuilder &builder, Type resultType,
ValueRange inputs,
Location loc) -> Value {
// Allow casting from F64 back to F32.
if (!resultType.isF16() && inputs.size() == 1 &&
inputs[0].getType().isF64())
return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
// Allow producing an i32 or i64 from nothing.
if ((resultType.isInteger(32) || resultType.isInteger(64)) &&
inputs.empty())
return builder.create<TestTypeProducerOp>(loc, resultType);
// Allow producing an i64 from an integer.
if (isa<IntegerType>(resultType) && inputs.size() == 1 &&
isa<IntegerType>(inputs[0].getType()))
return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
// Otherwise, fail.
return nullptr;
});
// Initialize the conversion target.
mlir::ConversionTarget target(getContext());
target.addDynamicallyLegalOp<TestTypeProducerOp>([](TestTypeProducerOp op) {
auto recursiveType = dyn_cast<test::TestRecursiveType>(op.getType());
return op.getType().isF64() || op.getType().isInteger(64) ||
(recursiveType &&
recursiveType.getName() == "outer_converted_type");
});
target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) {
return converter.isSignatureLegal(op.getFunctionType()) &&
converter.isLegal(&op.getBody());
});
target.addDynamicallyLegalOp<TestCastOp>([&](TestCastOp op) {
// Allow casts from F64 to F32.
return (*op.operand_type_begin()).isF64() && op.getType().isF32();
});
target.addDynamicallyLegalOp<TestSignatureConversionNoConverterOp>(
[&](TestSignatureConversionNoConverterOp op) {
return converter.isLegal(op.getRegion().front().getArgumentTypes());
});
// Initialize the set of rewrite patterns.
RewritePatternSet patterns(&getContext());
patterns.add<TestTypeConsumerForward, TestTypeConversionProducer,
TestSignatureConversionUndo,
TestTestSignatureConversionNoConverter>(converter,
&getContext());
patterns.add<TestTypeConversionAnotherProducer>(&getContext());
mlir::populateAnyFunctionOpInterfaceTypeConversionPattern(patterns,
converter);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Test Target Materialization With No Uses
//===----------------------------------------------------------------------===//
namespace {
struct ForwardOperandPattern : public OpConversionPattern<TestTypeChangerOp> {
using OpConversionPattern<TestTypeChangerOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(TestTypeChangerOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
rewriter.replaceOp(op, adaptor.getOperands());
return success();
}
};
struct TestTargetMaterializationWithNoUses
: public PassWrapper<TestTargetMaterializationWithNoUses, OperationPass<>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(
TestTargetMaterializationWithNoUses)
StringRef getArgument() const final {
return "test-target-materialization-with-no-uses";
}
StringRef getDescription() const final {
return "Test a special case of target materialization in DialectConversion";
}
void runOnOperation() override {
TypeConverter converter;
converter.addConversion([](Type t) { return t; });
converter.addConversion([](IntegerType intTy) -> Type {
if (intTy.getWidth() == 16)
return IntegerType::get(intTy.getContext(), 64);
return intTy;
});
converter.addTargetMaterialization(
[](OpBuilder &builder, Type type, ValueRange inputs, Location loc) {
return builder.create<TestCastOp>(loc, type, inputs).getResult();
});
ConversionTarget target(getContext());
target.addIllegalOp<TestTypeChangerOp>();
RewritePatternSet patterns(&getContext());
patterns.add<ForwardOperandPattern>(converter, &getContext());
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Test Block Merging
//===----------------------------------------------------------------------===//
namespace {
/// A rewriter pattern that tests that blocks can be merged.
struct TestMergeBlock : public OpConversionPattern<TestMergeBlocksOp> {
using OpConversionPattern<TestMergeBlocksOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(TestMergeBlocksOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
Block &firstBlock = op.getBody().front();
Operation *branchOp = firstBlock.getTerminator();
Block *secondBlock = &*(std::next(op.getBody().begin()));
auto succOperands = branchOp->getOperands();
SmallVector<Value, 2> replacements(succOperands);
rewriter.eraseOp(branchOp);
rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
rewriter.updateRootInPlace(op, [] {});
return success();
}
};
/// A rewrite pattern to tests the undo mechanism of blocks being merged.
struct TestUndoBlocksMerge : public ConversionPattern {
TestUndoBlocksMerge(MLIRContext *ctx)
: ConversionPattern("test.undo_blocks_merge", /*benefit=*/1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
Block &firstBlock = op->getRegion(0).front();
Operation *branchOp = firstBlock.getTerminator();
Block *secondBlock = &*(std::next(op->getRegion(0).begin()));
rewriter.setInsertionPointToStart(secondBlock);
rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
auto succOperands = branchOp->getOperands();
SmallVector<Value, 2> replacements(succOperands);
rewriter.eraseOp(branchOp);
rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
rewriter.updateRootInPlace(op, [] {});
return success();
}
};
/// A rewrite mechanism to inline the body of the op into its parent, when both
/// ops can have a single block.
struct TestMergeSingleBlockOps
: public OpConversionPattern<SingleBlockImplicitTerminatorOp> {
using OpConversionPattern<
SingleBlockImplicitTerminatorOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(SingleBlockImplicitTerminatorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
SingleBlockImplicitTerminatorOp parentOp =
op->getParentOfType<SingleBlockImplicitTerminatorOp>();
if (!parentOp)
return failure();
Block &innerBlock = op.getRegion().front();
TerminatorOp innerTerminator =
cast<TerminatorOp>(innerBlock.getTerminator());
rewriter.inlineBlockBefore(&innerBlock, op);
rewriter.eraseOp(innerTerminator);
rewriter.eraseOp(op);
rewriter.updateRootInPlace(op, [] {});
return success();
}
};
struct TestMergeBlocksPatternDriver
: public PassWrapper<TestMergeBlocksPatternDriver, OperationPass<>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestMergeBlocksPatternDriver)
StringRef getArgument() const final { return "test-merge-blocks"; }
StringRef getDescription() const final {
return "Test Merging operation in ConversionPatternRewriter";
}
void runOnOperation() override {
MLIRContext *context = &getContext();
mlir::RewritePatternSet patterns(context);
patterns.add<TestMergeBlock, TestUndoBlocksMerge, TestMergeSingleBlockOps>(
context);
ConversionTarget target(*context);
target.addLegalOp<func::FuncOp, ModuleOp, TerminatorOp, TestBranchOp,
TestTypeConsumerOp, TestTypeProducerOp, TestReturnOp>();
target.addIllegalOp<ILLegalOpF>();
/// Expect the op to have a single block after legalization.
target.addDynamicallyLegalOp<TestMergeBlocksOp>(
[&](TestMergeBlocksOp op) -> bool {
return llvm::hasSingleElement(op.getBody());
});
/// Only allow `test.br` within test.merge_blocks op.
target.addDynamicallyLegalOp<TestBranchOp>([&](TestBranchOp op) -> bool {
return op->getParentOfType<TestMergeBlocksOp>();
});
/// Expect that all nested test.SingleBlockImplicitTerminator ops are
/// inlined.
target.addDynamicallyLegalOp<SingleBlockImplicitTerminatorOp>(
[&](SingleBlockImplicitTerminatorOp op) -> bool {
return !op->getParentOfType<SingleBlockImplicitTerminatorOp>();
});
DenseSet<Operation *> unlegalizedOps;
(void)applyPartialConversion(getOperation(), target, std::move(patterns),
&unlegalizedOps);
for (auto *op : unlegalizedOps)
op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Test Selective Replacement
//===----------------------------------------------------------------------===//
namespace {
/// A rewrite mechanism to inline the body of the op into its parent, when both
/// ops can have a single block.
struct TestSelectiveOpReplacementPattern : public OpRewritePattern<TestCastOp> {
using OpRewritePattern<TestCastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(TestCastOp op,
PatternRewriter &rewriter) const final {
if (op.getNumOperands() != 2)
return failure();
OperandRange operands = op.getOperands();
// Replace non-terminator uses with the first operand.
rewriter.replaceOpWithIf(op, operands[0], [](OpOperand &operand) {
return operand.getOwner()->hasTrait<OpTrait::IsTerminator>();
});
// Replace everything else with the second operand if the operation isn't
// dead.
rewriter.replaceOp(op, op.getOperand(1));
return success();
}
};
struct TestSelectiveReplacementPatternDriver
: public PassWrapper<TestSelectiveReplacementPatternDriver,
OperationPass<>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(
TestSelectiveReplacementPatternDriver)
StringRef getArgument() const final {
return "test-pattern-selective-replacement";
}
StringRef getDescription() const final {
return "Test selective replacement in the PatternRewriter";
}
void runOnOperation() override {
MLIRContext *context = &getContext();
mlir::RewritePatternSet patterns(context);
patterns.add<TestSelectiveOpReplacementPattern>(context);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
};
} // namespace
//===----------------------------------------------------------------------===//
// PassRegistration
//===----------------------------------------------------------------------===//
namespace mlir {
namespace test {
void registerPatternsTestPass() {
PassRegistration<TestReturnTypeDriver>();
PassRegistration<TestDerivedAttributeDriver>();
PassRegistration<TestPatternDriver>();
PassRegistration<TestStrictPatternDriver>();
PassRegistration<TestLegalizePatternDriver>([] {
return std::make_unique<TestLegalizePatternDriver>(legalizerConversionMode);
});
PassRegistration<TestRemappedValue>();
PassRegistration<TestUnknownRootOpDriver>();
PassRegistration<TestTypeConversionDriver>();
PassRegistration<TestTargetMaterializationWithNoUses>();
PassRegistration<TestRewriteDynamicOpDriver>();
PassRegistration<TestMergeBlocksPatternDriver>();
PassRegistration<TestSelectiveReplacementPatternDriver>();
}
} // namespace test
} // namespace mlir
|