1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
//===- TestPrintDefUse.cpp - Passes to illustrate the IR def-use chains ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Bytecode/BytecodeWriter.h"
#include "mlir/Bytecode/Encoding.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/OwningOpRef.h"
#include "mlir/Parser/Parser.h"
#include "mlir/Pass/Pass.h"
#include <numeric>
#include <random>
using namespace mlir;
namespace {
/// This pass tests that:
/// 1) we can shuffle use-lists correctly;
/// 2) use-list orders are preserved after a roundtrip to bytecode.
class TestPreserveUseListOrders
: public PassWrapper<TestPreserveUseListOrders, OperationPass<ModuleOp>> {
public:
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestPreserveUseListOrders)
TestPreserveUseListOrders() = default;
TestPreserveUseListOrders(const TestPreserveUseListOrders &pass)
: PassWrapper(pass) {}
StringRef getArgument() const final { return "test-verify-uselistorder"; }
StringRef getDescription() const final {
return "Verify that roundtripping the IR to bytecode preserves the order "
"of the uselists";
}
Option<unsigned> rngSeed{*this, "rng-seed",
llvm::cl::desc("Specify an input random seed"),
llvm::cl::init(1)};
LogicalResult initialize(MLIRContext *context) override {
rng.seed(static_cast<unsigned>(rngSeed));
return success();
}
void runOnOperation() override {
// Clone the module so that we can plug in this pass to any other
// independently.
OwningOpRef<ModuleOp> cloneModule = getOperation().clone();
// 1. Compute the op numbering of the module.
computeOpNumbering(*cloneModule);
// 2. Loop over all the values and shuffle the uses. While doing so, check
// that each shuffle is correct.
if (failed(shuffleUses(*cloneModule)))
return signalPassFailure();
// 3. Do a bytecode roundtrip to version 3, which supports use-list order
// preservation.
auto roundtripModuleOr = doRoundtripToBytecode(*cloneModule, 3);
// If the bytecode roundtrip failed, try to roundtrip the original module
// to version 2, which does not support use-list. If this also fails, the
// original module had an issue unrelated to uselists.
if (failed(roundtripModuleOr)) {
auto testModuleOr = doRoundtripToBytecode(getOperation(), 2);
if (failed(testModuleOr))
return;
return signalPassFailure();
}
// 4. Recompute the op numbering on the new module. The numbering should be
// the same as (1), but on the new operation pointers.
computeOpNumbering(roundtripModuleOr->get());
// 5. Loop over all the values and verify that the use-list is consistent
// with the post-shuffle order of step (2).
if (failed(verifyUseListOrders(roundtripModuleOr->get())))
return signalPassFailure();
}
private:
FailureOr<OwningOpRef<Operation *>> doRoundtripToBytecode(Operation *module,
uint32_t version) {
std::string str;
llvm::raw_string_ostream m(str);
BytecodeWriterConfig config;
config.setDesiredBytecodeVersion(version);
if (failed(writeBytecodeToFile(module, m, config)))
return failure();
ParserConfig parseConfig(&getContext(), /*verifyAfterParse=*/true);
auto newModuleOp = parseSourceString(StringRef(str), parseConfig);
if (!newModuleOp.get())
return failure();
return newModuleOp;
}
/// Compute an ordered numbering for all the operations in the IR.
void computeOpNumbering(Operation *topLevelOp) {
uint32_t operationID = 0;
opNumbering.clear();
topLevelOp->walk<mlir::WalkOrder::PreOrder>(
[&](Operation *op) { opNumbering.try_emplace(op, operationID++); });
}
template <typename ValueT>
SmallVector<uint64_t> getUseIDs(ValueT val) {
return SmallVector<uint64_t>(llvm::map_range(val.getUses(), [&](auto &use) {
return bytecode::getUseID(use, opNumbering.at(use.getOwner()));
}));
}
LogicalResult shuffleUses(Operation *topLevelOp) {
uint32_t valueID = 0;
/// Permute randomly the use-list of each value. It is guaranteed that at
/// least one pair of the use list is permuted.
auto doShuffleForRange = [&](ValueRange range) -> LogicalResult {
for (auto val : range) {
if (val.use_empty() || val.hasOneUse())
continue;
/// Get a valid index permutation for the uses of value.
SmallVector<unsigned> permutation = getRandomPermutation(val);
/// Store original order and verify that the shuffle was applied
/// correctly.
auto useIDs = getUseIDs(val);
/// Apply shuffle to the uselist.
val.shuffleUseList(permutation);
/// Get the new order and verify the shuffle happened correctly.
auto permutedIDs = getUseIDs(val);
if (permutedIDs.size() != useIDs.size())
return failure();
for (size_t idx = 0; idx < permutation.size(); idx++)
if (useIDs[idx] != permutedIDs[permutation[idx]])
return failure();
referenceUseListOrder.try_emplace(
valueID++, llvm::map_range(val.getUses(), [&](auto &use) {
return bytecode::getUseID(use, opNumbering.at(use.getOwner()));
}));
}
return success();
};
return walkOverValues(topLevelOp, doShuffleForRange);
}
LogicalResult verifyUseListOrders(Operation *topLevelOp) {
uint32_t valueID = 0;
/// Check that the use-list for the value range matches the one stored in
/// the reference.
auto doValidationForRange = [&](ValueRange range) -> LogicalResult {
for (auto val : range) {
if (val.use_empty() || val.hasOneUse())
continue;
auto referenceOrder = referenceUseListOrder.at(valueID++);
for (auto [use, referenceID] :
llvm::zip(val.getUses(), referenceOrder)) {
uint64_t uniqueID =
bytecode::getUseID(use, opNumbering.at(use.getOwner()));
if (uniqueID != referenceID) {
use.getOwner()->emitError()
<< "found use-list order mismatch for value: " << val;
return failure();
}
}
}
return success();
};
return walkOverValues(topLevelOp, doValidationForRange);
}
/// Walk over blocks and operations and execute a callable over the ranges of
/// operands/results respectively.
template <typename FuncT>
LogicalResult walkOverValues(Operation *topLevelOp, FuncT callable) {
auto blockWalk = topLevelOp->walk([&](Block *block) {
if (failed(callable(block->getArguments())))
return WalkResult::interrupt();
return WalkResult::advance();
});
if (blockWalk.wasInterrupted())
return failure();
auto resultsWalk = topLevelOp->walk([&](Operation *op) {
if (failed(callable(op->getResults())))
return WalkResult::interrupt();
return WalkResult::advance();
});
return failure(resultsWalk.wasInterrupted());
}
/// Creates a random permutation of the uselist order chain of the provided
/// value.
SmallVector<unsigned> getRandomPermutation(Value value) {
size_t numUses = std::distance(value.use_begin(), value.use_end());
SmallVector<unsigned> permutation(numUses);
unsigned zero = 0;
std::iota(permutation.begin(), permutation.end(), zero);
std::shuffle(permutation.begin(), permutation.end(), rng);
return permutation;
}
/// Map each value to its use-list order encoded with unique use IDs.
DenseMap<uint32_t, SmallVector<uint64_t>> referenceUseListOrder;
/// Map each operation to its global ID.
DenseMap<Operation *, uint32_t> opNumbering;
std::default_random_engine rng;
};
} // namespace
namespace mlir {
void registerTestPreserveUseListOrders() {
PassRegistration<TestPreserveUseListOrders>();
}
} // namespace mlir
|