1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
# RUN: %PYTHON %s | FileCheck %s
from mlir.ir import *
from mlir.dialects import builtin
from mlir.dialects import func
from mlir.dialects import linalg
from mlir.dialects import tensor
from mlir.dialects.linalg.opdsl.lang import *
T1 = TV.T1
T2 = TV.T2
@linalg_structured_op
def matmul_mono(
A=TensorDef(T, S.M, S.K),
B=TensorDef(T, S.K, S.N),
C=TensorDef(T, S.M, S.N, output=True),
):
domain(D.m, D.n, D.k)
C[D.m, D.n] += A[D.m, D.k] * B[D.k, D.n]
@linalg_structured_op
def matmul_poly(
A=TensorDef(T1, S.M, S.K),
B=TensorDef(T2, S.K, S.N),
C=TensorDef(U, S.M, S.N, output=True),
cast=TypeFnAttrDef(default=TypeFn.cast_signed),
):
domain(D.m, D.n, D.k)
C[D.m, D.n] += cast(U, A[D.m, D.k]) * cast(U, B[D.k, D.n])
with Context() as ctx, Location.unknown():
module = Module.create()
f16 = F16Type.get()
f32 = F32Type.get()
f64 = F64Type.get()
i8 = IntegerType.get_signless(8)
i16 = IntegerType.get_signless(16)
i32 = IntegerType.get_signless(32)
with InsertionPoint(module.body):
# Multiplication indexing maps. We verify only the indexing maps of the
# first multiplication and then do additional tests on casting and body
# generation behavior.
# CHECK: #[[$MUL_MAP_A:.+]] = affine_map<(d0, d1, d2) -> (d0, d2)>
# CHECK: #[[$MUL_MAP_B:.+]] = affine_map<(d0, d1, d2) -> (d2, d1)>
# CHECK: #[[$MUL_MAP_C:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
# CHECK-LABEL: func @test_matmul_mono
# CHECK-SAME: %[[A:.+]]: tensor<4x16xf32>
# CHECK-SAME: %[[B:.+]]: tensor<16x8xf32>
# CHECK: %[[INITC:.+]] = tensor.empty() : tensor<4x8xf32>
# CHECK: linalg.generic
# CHECK-SAME: indexing_maps = [#[[$MUL_MAP_A]], #[[$MUL_MAP_B]], #[[$MUL_MAP_C]]]
# CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction"]
# CHECK-SAME: ins(%[[A]], %[[B]]
# CHECK-SAME: outs(%[[INITC]]
@func.FuncOp.from_py_func(
RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8), f32)
)
def test_matmul_mono(lhs, rhs):
init_result = tensor.EmptyOp([4, 8], f32)
return matmul_mono(lhs, rhs, outs=[init_result.result])
# CHECK-LABEL: @test_i8i8i32_matmul
# CHECK: ^{{.*}}(%[[A_ARG:.+]]: i8, %[[B_ARG:.+]]: i8, %[[C_ARG:.+]]: i32)
# CHECK-NEXT: %[[A_CAST:.+]] = arith.extsi %[[A_ARG]] : i8 to i32
# CHECK-NEXT: %[[B_CAST:.+]] = arith.extsi %[[B_ARG]] : i8 to i32
# CHECK-NEXT: %[[MUL:.+]] = arith.muli %[[A_CAST]], %[[B_CAST]] : i32
# CHECK-NEXT: %[[ADD:.+]] = arith.addi %[[C_ARG]], %[[MUL]] : i32
# CHECK-NEXT: linalg.yield %[[ADD]] : i32
# CHECK-NEXT: -> tensor<4x8xi32>
@func.FuncOp.from_py_func(
RankedTensorType.get((4, 16), i8),
RankedTensorType.get((16, 8), i8),
RankedTensorType.get((4, 8), i32),
)
def test_i8i8i32_matmul(lhs, rhs, init_result):
return matmul_poly(lhs, rhs, outs=[init_result])
# CHECK-LABEL: @test_i8i8i32_matmul_unsigned
# CHECK: = arith.extui
# CHECK: = arith.extui
@func.FuncOp.from_py_func(
RankedTensorType.get((4, 16), i8),
RankedTensorType.get((16, 8), i8),
RankedTensorType.get((4, 8), i32),
)
def test_i8i8i32_matmul_unsigned(lhs, rhs, init_result):
return matmul_poly(lhs, rhs, outs=[init_result], cast=TypeFn.cast_unsigned)
# CHECK-LABEL: @test_i8i16i32_matmul
# CHECK: ^{{.*}}(%[[A_ARG:.+]]: i8, %[[B_ARG:.+]]: i16, %[[C_ARG:.+]]: i32)
# CHECK-NEXT: %[[A_CAST:.+]] = arith.extsi %[[A_ARG]] : i8 to i32
# CHECK-NEXT: %[[B_CAST:.+]] = arith.extsi %[[B_ARG]] : i16 to i32
# CHECK-NEXT: %[[MUL:.+]] = arith.muli %[[A_CAST]], %[[B_CAST]] : i32
# CHECK-NEXT: %[[ADD:.+]] = arith.addi %[[C_ARG]], %[[MUL]] : i32
# CHECK-NEXT: linalg.yield %[[ADD]] : i32
# CHECK-NEXT: -> tensor<4x8xi32>
@func.FuncOp.from_py_func(
RankedTensorType.get((4, 16), i8),
RankedTensorType.get((16, 8), i16),
RankedTensorType.get((4, 8), i32),
)
def test_i8i16i32_matmul(lhs, rhs, init_result):
return matmul_poly(lhs, rhs, outs=[init_result])
# CHECK-LABEL: @test_i32i32i16_matmul
# CHECK: ^{{.*}}(%[[A_ARG:.+]]: i32, %[[B_ARG:.+]]: i32, %[[C_ARG:.+]]: i16)
# CHECK-NEXT: %[[A_CAST:.+]] = arith.trunci %[[A_ARG]] : i32 to i16
# CHECK-NEXT: %[[B_CAST:.+]] = arith.trunci %[[B_ARG]] : i32 to i16
# CHECK-NEXT: %[[MUL:.+]] = arith.muli %[[A_CAST]], %[[B_CAST]] : i16
# CHECK-NEXT: %[[ADD:.+]] = arith.addi %[[C_ARG]], %[[MUL]] : i16
# CHECK-NEXT: linalg.yield %[[ADD]] : i16
# CHECK-NEXT: -> tensor<4x8xi16>
@func.FuncOp.from_py_func(
RankedTensorType.get((4, 16), i32),
RankedTensorType.get((16, 8), i32),
RankedTensorType.get((4, 8), i16),
)
def test_i32i32i16_matmul(lhs, rhs, init_result):
return matmul_poly(lhs, rhs, outs=[init_result])
# CHECK-LABEL: @test_i8i8f32_matmul
# CHECK: ^{{.*}}(%[[A_ARG:.+]]: i8, %[[B_ARG:.+]]: i8, %[[C_ARG:.+]]: f32)
# CHECK-NEXT: %[[A_CAST:.+]] = arith.sitofp %[[A_ARG]] : i8 to f32
# CHECK-NEXT: %[[B_CAST:.+]] = arith.sitofp %[[B_ARG]] : i8 to f32
# CHECK-NEXT: %[[MUL:.+]] = arith.mulf %[[A_CAST]], %[[B_CAST]] : f32
# CHECK-NEXT: %[[ADD:.+]] = arith.addf %[[C_ARG]], %[[MUL]] : f32
# CHECK-NEXT: linalg.yield %[[ADD]] : f32
# CHECK-NEXT: -> tensor<4x8xf32>
@func.FuncOp.from_py_func(
RankedTensorType.get((4, 16), i8),
RankedTensorType.get((16, 8), i8),
RankedTensorType.get((4, 8), f32),
)
def test_i8i8f32_matmul(lhs, rhs, init_result):
return matmul_poly(lhs, rhs, outs=[init_result])
# CHECK-LABEL: @test_i8i8f32_matmul_unsigned
# CHECK: = arith.uitofp
# CHECK: = arith.uitofp
@func.FuncOp.from_py_func(
RankedTensorType.get((4, 16), i8),
RankedTensorType.get((16, 8), i8),
RankedTensorType.get((4, 8), f32),
)
def test_i8i8f32_matmul_unsigned(lhs, rhs, init_result):
return matmul_poly(lhs, rhs, outs=[init_result], cast=TypeFn.cast_unsigned)
# CHECK-LABEL: @test_f16f16f32_matmul
# CHECK: ^{{.*}}(%[[A_ARG:.+]]: f16, %[[B_ARG:.+]]: f16, %[[C_ARG:.+]]: f32)
# CHECK-NEXT: %[[A_CAST:.+]] = arith.extf %[[A_ARG]] : f16 to f32
# CHECK-NEXT: %[[B_CAST:.+]] = arith.extf %[[B_ARG]] : f16 to f32
# CHECK-NEXT: %[[MUL:.+]] = arith.mulf %[[A_CAST]], %[[B_CAST]] : f32
# CHECK-NEXT: %[[ADD:.+]] = arith.addf %[[C_ARG]], %[[MUL]] : f32
# CHECK-NEXT: linalg.yield %[[ADD]] : f32
# CHECK-NEXT: -> tensor<4x8xf32>
@func.FuncOp.from_py_func(
RankedTensorType.get((4, 16), f16),
RankedTensorType.get((16, 8), f16),
RankedTensorType.get((4, 8), f32),
)
def test_f16f16f32_matmul(lhs, rhs, init_result):
return matmul_poly(lhs, rhs, outs=[init_result])
# CHECK-LABEL: @test_f64f64f32_matmul
# CHECK: ^{{.*}}(%[[A_ARG:.+]]: f64, %[[B_ARG:.+]]: f64, %[[C_ARG:.+]]: f32)
# CHECK-NEXT: %[[A_CAST:.+]] = arith.truncf %[[A_ARG]] : f64 to f32
# CHECK-NEXT: %[[B_CAST:.+]] = arith.truncf %[[B_ARG]] : f64 to f32
# CHECK-NEXT: %[[MUL:.+]] = arith.mulf %[[A_CAST]], %[[B_CAST]] : f32
# CHECK-NEXT: %[[ADD:.+]] = arith.addf %[[C_ARG]], %[[MUL]] : f32
# CHECK-NEXT: linalg.yield %[[ADD]] : f32
# CHECK-NEXT: -> tensor<4x8xf32>
@func.FuncOp.from_py_func(
RankedTensorType.get((4, 16), f64),
RankedTensorType.get((16, 8), f64),
RankedTensorType.get((4, 8), f32),
)
def test_f64f64f32_matmul(lhs, rhs, init_result):
return matmul_poly(lhs, rhs, outs=[init_result])
print(module)
|