1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
# RUN: %PYTHON %s | FileCheck %s
from mlir.ir import *
from mlir.dialects import builtin
from mlir.dialects import func
from mlir.dialects import linalg
from mlir.dialects.linalg.opdsl.lang import *
T1 = TV.T1
T2 = TV.T2
@linalg_structured_op
def pooling_poly(
I=TensorDef(T1, S.N, S.H, S.W, S.C),
K=TensorDef(T2, S.KH, S.KW, index_dims=[D.kh, D.kw]),
O=TensorDef(U, S.N, S.OH, S.OW, S.C, output=True),
reduce=BinaryFnAttrDef(default=BinaryFn.max_signed),
cast=TypeFnAttrDef(default=TypeFn.cast_signed),
strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]),
dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]),
):
domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
O[D.n, D.oh, D.ow, D.c] = reduce[D.kh, D.kw](
cast(U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW, D.c])
)
with Context() as ctx, Location.unknown():
module = Module.create()
f32 = F32Type.get()
i32 = IntegerType.get_signless(32)
with InsertionPoint(module.body):
# Pooling indexing maps.
# CHECK: #[[$POOL_MAP_I:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1 * 2 + d3, d2 * 4 + d4 * 2, d5)>
# CHECK: #[[$POOL_MAP_K:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d3, d4)>
# CHECK: #[[$POOL_MAP_O:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d5)>
# CHECK-LABEL: @test_f32i32_max_pooling
# CHECK: linalg.generic
# CHECK-SAME: indexing_maps = [#[[$POOL_MAP_I]], #[[$POOL_MAP_K]], #[[$POOL_MAP_O]]]
# CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction", "parallel"]
# CHECK: ^{{.*}}(%[[IN:.+]]: f32, %[[SHAPE:.+]]: f32, %[[OUT:.+]]: i32)
# CHECK-NEXT: %[[IN_CAST:.+]] = arith.fptosi %[[IN:.+]] : f32 to i32
# CHECK-NEXT: %[[MAX:.+]] = arith.maxsi %[[OUT]], %[[IN_CAST:.+]] : i32
# CHECK-NEXT: linalg.yield %[[MAX]] : i32
# CHECK-NEXT: -> tensor<1x2x4x1xi32>
@func.FuncOp.from_py_func(
RankedTensorType.get((1, 4, 16, 1), f32),
RankedTensorType.get((2, 2), f32),
RankedTensorType.get((1, 2, 4, 1), i32),
)
def test_f32i32_max_pooling(input, shape, init_result):
return pooling_poly(
input, shape, outs=[init_result], strides=[2, 4], dilations=[1, 2]
)
# CHECK-LABEL: @test_f32i32_max_unsigned_pooling
# CHECK: = arith.fptoui
# CHECK: = arith.maxui
@func.FuncOp.from_py_func(
RankedTensorType.get((1, 4, 16, 1), f32),
RankedTensorType.get((2, 2), f32),
RankedTensorType.get((1, 2, 4, 1), i32),
)
def test_f32i32_max_unsigned_pooling(input, shape, init_result):
return pooling_poly(
input,
shape,
outs=[init_result],
reduce=BinaryFn.max_unsigned,
cast=TypeFn.cast_unsigned,
strides=[2, 4],
dilations=[1, 2],
)
# CHECK-LABEL: @test_f32f32_max_pooling
# CHECK: linalg.generic
# CHECK-SAME: indexing_maps = [#[[$POOL_MAP_I]], #[[$POOL_MAP_K]], #[[$POOL_MAP_O]]]
# CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction", "parallel"]
# CHECK: ^{{.*}}(%[[IN:.+]]: f32, %[[SHAPE:.+]]: f32, %[[OUT:.+]]: f32)
# CHECK-NEXT: %[[MAX:.+]] = arith.maxf %[[OUT]], %[[IN:.+]] : f32
# CHECK-NEXT: linalg.yield %[[MAX]] : f32
# CHECK-NEXT: -> tensor<1x2x4x1xf32>
@func.FuncOp.from_py_func(
RankedTensorType.get((1, 4, 16, 1), f32),
RankedTensorType.get((2, 2), f32),
RankedTensorType.get((1, 2, 4, 1), f32),
)
def test_f32f32_max_pooling(input, shape, init_result):
return pooling_poly(
input, shape, outs=[init_result], strides=[2, 4], dilations=[1, 2]
)
# CHECK-LABEL: @test_f32i32_min_pooling
# CHECK: = arith.fptosi
# CHECK: = arith.minsi
@func.FuncOp.from_py_func(
RankedTensorType.get((1, 4, 16, 1), f32),
RankedTensorType.get((2, 2), f32),
RankedTensorType.get((1, 2, 4, 1), i32),
)
def test_f32i32_min_pooling(input, shape, init_result):
return pooling_poly(
input,
shape,
outs=[init_result],
reduce=BinaryFn.min_signed,
strides=[2, 4],
dilations=[1, 2],
)
# CHECK-LABEL: @test_f32i32_min_unsigned_pooling
# CHECK: = arith.fptoui
# CHECK: = arith.minui
@func.FuncOp.from_py_func(
RankedTensorType.get((1, 4, 16, 1), f32),
RankedTensorType.get((2, 2), f32),
RankedTensorType.get((1, 2, 4, 1), i32),
)
def test_f32i32_min_unsigned_pooling(input, shape, init_result):
return pooling_poly(
input,
shape,
outs=[init_result],
reduce=BinaryFn.min_unsigned,
cast=TypeFn.cast_unsigned,
strides=[2, 4],
dilations=[1, 2],
)
# CHECK-LABEL: @test_f32f32_min_pooling
# CHECK: = arith.minf
@func.FuncOp.from_py_func(
RankedTensorType.get((1, 4, 16, 1), f32),
RankedTensorType.get((2, 2), f32),
RankedTensorType.get((1, 2, 4, 1), f32),
)
def test_f32f32_min_pooling(input, shape, init_result):
return pooling_poly(
input,
shape,
outs=[init_result],
reduce=BinaryFn.min_signed,
strides=[2, 4],
dilations=[1, 2],
)
print(module)
|