1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
|
# RUN: %PYTHON %s | FileCheck %s
from mlir.ir import *
from mlir.dialects import sparse_tensor as st
def run(f):
print("\nTEST:", f.__name__)
f()
return f
# CHECK-LABEL: TEST: testEncodingAttr1D
@run
def testEncodingAttr1D():
with Context() as ctx:
parsed = Attribute.parse(
"#sparse_tensor.encoding<{"
' lvlTypes = [ "compressed" ],'
" posWidth = 16,"
" crdWidth = 32"
"}>"
)
# CHECK: #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ], posWidth = 16, crdWidth = 32 }>
print(parsed)
casted = st.EncodingAttr(parsed)
# CHECK: equal: True
print(f"equal: {casted == parsed}")
# CHECK: lvl_types: [<DimLevelType.compressed: 8>]
print(f"lvl_types: {casted.lvl_types}")
# CHECK: dim_to_lvl: None
print(f"dim_to_lvl: {casted.dim_to_lvl}")
# CHECK: pos_width: 16
print(f"pos_width: {casted.pos_width}")
# CHECK: crd_width: 32
print(f"crd_width: {casted.crd_width}")
created = st.EncodingAttr.get(casted.lvl_types, None, 0, 0)
# CHECK: #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>
print(created)
# CHECK: created_equal: False
print(f"created_equal: {created == casted}")
# Verify that the factory creates an instance of the proper type.
# CHECK: is_proper_instance: True
print(f"is_proper_instance: {isinstance(created, st.EncodingAttr)}")
# CHECK: created_pos_width: 0
print(f"created_pos_width: {created.pos_width}")
# CHECK-LABEL: TEST: testEncodingAttr2D
@run
def testEncodingAttr2D():
with Context() as ctx:
parsed = Attribute.parse(
"#sparse_tensor.encoding<{"
' lvlTypes = [ "dense", "compressed" ],'
" dimToLvl = affine_map<(d0, d1) -> (d1, d0)>,"
" posWidth = 8,"
" crdWidth = 32"
"}>"
)
# CHECK: #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ], dimToLvl = affine_map<(d0, d1) -> (d1, d0)>, posWidth = 8, crdWidth = 32 }>
print(parsed)
casted = st.EncodingAttr(parsed)
# CHECK: equal: True
print(f"equal: {casted == parsed}")
# CHECK: lvl_types: [<DimLevelType.dense: 4>, <DimLevelType.compressed: 8>]
print(f"lvl_types: {casted.lvl_types}")
# CHECK: dim_to_lvl: (d0, d1) -> (d1, d0)
print(f"dim_to_lvl: {casted.dim_to_lvl}")
# CHECK: pos_width: 8
print(f"pos_width: {casted.pos_width}")
# CHECK: crd_width: 32
print(f"crd_width: {casted.crd_width}")
created = st.EncodingAttr.get(
casted.lvl_types, casted.dim_to_lvl, 8, 32
)
# CHECK: #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ], dimToLvl = affine_map<(d0, d1) -> (d1, d0)>, posWidth = 8, crdWidth = 32 }>
print(created)
# CHECK: created_equal: True
print(f"created_equal: {created == casted}")
# CHECK-LABEL: TEST: testEncodingAttrOnTensorType
@run
def testEncodingAttrOnTensorType():
with Context() as ctx, Location.unknown():
encoding = st.EncodingAttr(
Attribute.parse(
"#sparse_tensor.encoding<{"
' lvlTypes = [ "compressed" ], '
" posWidth = 64,"
" crdWidth = 32"
"}>"
)
)
tt = RankedTensorType.get((1024,), F32Type.get(), encoding=encoding)
# CHECK: tensor<1024xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ], posWidth = 64, crdWidth = 32 }>>
print(tt)
# CHECK: #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ], posWidth = 64, crdWidth = 32 }>
print(tt.encoding)
assert tt.encoding == encoding
|