File: array_attributes.py

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (419 lines) | stat: -rw-r--r-- 14,163 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# RUN: %PYTHON %s | FileCheck %s
# Note that this is separate from ir_attributes.py since it depends on numpy,
# and we may want to disable if not available.

import gc
from mlir.ir import *
import numpy as np


def run(f):
    print("\nTEST:", f.__name__)
    f()
    gc.collect()
    assert Context._get_live_count() == 0
    return f


################################################################################
# Tests of the array/buffer .get() factory method on unsupported dtype.
################################################################################


@run
def testGetDenseElementsUnsupported():
    with Context():
        array = np.array([["hello", "goodbye"]])
        try:
            attr = DenseElementsAttr.get(array)
        except ValueError as e:
            # CHECK: unimplemented array format conversion from format:
            print(e)

# CHECK-LABEL: TEST: testGetDenseElementsUnSupportedTypeOkIfExplicitTypeProvided
@run
def testGetDenseElementsUnSupportedTypeOkIfExplicitTypeProvided():
    with Context():
        array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int64)
        # datetime64 specifically isn't important: it's just a 64-bit type that
        # doesn't have a format under the Python buffer protocol. A more
        # realistic example would be a NumPy extension type like the bfloat16
        # type from the ml_dtypes package, which isn't a dependency of this
        # test.
        attr = DenseElementsAttr.get(array.view(np.datetime64),
                                     type=IntegerType.get_signless(64))
        # CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xi64>
        print(attr)
        # CHECK: {{\[}}[1 2 3]
        # CHECK: {{\[}}4 5 6]]
        print(np.array(attr))


################################################################################
# Splats.
################################################################################

# CHECK-LABEL: TEST: testGetDenseElementsSplatInt
@run
def testGetDenseElementsSplatInt():
    with Context(), Location.unknown():
        t = IntegerType.get_signless(32)
        element = IntegerAttr.get(t, 555)
        shaped_type = RankedTensorType.get((2, 3, 4), t)
        attr = DenseElementsAttr.get_splat(shaped_type, element)
        # CHECK: dense<555> : tensor<2x3x4xi32>
        print(attr)
        # CHECK: is_splat: True
        print("is_splat:", attr.is_splat)

        # CHECK: splat_value: IntegerAttr(555 : i32)
        splat_value = attr.get_splat_value()
        print("splat_value:", repr(splat_value))
        assert splat_value == element


# CHECK-LABEL: TEST: testGetDenseElementsSplatFloat
@run
def testGetDenseElementsSplatFloat():
    with Context(), Location.unknown():
        t = F32Type.get()
        element = FloatAttr.get(t, 1.2)
        shaped_type = RankedTensorType.get((2, 3, 4), t)
        attr = DenseElementsAttr.get_splat(shaped_type, element)
        # CHECK: dense<1.200000e+00> : tensor<2x3x4xf32>
        print(attr)
        assert attr.get_splat_value() == element


# CHECK-LABEL: TEST: testGetDenseElementsSplatErrors
@run
def testGetDenseElementsSplatErrors():
    with Context(), Location.unknown():
        t = F32Type.get()
        other_t = F64Type.get()
        element = FloatAttr.get(t, 1.2)
        other_element = FloatAttr.get(other_t, 1.2)
        shaped_type = RankedTensorType.get((2, 3, 4), t)
        dynamic_shaped_type = UnrankedTensorType.get(t)
        non_shaped_type = t

        try:
            attr = DenseElementsAttr.get_splat(non_shaped_type, element)
        except ValueError as e:
            # CHECK: Expected a static ShapedType for the shaped_type parameter: Type(f32)
            print(e)

        try:
            attr = DenseElementsAttr.get_splat(dynamic_shaped_type, element)
        except ValueError as e:
            # CHECK: Expected a static ShapedType for the shaped_type parameter: Type(tensor<*xf32>)
            print(e)

        try:
            attr = DenseElementsAttr.get_splat(shaped_type, other_element)
        except ValueError as e:
            # CHECK: Shaped element type and attribute type must be equal: shaped=Type(tensor<2x3x4xf32>), element=Attribute(1.200000e+00 : f64)
            print(e)


# CHECK-LABEL: TEST: testRepeatedValuesSplat
@run
def testRepeatedValuesSplat():
    with Context():
        array = np.array([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], dtype=np.float32)
        attr = DenseElementsAttr.get(array)
        # CHECK: dense<1.000000e+00> : tensor<2x3xf32>
        print(attr)
        # CHECK: is_splat: True
        print("is_splat:", attr.is_splat)
        # CHECK{LITERAL}: [[1. 1. 1.]
        # CHECK{LITERAL}:  [1. 1. 1.]]
        print(np.array(attr))


# CHECK-LABEL: TEST: testNonSplat
@run
def testNonSplat():
    with Context():
        array = np.array([2.0, 1.0, 1.0], dtype=np.float32)
        attr = DenseElementsAttr.get(array)
        # CHECK: is_splat: False
        print("is_splat:", attr.is_splat)


################################################################################
# Tests of the array/buffer .get() factory method, in all of its permutations.
################################################################################

### explicitly provided types


@run
def testGetDenseElementsBF16():
    with Context():
        array = np.array([[2, 4, 8], [16, 32, 64]], dtype=np.uint16)
        attr = DenseElementsAttr.get(array, type=BF16Type.get())
        # Note: These values don't mean much since just bit-casting. But they
        # shouldn't change.
        # CHECK: dense<{{\[}}[1.836710e-40, 3.673420e-40, 7.346840e-40], [1.469370e-39, 2.938740e-39, 5.877470e-39]]> : tensor<2x3xbf16>
        print(attr)


@run
def testGetDenseElementsInteger4():
    with Context():
        array = np.array([[2, 4, 7], [-2, -4, -8]], dtype=np.uint8)
        attr = DenseElementsAttr.get(array, type=IntegerType.get_signless(4))
        # Note: These values don't mean much since just bit-casting. But they
        # shouldn't change.
        # CHECK: dense<{{\[}}[2, 4, 7], [-2, -4, -8]]> : tensor<2x3xi4>
        print(attr)


@run
def testGetDenseElementsBool():
    with Context():
        bool_array = np.array([[1, 0, 1], [0, 1, 0]], dtype=np.bool_)
        array = np.packbits(bool_array, axis=None, bitorder="little")
        attr = DenseElementsAttr.get(
            array, type=IntegerType.get_signless(1), shape=bool_array.shape
        )
        # CHECK: dense<{{\[}}[true, false, true], [false, true, false]]> : tensor<2x3xi1>
        print(attr)


@run
def testGetDenseElementsBoolSplat():
    with Context():
        zero = np.array(0, dtype=np.uint8)
        one = np.array(255, dtype=np.uint8)
        print(one)
        # CHECK: dense<false> : tensor<4x2x5xi1>
        print(
            DenseElementsAttr.get(
                zero, type=IntegerType.get_signless(1), shape=(4, 2, 5)
            )
        )
        # CHECK: dense<true> : tensor<4x2x5xi1>
        print(
            DenseElementsAttr.get(
                one, type=IntegerType.get_signless(1), shape=(4, 2, 5)
            )
        )


### float and double arrays.

# CHECK-LABEL: TEST: testGetDenseElementsF16
@run
def testGetDenseElementsF16():
    with Context():
        array = np.array([[2.0, 4.0, 8.0], [16.0, 32.0, 64.0]], dtype=np.float16)
        attr = DenseElementsAttr.get(array)
        # CHECK: dense<{{\[}}[2.000000e+00, 4.000000e+00, 8.000000e+00], [1.600000e+01, 3.200000e+01, 6.400000e+01]]> : tensor<2x3xf16>
        print(attr)
        # CHECK: {{\[}}[ 2. 4. 8.]
        # CHECK: {{\[}}16. 32. 64.]]
        print(np.array(attr))


# CHECK-LABEL: TEST: testGetDenseElementsF32
@run
def testGetDenseElementsF32():
    with Context():
        array = np.array([[1.1, 2.2, 3.3], [4.4, 5.5, 6.6]], dtype=np.float32)
        attr = DenseElementsAttr.get(array)
        # CHECK: dense<{{\[}}[1.100000e+00, 2.200000e+00, 3.300000e+00], [4.400000e+00, 5.500000e+00, 6.600000e+00]]> : tensor<2x3xf32>
        print(attr)
        # CHECK: {{\[}}[1.1 2.2 3.3]
        # CHECK: {{\[}}4.4 5.5 6.6]]
        print(np.array(attr))


# CHECK-LABEL: TEST: testGetDenseElementsF64
@run
def testGetDenseElementsF64():
    with Context():
        array = np.array([[1.1, 2.2, 3.3], [4.4, 5.5, 6.6]], dtype=np.float64)
        attr = DenseElementsAttr.get(array)
        # CHECK: dense<{{\[}}[1.100000e+00, 2.200000e+00, 3.300000e+00], [4.400000e+00, 5.500000e+00, 6.600000e+00]]> : tensor<2x3xf64>
        print(attr)
        # CHECK: {{\[}}[1.1 2.2 3.3]
        # CHECK: {{\[}}4.4 5.5 6.6]]
        print(np.array(attr))


### 16 bit integer arrays
# CHECK-LABEL: TEST: testGetDenseElementsI16Signless
@run
def testGetDenseElementsI16Signless():
    with Context():
        array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int16)
        attr = DenseElementsAttr.get(array)
        # CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xi16>
        print(attr)
        # CHECK: {{\[}}[1 2 3]
        # CHECK: {{\[}}4 5 6]]
        print(np.array(attr))


# CHECK-LABEL: TEST: testGetDenseElementsUI16Signless
@run
def testGetDenseElementsUI16Signless():
    with Context():
        array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint16)
        attr = DenseElementsAttr.get(array)
        # CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xi16>
        print(attr)
        # CHECK: {{\[}}[1 2 3]
        # CHECK: {{\[}}4 5 6]]
        print(np.array(attr))


# CHECK-LABEL: TEST: testGetDenseElementsI16
@run
def testGetDenseElementsI16():
    with Context():
        array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int16)
        attr = DenseElementsAttr.get(array, signless=False)
        # CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xsi16>
        print(attr)
        # CHECK: {{\[}}[1 2 3]
        # CHECK: {{\[}}4 5 6]]
        print(np.array(attr))


# CHECK-LABEL: TEST: testGetDenseElementsUI16
@run
def testGetDenseElementsUI16():
    with Context():
        array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint16)
        attr = DenseElementsAttr.get(array, signless=False)
        # CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xui16>
        print(attr)
        # CHECK: {{\[}}[1 2 3]
        # CHECK: {{\[}}4 5 6]]
        print(np.array(attr))


### 32 bit integer arrays
# CHECK-LABEL: TEST: testGetDenseElementsI32Signless
@run
def testGetDenseElementsI32Signless():
    with Context():
        array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32)
        attr = DenseElementsAttr.get(array)
        # CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xi32>
        print(attr)
        # CHECK: {{\[}}[1 2 3]
        # CHECK: {{\[}}4 5 6]]
        print(np.array(attr))


# CHECK-LABEL: TEST: testGetDenseElementsUI32Signless
@run
def testGetDenseElementsUI32Signless():
    with Context():
        array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint32)
        attr = DenseElementsAttr.get(array)
        # CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xi32>
        print(attr)
        # CHECK: {{\[}}[1 2 3]
        # CHECK: {{\[}}4 5 6]]
        print(np.array(attr))


# CHECK-LABEL: TEST: testGetDenseElementsI32
@run
def testGetDenseElementsI32():
    with Context():
        array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32)
        attr = DenseElementsAttr.get(array, signless=False)
        # CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xsi32>
        print(attr)
        # CHECK: {{\[}}[1 2 3]
        # CHECK: {{\[}}4 5 6]]
        print(np.array(attr))


# CHECK-LABEL: TEST: testGetDenseElementsUI32
@run
def testGetDenseElementsUI32():
    with Context():
        array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint32)
        attr = DenseElementsAttr.get(array, signless=False)
        # CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xui32>
        print(attr)
        # CHECK: {{\[}}[1 2 3]
        # CHECK: {{\[}}4 5 6]]
        print(np.array(attr))


## 64bit integer arrays
# CHECK-LABEL: TEST: testGetDenseElementsI64Signless
@run
def testGetDenseElementsI64Signless():
    with Context():
        array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int64)
        attr = DenseElementsAttr.get(array)
        # CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xi64>
        print(attr)
        # CHECK: {{\[}}[1 2 3]
        # CHECK: {{\[}}4 5 6]]
        print(np.array(attr))


# CHECK-LABEL: TEST: testGetDenseElementsUI64Signless
@run
def testGetDenseElementsUI64Signless():
    with Context():
        array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint64)
        attr = DenseElementsAttr.get(array)
        # CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xi64>
        print(attr)
        # CHECK: {{\[}}[1 2 3]
        # CHECK: {{\[}}4 5 6]]
        print(np.array(attr))


# CHECK-LABEL: TEST: testGetDenseElementsI64
@run
def testGetDenseElementsI64():
    with Context():
        array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int64)
        attr = DenseElementsAttr.get(array, signless=False)
        # CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xsi64>
        print(attr)
        # CHECK: {{\[}}[1 2 3]
        # CHECK: {{\[}}4 5 6]]
        print(np.array(attr))


# CHECK-LABEL: TEST: testGetDenseElementsUI64
@run
def testGetDenseElementsUI64():
    with Context():
        array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint64)
        attr = DenseElementsAttr.get(array, signless=False)
        # CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xui64>
        print(attr)
        # CHECK: {{\[}}[1 2 3]
        # CHECK: {{\[}}4 5 6]]
        print(np.array(attr))


# CHECK-LABEL: TEST: testGetDenseElementsIndex
@run
def testGetDenseElementsIndex():
    with Context(), Location.unknown():
        idx_type = IndexType.get()
        array = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int64)
        attr = DenseElementsAttr.get(array, type=idx_type)
        # CHECK: dense<{{\[}}[1, 2, 3], [4, 5, 6]]> : tensor<2x3xindex>
        print(attr)
        arr = np.array(attr)
        # CHECK: {{\[}}[1 2 3]
        # CHECK: {{\[}}4 5 6]]
        print(arr)
        # CHECK: True
        print(arr.dtype == np.int64)