File: python_test_ops.td

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (184 lines) | stat: -rw-r--r-- 6,741 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
//===-- python_test_ops.td - Python test Op definitions ----*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef PYTHON_TEST_OPS
#define PYTHON_TEST_OPS

include "mlir/IR/AttrTypeBase.td"
include "mlir/IR/OpBase.td"
include "mlir/Interfaces/InferTypeOpInterface.td"

def Python_Test_Dialect : Dialect {
  let name = "python_test";
  let cppNamespace = "python_test";

  let useDefaultTypePrinterParser = 1;
  let useDefaultAttributePrinterParser = 1;
}

class TestType<string name, string typeMnemonic>
    : TypeDef<Python_Test_Dialect, name> {
  let mnemonic = typeMnemonic;
}

class TestAttr<string name, string attrMnemonic>
    : AttrDef<Python_Test_Dialect, name> {
  let mnemonic = attrMnemonic;
}

class TestOp<string mnemonic, list<Trait> traits = []>
    : Op<Python_Test_Dialect, mnemonic, traits>;

//===----------------------------------------------------------------------===//
// Type definitions.
//===----------------------------------------------------------------------===//

def TestType : TestType<"TestType", "test_type">;

//===----------------------------------------------------------------------===//
// Attribute definitions.
//===----------------------------------------------------------------------===//

def TestAttr : TestAttr<"TestAttr", "test_attr">;

//===----------------------------------------------------------------------===//
// Operation definitions.
//===----------------------------------------------------------------------===//

def AttributedOp : TestOp<"attributed_op"> {
  let arguments = (ins I32Attr:$mandatory_i32,
                   OptionalAttr<I32Attr>:$optional_i32,
                   UnitAttr:$unit);
}

def AttributesOp : TestOp<"attributes_op"> {
  let arguments = (ins BoolAttr:$x_bool,
                   I16Attr: $x_i16,
                   I32Attr: $x_i32,
                   I64Attr: $x_i64,
                   SI16Attr: $x_si16,
                   SI32Attr: $x_si32,
                   F32Attr: $x_f32,
                   F64Attr: $x_f64,
                   StrAttr: $x_str,
                   I32ArrayAttr: $x_i32_array,
                   I64ArrayAttr: $x_i64_array,
                   F32ArrayAttr: $x_f32_array,
                   F64ArrayAttr: $x_f64_array,
                   DenseI64ArrayAttr: $x_i64_dense);
}

def PropertyOp : TestOp<"property_op"> {
  let arguments = (ins I32Attr:$property,
                   I32:$idx);
}

def DummyOp : TestOp<"dummy_op"> {
}

def InferResultsOp : TestOp<"infer_results_op", [InferTypeOpInterface]> {
  let arguments = (ins);
  let results = (outs AnyInteger:$single, AnyInteger:$doubled);

  let extraClassDeclaration = [{
    static ::mlir::LogicalResult inferReturnTypes(
      ::mlir::MLIRContext *context, ::std::optional<::mlir::Location> location,
      ::mlir::ValueRange operands, ::mlir::DictionaryAttr attributes,
      ::mlir::OpaqueProperties,
      ::mlir::RegionRange regions,
      ::llvm::SmallVectorImpl<::mlir::Type> &inferredReturnTypes) {
      ::mlir::Builder b(context);
      inferredReturnTypes.push_back(b.getI32Type());
      inferredReturnTypes.push_back(b.getI64Type());
      return ::mlir::success();
    }
  }];
}

def I32OrF32 : TypeConstraint<Or<[I32.predicate, F32.predicate]>,
                                 "i32 or f32">;

def InferResultsVariadicInputsOp : TestOp<"infer_results_variadic_inputs_op",
    [InferTypeOpInterface, AttrSizedOperandSegments]> {
  let arguments = (ins Optional<I64>:$single, Optional<I64>:$doubled);
  let results = (outs I32OrF32:$res);

  let extraClassDeclaration = [{
    static ::mlir::LogicalResult inferReturnTypes(
      ::mlir::MLIRContext *context, ::std::optional<::mlir::Location> location,
      ::mlir::ValueRange operands, ::mlir::DictionaryAttr attributes,
      ::mlir::OpaqueProperties,
      ::mlir::RegionRange regions,
      ::llvm::SmallVectorImpl<::mlir::Type> &inferredReturnTypes) {
      ::mlir::Builder b(context);
      if (operands.size() == 1)
          inferredReturnTypes.push_back(b.getI32Type());
      else if (operands.size() == 2)
          inferredReturnTypes.push_back(b.getF32Type());
      return ::mlir::success();
    }
  }];
}

// If all result types are buildable, the InferTypeOpInterface is implied and is
// autogenerated by C++ ODS.
def InferResultsImpliedOp : TestOp<"infer_results_implied_op"> {
  let results = (outs I32:$integer, F64:$flt, Index:$index);
}

def InferShapedTypeComponentsOp : TestOp<"infer_shaped_type_components_op",
  [DeclareOpInterfaceMethods<InferShapedTypeOpInterface,
                             ["inferReturnTypeComponents"]>]> {
  let arguments = (ins AnyTensor:$operand);
  let results = (outs AnyTensor:$result);

  let extraClassDefinition = [{
    ::mlir::LogicalResult $cppClass::inferReturnTypeComponents(
      ::mlir::MLIRContext *context, ::std::optional<::mlir::Location> location,
      ::mlir::ValueShapeRange operands, ::mlir::DictionaryAttr attributes,
      ::mlir::OpaqueProperties properties, ::mlir::RegionRange regions,
      ::llvm::SmallVectorImpl<
        ::mlir::ShapedTypeComponents>& inferredShapedTypeComponents) {
      $cppClass::Adaptor adaptor(operands, attributes, properties, regions);
      auto operandType =
          ::llvm::cast<::mlir::ShapedType>(adaptor.getOperand().getType());
      if (operandType.hasRank()) {
        inferredShapedTypeComponents.emplace_back(operandType.getShape(),
            operandType.getElementType());
      } else {
        inferredShapedTypeComponents.emplace_back(operandType.getElementType());
      }
      return ::mlir::success();
    }
  }];
}

def SameOperandAndResultTypeOp : TestOp<"same_operand_and_result_type_op",
                                        [SameOperandsAndResultType]> {
  let arguments = (ins Variadic<AnyType>);
  let results = (outs AnyType:$one, AnyType:$two);
}

def FirstAttrDeriveTypeAttrOp : TestOp<"first_attr_derive_type_attr_op",
                               [FirstAttrDerivedResultType]> {
  let arguments = (ins AnyType:$input, TypeAttr:$type);
  let results = (outs AnyType:$one, AnyType:$two);
}

def FirstAttrDeriveAttrOp : TestOp<"first_attr_derive_attr_op",
                               [FirstAttrDerivedResultType]> {
  let arguments = (ins AnyAttr:$iattr);
  let results = (outs AnyType:$one, AnyType:$two, AnyType:$three);
}

def OptionalOperandOp : TestOp<"optional_operand_op"> {
  let arguments = (ins Optional<AnyType>:$input);
  let results = (outs I32:$result);
}

#endif // PYTHON_TEST_OPS