1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
|
//===- mlir-linalg-ods-yaml-gen.cpp - Linalg ODS generation from yaml ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements an ODS (and C++) generator from a YAML form
// derived from the mathematical expression of linalg named ops. Typically a
// math oriented DSL will be used to export the essential representation to
// this form, and maintaining the SOT at the math level (versus recreating it
// in MLIR) is deemed to have systemic value.
//
//===----------------------------------------------------------------------===//
#include "mlir/AsmParser/AsmParser.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/Support/FileUtilities.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/Support/YAMLTraits.h"
#include <optional>
using namespace mlir;
using llvm::yaml::Input;
using llvm::yaml::MappingTraits;
using llvm::yaml::ScalarEnumerationTraits;
using llvm::yaml::ScalarTraits;
#define DEBUG_TYPE "linalg-ods-gen"
//===----------------------------------------------------------------------===//
// Mapping structs (correspond to data types in the YAML description).
// TODO: Since this is a schema/part of the contract, it should be moved to
// a real header.
//===----------------------------------------------------------------------===//
namespace {
struct LinalgYAMLContext {
MLIRContext *mlirContext;
};
struct LinalgOpMetadata {
std::string name;
std::string cppClassName;
std::optional<std::string> doc;
SmallVector<std::string> implements;
SmallVector<std::string> defines;
};
struct SerializedAffineMap {
AffineMapAttr affineMapAttr;
AffineMap affineMap() { return affineMapAttr.getValue(); }
};
enum class LinalgOperandDefKind {
InputTensor,
Scalar,
OutputTensor,
IndexAttr,
UnaryFnAttr,
BinaryFnAttr,
TypeFnAttr
};
struct LinalgOperandDef {
std::string name;
LinalgOperandDefKind kind;
std::optional<std::string> typeVar;
std::optional<SerializedAffineMap> shapeMap;
std::optional<SerializedAffineMap> indexAttrMap;
std::optional<SmallVector<int64_t>> defaultIndices;
std::optional<std::string> defaultFn;
};
enum class LinalgIteratorTypeDef {
parallel,
reduction,
};
struct LinalgIndexingMapsConfig {
std::optional<SmallVector<SerializedAffineMap>> staticIndexingMaps;
};
struct ScalarExpression;
enum class ScalarFnKind { Unary, Binary, Type };
struct ScalarFn {
ScalarFnKind kind;
std::optional<std::string> fnName;
std::optional<std::string> attrName;
std::optional<std::string> typeVar;
// NOTE: This must be of arity 1, but to break the self-referential cycle,
// we use a heap allocated vector.
std::vector<ScalarExpression> operands;
};
struct ScalarExpression {
std::optional<std::string> arg;
std::optional<std::string> constant;
std::optional<int64_t> index;
std::optional<ScalarFn> scalarFn;
};
struct ScalarAssign {
std::string arg;
ScalarExpression value;
};
struct LinalgStructuredOpConfig {
SmallVector<LinalgOperandDef> args;
LinalgIndexingMapsConfig indexingMaps;
SmallVector<LinalgIteratorTypeDef> iteratorTypes;
std::vector<ScalarAssign> assignments;
};
struct LinalgOpConfig {
std::optional<LinalgOpMetadata> metadata;
std::optional<LinalgStructuredOpConfig> structuredOp;
};
} // namespace
//===----------------------------------------------------------------------===//
// Mapping traits.
//===----------------------------------------------------------------------===//
LLVM_YAML_IS_SEQUENCE_VECTOR(LinalgOperandDef)
LLVM_YAML_IS_SEQUENCE_VECTOR(SerializedAffineMap)
LLVM_YAML_IS_SEQUENCE_VECTOR(LinalgIteratorTypeDef)
LLVM_YAML_IS_SEQUENCE_VECTOR(ScalarAssign)
LLVM_YAML_IS_SEQUENCE_VECTOR(ScalarExpression)
LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(LinalgOpConfig)
namespace llvm {
namespace yaml {
/// Top-level type containing op metadata and one of a concrete op type.
/// Currently, the only defined op type is `structured_op` (maps to
/// `LinalgStructuredOpConfig`).
template <>
struct MappingTraits<LinalgOpConfig> {
static void mapping(IO &io, LinalgOpConfig &info) {
io.mapOptional("metadata", info.metadata);
io.mapOptional("structured_op", info.structuredOp);
}
};
/// A structured op models (at most) a single contraction by modeling
/// - A list of named arguments (`LinalgOperandDef`), which can be inputs,
/// outputs, or index attributes.
/// - List of indexing maps (see `LinalgIndexingMaps`).
/// - Iterator types (see `LinalgIteratorTypeDef`).
/// - List of scalar level assignment (see `ScalarAssign`).
template <>
struct MappingTraits<LinalgStructuredOpConfig> {
static void mapping(IO &io, LinalgStructuredOpConfig &info) {
io.mapRequired("args", info.args);
io.mapRequired("indexing_maps", info.indexingMaps);
io.mapRequired("iterator_types", info.iteratorTypes);
io.mapRequired("assignments", info.assignments);
}
};
/// Maps a named tensor, scalar or attribute argument to an operation,
/// consisting of:
/// - `name`: Must be unique within the operation.
/// - `usage`: How the argument is used (input, output, attribute, etc).
/// - `type_var`: The symbolic type variable that binds to the element or self
/// type of the tensor or scalar argument, respectively.
/// - `shape_map`: An optional AffineMap from all op symbols to the shape of
/// the argument. Only tensor arguments have a `shape_map`. Each shape must
/// be normalized over the same list of symbols and have no dimension
/// inputs.
/// - `index_attr_map`: An optional AffineMap from all op symbols to the
/// index attribute symbols. During op creation these symbols are replaced
/// by the corresponding `name` index attribue values. Only index attribute
/// arguments have an `index_attr_map`.
/// - `default_indices`: An optional default initialization for index
/// attribute arguments.
/// - `default_fn`: An optional default initialization for function attribute
/// arguments.
template <>
struct MappingTraits<LinalgOperandDef> {
static void mapping(IO &io, LinalgOperandDef &info) {
io.mapRequired("name", info.name);
io.mapRequired("kind", info.kind);
io.mapOptional("type_var", info.typeVar);
io.mapOptional("shape_map", info.shapeMap);
io.mapOptional("index_attr_map", info.indexAttrMap);
io.mapOptional("default_indices", info.defaultIndices);
io.mapOptional("default_fn", info.defaultFn);
}
};
/// Usage enum for a named argument.
template <>
struct ScalarEnumerationTraits<LinalgOperandDefKind> {
static void enumeration(IO &io, LinalgOperandDefKind &value) {
io.enumCase(value, "input_tensor", LinalgOperandDefKind::InputTensor);
io.enumCase(value, "scalar", LinalgOperandDefKind::Scalar);
io.enumCase(value, "output_tensor", LinalgOperandDefKind::OutputTensor);
io.enumCase(value, "index_attr", LinalgOperandDefKind::IndexAttr);
io.enumCase(value, "unary_fn_attr", LinalgOperandDefKind::UnaryFnAttr);
io.enumCase(value, "binary_fn_attr", LinalgOperandDefKind::BinaryFnAttr);
io.enumCase(value, "type_fn_attr", LinalgOperandDefKind::TypeFnAttr);
}
};
/// Iterator type enum.
template <>
struct ScalarEnumerationTraits<LinalgIteratorTypeDef> {
static void enumeration(IO &io, LinalgIteratorTypeDef &value) {
io.enumCase(value, "parallel", LinalgIteratorTypeDef::parallel);
io.enumCase(value, "reduction", LinalgIteratorTypeDef::reduction);
}
};
/// Metadata about the op (name, C++ name, and documentation).
template <>
struct MappingTraits<LinalgOpMetadata> {
static void mapping(IO &io, LinalgOpMetadata &info) {
io.mapRequired("name", info.name);
io.mapRequired("cpp_class_name", info.cppClassName);
io.mapOptional("doc", info.doc);
io.mapOptional("implements", info.implements);
io.mapOptional("defines", info.defines);
}
};
/// How the ops indexing maps are produced. Must be one of:
/// - static_indexing_maps: A static list of AffineMaps, possibly with
/// some symbols that bind to attributes of the op. Each indexing map must
/// be normalized over the same list of dimensions, and its symbols must
/// match the symbols for argument shapes.
template <>
struct MappingTraits<LinalgIndexingMapsConfig> {
static void mapping(IO &io, LinalgIndexingMapsConfig &info) {
io.mapOptional("static_indexing_maps", info.staticIndexingMaps);
}
};
/// Models an assignment to a named output.
/// - The `arg` name must match a named output.
/// - The `value` is a scalar expression for computing the value to
/// assign (see `ScalarExpression`).
template <>
struct MappingTraits<ScalarAssign> {
static void mapping(IO &io, ScalarAssign &info) {
io.mapRequired("arg", info.arg);
io.mapRequired("value", info.value);
}
};
/// A scalar expression (RHS of an assignment). Must be one of:
/// - `scalar_arg`: An operation argument.
/// - `scalar_const`: A constant definition.
/// - `scalar_index`: An iteration index.
/// - `scalar_fn`: A named function (see `ScalarFn`).
template <>
struct MappingTraits<ScalarExpression> {
static void mapping(IO &io, ScalarExpression &info) {
io.mapOptional("scalar_arg", info.arg);
io.mapOptional("scalar_const", info.constant);
io.mapOptional("scalar_index", info.index);
io.mapOptional("scalar_fn", info.scalarFn);
}
};
/// Scalar function kind enum.
template <>
struct ScalarEnumerationTraits<ScalarFnKind> {
static void enumeration(IO &io, ScalarFnKind &value) {
io.enumCase(value, "unary", ScalarFnKind::Unary);
io.enumCase(value, "binary", ScalarFnKind::Binary);
io.enumCase(value, "type", ScalarFnKind::Type);
}
};
/// A scalar expression that evaluates a named function.
/// Functions are generally "math" level and type polymorphic. Builtin
/// functions include:
/// - `add(lhs, rhs)`
/// - `mul(lhs, rhs)`
template <>
struct MappingTraits<ScalarFn> {
static void mapping(IO &io, ScalarFn &info) {
io.mapRequired("kind", info.kind);
io.mapOptional("fn_name", info.fnName);
io.mapOptional("attr_name", info.attrName);
io.mapOptional("type_var", info.typeVar);
io.mapRequired("operands", info.operands);
}
};
/// Helper mapping which accesses an AffineMapAttr as a serialized string of
/// the same.
template <>
struct ScalarTraits<SerializedAffineMap> {
static void output(const SerializedAffineMap &value, void *rawYamlContext,
raw_ostream &out) {
assert(value.affineMapAttr);
value.affineMapAttr.print(out);
}
static StringRef input(StringRef scalar, void *rawYamlContext,
SerializedAffineMap &value) {
assert(rawYamlContext);
auto *yamlContext = static_cast<LinalgYAMLContext *>(rawYamlContext);
if (auto attr = dyn_cast_or_null<AffineMapAttr>(
mlir::parseAttribute(scalar, yamlContext->mlirContext)))
value.affineMapAttr = attr;
else if (!value.affineMapAttr || !isa<AffineMapAttr>(value.affineMapAttr))
return "could not parse as an affine map attribute";
return StringRef();
}
static QuotingType mustQuote(StringRef) { return QuotingType::None; }
};
} // namespace yaml
} // namespace llvm
namespace {
//===----------------------------------------------------------------------===//
// Generation utilities
//===----------------------------------------------------------------------===//
class GenerationContext {
public:
GenerationContext(MLIRContext *context, raw_ostream *odsOut,
raw_ostream *defnOut)
: context(context), loc(UnknownLoc::get(context)), odsOut(odsOut),
defnOut(defnOut) {}
MLIRContext *getContext() { return context; }
void setLoc(Location loc) { this->loc = loc; }
Location getLoc() { return loc; }
bool shouldGenerateOds() { return odsOut; }
bool shouldGenerateDefns() { return defnOut; }
raw_ostream &odss() {
assert(odsOut && "ODS stream not defined");
return *odsOut;
}
raw_ostream &defns() {
assert(defnOut && "Definition stream not defined");
return *defnOut;
}
private:
MLIRContext *context;
Location loc;
raw_ostream *odsOut;
raw_ostream *defnOut;
};
} // namespace
static std::string generateCppExpression(SerializedAffineMap self,
StringRef contextName) {
std::string printedStr;
llvm::raw_string_ostream printedSs(printedStr);
self.affineMapAttr.print(printedSs);
printedSs.flush();
static const char exprFormat[] =
R"FMT(llvm::cast<AffineMapAttr>(mlir::parseAttribute("{0}", {1})).getValue())FMT";
return llvm::formatv(exprFormat, printedStr, contextName);
}
template <typename Container>
static std::string interleaveToString(Container &container,
StringRef separator) {
std::string result;
llvm::raw_string_ostream ss(result);
llvm::interleave(container, ss, separator);
ss.flush();
return result;
}
static std::optional<int>
findTensorDefArgIndex(StringRef name, SmallVectorImpl<LinalgOperandDef> &args) {
for (const auto &it : llvm::enumerate(args)) {
if (it.value().name == name)
return it.index();
}
return std::nullopt;
}
// Try to map the TypeVar to a predefined or an argument type.
static std::optional<std::string>
findTypeValue(StringRef typeVar, SmallVectorImpl<LinalgOperandDef> &args) {
// Handle all predefined types.
if (typeVar == "I32")
return std::string("helper.getIntegerType(32)");
if (typeVar == "I64")
return std::string("helper.getIntegerType(64)");
if (typeVar == "F32")
return std::string("helper.getFloat32Type()");
if (typeVar == "F64")
return std::string("helper.getFloat64Type()");
// Search all argument types.
for (const auto &it : llvm::enumerate(args)) {
if (it.value().kind != LinalgOperandDefKind::InputTensor &&
it.value().kind != LinalgOperandDefKind::Scalar &&
it.value().kind != LinalgOperandDefKind::OutputTensor)
continue;
if (*it.value().typeVar == typeVar)
return llvm::formatv("block.getArgument({0}).getType()", it.index())
.str();
}
return std::nullopt;
}
static ScalarAssign *findAssignment(StringRef name,
std::vector<ScalarAssign> &assignments) {
for (auto &assign : assignments) {
if (assign.arg == name)
return &assign;
}
return nullptr;
}
// Return true if the operand is a function attribute.
static bool isFunctionAttribute(LinalgOperandDefKind kind) {
return kind == LinalgOperandDefKind::UnaryFnAttr ||
kind == LinalgOperandDefKind::BinaryFnAttr ||
kind == LinalgOperandDefKind::TypeFnAttr;
}
// Return true if the operand is an attribute.
static bool isAttribute(LinalgOperandDefKind kind) {
return kind == LinalgOperandDefKind::IndexAttr || isFunctionAttribute(kind);
}
// Get the enum name for the given operand kind.
std::string convertOperandKindToEnumName(LinalgOperandDefKind kind) {
switch (kind) {
case LinalgOperandDefKind::UnaryFnAttr:
return std::string("UnaryFn");
case LinalgOperandDefKind::BinaryFnAttr:
return std::string("BinaryFn");
case LinalgOperandDefKind::TypeFnAttr:
return std::string("TypeFn");
default:
break;
}
llvm_unreachable("unsupported function attribute kind");
}
// Get the enum name for the given function kind.
std::string convertFunctionKindToEnumName(ScalarFnKind kind) {
switch (kind) {
case ScalarFnKind::Unary:
return std::string("UnaryFn");
case ScalarFnKind::Binary:
return std::string("BinaryFn");
case ScalarFnKind::Type:
return std::string("TypeFn");
}
llvm_unreachable("unsupported function kind");
}
//===----------------------------------------------------------------------===//
// Templates
//===----------------------------------------------------------------------===//
// A single line banner format. Parameters:
// {0}: Single line comment
static const char bannerFormat[] = R"FMT(
//===----------------------------------------------------------------------===//
// {0}
//===----------------------------------------------------------------------===//
)FMT";
//===----------------------------------------------------------------------===//
// Named generic op generation.
// These ops map at most a single contraction that complies with the limitations
// of a linalg.generic.
//===----------------------------------------------------------------------===//
// Template for Linalg named ops' ODS definitions. Parameters:
// {0}: ODS/C++ op name
// {1}: assembly op mnemonic
// {2}: op interface list
// {3}: documentation (summary + description)
// {4}: op attribute list
// {5}: builder methods taking standalone attribute parameters
// {6}: additional method defintions
// {7}: additional methods for attributes used by indexing maps
static const char structuredOpOdsHeaderFormat[] = R"FMT(
//===----------------------------------------------------------------------===//
// Op definition for {0}
//===----------------------------------------------------------------------===//
def {0} : LinalgStructuredBase_Op<"{1}", !listconcat([AttrSizedOperandSegments],
/*extraInterfaces=*/[{2}])> {
{3}
let arguments = (ins
Variadic<AnyType>:$inputs,
Variadic<AnyShaped>:$outputs{4}
);
let results = (outs Variadic<AnyRankedTensor>:$result_tensors);
let regions = (region AnyRegion:$region);
let skipDefaultBuilders = 1;
let builders = [
OpBuilder<
(ins "ValueRange":$inputs, "ValueRange":$outputs,
CArg<"ArrayRef<NamedAttribute>", "{{}">:$attributes),
[{{
buildStructuredOp($_builder, $_state, std::nullopt, inputs, outputs,
attributes, {0}::getRegionBuilder());
}]>,
OpBuilder<
(ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
"ValueRange":$outputs,
CArg<"ArrayRef<NamedAttribute>", "{{}">:$attributes),
[{{
buildStructuredOp($_builder, $_state, resultTensorTypes,
inputs, outputs, attributes, {0}::getRegionBuilder());
}]>,
OpBuilder<
(ins "TypeRange":$resultTensorTypes, "ValueRange":$operands,
CArg<"ArrayRef<NamedAttribute>", "{{}">:$attributes),
[{{
$_state.addOperands(operands);
$_state.addAttributes(attributes);
$_state.addTypes(resultTensorTypes);
(void)$_state.addRegion();
}]>
{5}
];
let hasCustomAssemblyFormat = 1;
let hasFolder = 1;
{6}
let extraClassDeclaration = structuredOpsBaseDecls # [{{
// Auto-generated.
SmallVector<utils::IteratorType> getIteratorTypesArray();
ArrayAttr getIndexingMaps();
static void regionBuilder(ImplicitLocOpBuilder &b,
Block &block, ArrayRef<NamedAttribute> attrs);
static std::function<void(ImplicitLocOpBuilder &,
Block &, ArrayRef<NamedAttribute>)>
getRegionBuilder() {{
return regionBuilder;
}
std::pair<int64_t, int64_t> getDpsInitsPositionRange() {{
int64_t getNumOperands = this->getNumOperands();
return {{getNumOperands - 1, getNumOperands};
}
// Generic methods.
static unsigned getNumRegionArgs();
std::string getLibraryCallName();
{7}
}];
}
)FMT";
// Builder method taking attribute parameters. Parameters:
// {0}: Class name
// {1}: Comma interleaved attribute parameters
// {2}: Attribute initialization
static const char structuredOpBuilderFormat[] = R"FMT(
, OpBuilder<
(ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
"ValueRange":$outputs, {1},
CArg<"ArrayRef<NamedAttribute>", "{{}">:$attributes),
[{{
{2}
buildStructuredOp($_builder, $_state, resultTensorTypes, inputs, outputs,
attributes, {0}::getRegionBuilder());
}]>
)FMT";
// The getIteratorTypesArray() method for structured ops. Parameters:
// {0}: Class name
// {1}: Comma interleaved iterator type names.
static const char structuredOpIteratorTypesFormat[] =
R"FMT(
SmallVector<utils::IteratorType> {0}::getIteratorTypesArray() {{
return SmallVector<utils::IteratorType>{{ {1} };
}
)FMT";
// The getIteratorTypesArray() method for rank polymorphic structured ops.
// Parameters:
// {0}: Class name
static const char rankPolyStructuredOpIteratorTypesFormat[] =
R"FMT(
SmallVector<utils::IteratorType> {0}::getIteratorTypesArray() {{
int64_t rank = getRank(getDpsInitOperand(0));
return SmallVector<utils::IteratorType>(rank, utils::IteratorType::parallel);
}
)FMT";
// The indexing_maps() method for structured ops. Parameters:
// {0}: Class name
// {1}: Comma-separated list of dimension variable names.
// {2}: Statements
static const char structuredOpIndexingMapsFormat[] = R"FMT(
ArrayAttr {0}::getIndexingMaps() {{
static const char memoizeAttr[] = "linalg.memoized_indexing_maps";
ArrayAttr cached = getOperation()->getAttrOfType<ArrayAttr>(memoizeAttr);
if (cached)
return cached;
MLIRContext *context = getContext();
auto symbolBindings = getSymbolBindings(*this);
SmallVector<AffineMap> maps;
{2}
cached = Builder(context).getAffineMapArrayAttr(maps);
getOperation()->setAttr(memoizeAttr, cached);
return cached;
}
)FMT";
// The indexing_maps() method for rank polymorphic structured ops. Parameters:
// {0}: Class name
static const char rankPolyStructuredOpIndexingMapsFormat[] = R"FMT(
ArrayAttr {0}::getIndexingMaps() {{
MLIRContext *context = getContext();
AffineMap scalarMap = AffineMap::get(getNumParallelLoops(), 0, context);
AffineMap tensorMap = AffineMap::getMultiDimIdentityMap(
getNumParallelLoops(), context);
SmallVector<AffineMap> indexingMaps;
for (OpOperand &opOperand : getOperation()->getOpOperands())
indexingMaps.push_back(getRank(&opOperand) == 0 ? scalarMap : tensorMap);
return Builder(getContext()).getAffineMapArrayAttr(indexingMaps);
}
)FMT";
// Implementations of fold and getEffects.
// Parameters:
// {0}: Class name
const char structuredOpFoldersFormat[] = R"FMT(
LogicalResult {0}::fold(FoldAdaptor,
SmallVectorImpl<OpFoldResult> &) {{
return memref::foldMemRefCast(*this);
}
void {0}::getEffects(SmallVectorImpl<
SideEffects::EffectInstance<MemoryEffects::Effect> >&effects) {{
if (hasTensorSemantics()) return;
getGenericEffectsImpl(effects,
getOperation()->getResults(), getDpsInputOperands(), getDpsInitOperands());
}
)FMT";
// Implementation of parse/print.
// Parameters:
// {0}: Class name
static const char structuredOpParserFormat[] = R"FMT(
ParseResult {0}::parse(OpAsmParser &parser, OperationState &result) {{
return ::parseNamedStructuredOp(parser, result,
{0}::getNumRegionArgs(), {0}::getRegionBuilder());
}
void {0}::print(OpAsmPrinter &p) {{
::printNamedStructuredOp(p, getOperation(), getInputs(), getOutputs());
}
)FMT";
static LogicalResult generateNamedGenericOpOds(LinalgOpConfig &opConfig,
GenerationContext &genContext) {
if (!genContext.shouldGenerateOds())
return success();
raw_ostream &os = genContext.odss();
std::string interfaceNameList;
std::string attrList;
std::string attrMethods;
std::string attrBuilder;
std::string doc;
if (opConfig.metadata->doc) {
static const char structuredOpDocFmt[] = R"FMT(
let summary = [{ {0} }];
let description = [{
{1}
}];
)FMT";
StringRef summary, description;
std::tie(summary, description) =
StringRef(*opConfig.metadata->doc).trim().split('\n');
doc = llvm::formatv(structuredOpDocFmt, summary.trim(), description.trim());
}
interfaceNameList = interleaveToString(opConfig.metadata->implements, ", ");
std::string definitionList;
for (const std::string &definition : opConfig.metadata->defines) {
static const char definitionFmt[] = "let {0} = 1;\n";
definitionList.append(llvm::formatv(definitionFmt, definition));
}
if (llvm::any_of(opConfig.structuredOp->args, [](LinalgOperandDef &arg) {
return isAttribute(arg.kind);
})) {
SmallVector<std::string> attrDefs;
SmallVector<std::string> attrParams;
SmallVector<std::string> attrStmts;
for (LinalgOperandDef &arg : opConfig.structuredOp->args) {
static const char paramFmt[] = "\"Attribute\":${0}";
static const char stmtFmt[] = "$_state.addAttribute(\"{0}\", {0});";
// Add the type conversion attributes to the op definition and builders.
if (isFunctionAttribute(arg.kind)) {
assert(arg.defaultFn);
std::string enumName = convertOperandKindToEnumName(arg.kind);
static const char typeFmt[] = "{0}::{1}";
static const char defFmt[] =
"DefaultValuedOptionalAttr<{0}, \"{1}\">:${2}";
attrDefs.push_back(llvm::formatv(
defFmt, llvm::formatv("{0}Attr", enumName),
llvm::formatv(typeFmt, enumName, arg.defaultFn), arg.name));
attrParams.push_back(llvm::formatv(paramFmt, arg.name));
attrStmts.push_back(llvm::formatv(stmtFmt, arg.name));
}
// Add the index attributes to the op definition and builders.
if (arg.kind == LinalgOperandDefKind::IndexAttr) {
assert(arg.indexAttrMap.has_value());
assert(arg.defaultIndices.has_value());
size_t size = arg.indexAttrMap->affineMap().getNumResults();
assert(arg.defaultIndices->size() == size);
static const char typeFmt[] = "RankedI64ElementsAttr<[{0}]>";
static const char defFmt[] =
"DefaultValuedOptionalAttr<{0}, \"{ {1} }\">:${2}";
std::string defaultVals;
llvm::raw_string_ostream ss(defaultVals);
llvm::interleave(
*arg.defaultIndices, ss,
[&](int64_t val) { ss << "static_cast<int64_t>(" << val << ")"; },
", ");
attrDefs.push_back(llvm::formatv(defFmt, llvm::formatv(typeFmt, size),
ss.str(), arg.name));
attrParams.push_back(llvm::formatv(paramFmt, arg.name));
attrStmts.push_back(llvm::formatv(stmtFmt, arg.name));
}
}
if (llvm::any_of(opConfig.structuredOp->args, [](LinalgOperandDef &arg) {
return arg.kind == LinalgOperandDefKind::IndexAttr;
})) {
attrMethods = R"(
bool hasDynamicIndexingMaps();
LogicalResult verifyIndexingMapRequiredAttributes();
)";
}
attrList = ",\n" + llvm::join(attrDefs, ",\n");
attrBuilder = llvm::formatv(
structuredOpBuilderFormat, opConfig.metadata->cppClassName,
llvm::join(attrParams, ", "), llvm::join(attrStmts, "\n"));
}
os << llvm::formatv(structuredOpOdsHeaderFormat,
opConfig.metadata->cppClassName, opConfig.metadata->name,
interfaceNameList, doc, attrList, attrBuilder,
definitionList, attrMethods);
return success();
}
static LogicalResult
generateNamedGenericOpDefns(LinalgOpConfig &opConfig,
GenerationContext &genContext) {
if (!genContext.shouldGenerateDefns())
return success();
raw_ostream &os = genContext.defns();
StringRef className = opConfig.metadata->cppClassName;
// Implementation banner.
std::string bannerComment = llvm::formatv("Implementation of {0}", className);
os << llvm::formatv(bannerFormat, bannerComment);
// Compute the number of scalar and tensor arguments.
int64_t numOfArgs =
llvm::count_if(opConfig.structuredOp->args, [](LinalgOperandDef &arg) {
return arg.kind == LinalgOperandDefKind::InputTensor ||
arg.kind == LinalgOperandDefKind::Scalar ||
arg.kind == LinalgOperandDefKind::OutputTensor;
});
// An operation that accesses only scalars and scalar/rank zero tensors is
// rank polymorhpic. We implement rank polymorphism by generating different
// indexing maps and iterators that match the rank of the first output tensor.
// An operation is rank polymorphic if the iteration domain has rank zero.
bool isRankPolymorphic = opConfig.structuredOp->iteratorTypes.empty();
// Generate the iterator_types() method.
if (!isRankPolymorphic) {
std::string iteratorsStr;
llvm::raw_string_ostream ss(iteratorsStr);
llvm::interleaveComma(opConfig.structuredOp->iteratorTypes, ss,
[&](LinalgIteratorTypeDef it) {
switch (it) {
case LinalgIteratorTypeDef::parallel:
ss << "utils::IteratorType::parallel";
break;
case LinalgIteratorTypeDef::reduction:
ss << "utils::IteratorType::reduction";
break;
}
});
ss.flush();
os << llvm::formatv(structuredOpIteratorTypesFormat, className,
iteratorsStr);
} else {
os << llvm::formatv(rankPolyStructuredOpIteratorTypesFormat, className);
}
// Generating the getIndexingMaps() method.
if (auto &staticMaps =
opConfig.structuredOp->indexingMaps.staticIndexingMaps) {
if (staticMaps->empty())
return emitError(genContext.getLoc()) << "op has no indexing maps";
if (!isRankPolymorphic) {
AffineMap firstMap = staticMaps->front().affineMap();
// Symbol bindings.
{
// For each symbol, generate a declaration for it, either with an
// AffineSymbolExpr or an AffineConstantExpr (if the symbol derives from
// an attribute).
// TODO: Possibly lift into a top-level method.
static const char structuredOpSymbolBindingsFormat[] = R"FMT(
static SmallVector<AffineExpr> getSymbolBindings({0} self) {
MLIRContext *context = self.getContext();
SmallVector<AffineExpr> exprs;
{1}
return exprs;
}
)FMT";
unsigned symbolCount = firstMap.getNumSymbols();
SmallVector<std::string> symbolBindings;
for (unsigned i = 0; i < symbolCount; ++i) {
symbolBindings.push_back(llvm::formatv(
" exprs.push_back(getAffineSymbolExpr({0}, context));", i));
}
// Access an index attribute. Parameters:
// {0}: Attribute name
// {1}: Symbol position
// {2}: Attribute index
static const char structuredOpAccessAttrFormat[] = R"FMT(
int64_t cst{1} = self.get{0}().getValues<int64_t>()[{2}];
exprs.push_back(getAffineConstantExpr(cst{1}, context));
)FMT";
// Update all symbol bindings mapped to an attribute.
for (LinalgOperandDef &arg : opConfig.structuredOp->args) {
if (arg.kind != LinalgOperandDefKind::IndexAttr)
continue;
assert(arg.indexAttrMap);
for (auto [idx, result] :
llvm::enumerate(arg.indexAttrMap->affineMap().getResults())) {
if (auto symbol = result.dyn_cast<AffineSymbolExpr>()) {
std::string argName = arg.name;
argName[0] = toupper(argName[0]);
symbolBindings[symbol.getPosition()] =
llvm::formatv(structuredOpAccessAttrFormat, argName,
symbol.getPosition(), idx);
}
}
}
std::string symbolBindingsStr;
llvm::raw_string_ostream symbolBindingsSs(symbolBindingsStr);
llvm::interleave(symbolBindings, symbolBindingsSs, "\n");
symbolBindingsSs.flush();
os << llvm::formatv(structuredOpSymbolBindingsFormat, className,
symbolBindingsStr);
}
// Indexing maps.
{
unsigned dimCount = firstMap.getNumDims();
// Generate a comma-separated list of dim identifiers to be passed to
// bindDims, ensuring tht AffineExpr identifiers are bound in the right
// order to the proper AffineDimExpr.
// This results in vars in scope like: d0, d1, d2...
SmallVector<unsigned> dimIndices;
for (unsigned i = 0; i < dimCount; ++i)
dimIndices.push_back(i);
std::string dimIdentsStr;
llvm::raw_string_ostream dimIdentsSs(dimIdentsStr);
llvm::interleaveComma(dimIndices, dimIdentsSs,
[&](unsigned i) { dimIdentsSs << "d" << i; });
dimIdentsSs.flush();
// Statements to add and simplify each affine map.
SmallVector<std::string> stmts;
for (auto &indexingMap : *staticMaps) {
// TODO: Assert that dim and symbol count match the first.
stmts.push_back(
llvm::formatv("maps.push_back({0});",
generateCppExpression(indexingMap, "context")));
stmts.push_back(llvm::formatv(
"maps.back() = "
"simplifyAffineMap(maps.back().replaceDimsAndSymbols({{}, "
"symbolBindings, {0}, 0));",
dimCount));
}
// TODO: This needs to be memoized and/or converted to non-parser based
// C++ codegen prior to real use.
os << llvm::formatv(structuredOpIndexingMapsFormat, className,
dimIdentsStr, interleaveToString(stmts, "\n "));
}
} else {
os << llvm::formatv(rankPolyStructuredOpIndexingMapsFormat, className);
}
} else {
return emitError(genContext.getLoc())
<< "generating code for non static indexing maps not currently "
"supported";
}
// getNumRegionArgs()
{
// Generates a getNumRegionArgs() method. Parameters:
// {0}: Class name
// {1}: Number of region args
static const char structuredOpGetNumRegionArgsFormat[] = R"FMT(
unsigned {0}::getNumRegionArgs() {{ return {1}; }
)FMT";
os << llvm::formatv(structuredOpGetNumRegionArgsFormat, className,
numOfArgs);
}
// getLibraryCallName()
{
// Generates a getLibraryCallName method. Parameters:
// {0}: Class name
static const char structuredOpGetLibraryCallFormat[] = R"FMT(
std::string {0}::getLibraryCallName() {{
return generateLibraryCallName(getOperation());
}
)FMT";
os << llvm::formatv(structuredOpGetLibraryCallFormat, className);
}
// hasDynamicIndexingMaps() and verifyIndexingMapRequiredAttributes()
if (llvm::any_of(opConfig.structuredOp->args, [](LinalgOperandDef &arg) {
return arg.kind == LinalgOperandDefKind::IndexAttr;
})) {
std::vector<std::string> attrVerifications;
for (LinalgOperandDef &arg : opConfig.structuredOp->args) {
if (arg.kind != LinalgOperandDefKind::IndexAttr)
continue;
assert(arg.indexAttrMap);
// Verify index attribute. Paramters:
// {0}: Attribute name
// {1}: Attribute size
static const char attrFmt[] = R"FMT(
if (auto attr = op->getAttrOfType<DenseElementsAttr>("{0}")) {{
if (!attr.getType().getElementType().isInteger(64))
return op->emitError("incorrect element type for index attribute '{0}'");
if (attr.getType().getShape() != ArrayRef<int64_t>{{ {1} })
return op->emitError("incorrect shape for index attribute '{0}'");
}
)FMT";
attrVerifications.push_back(llvm::formatv(
attrFmt, arg.name, arg.indexAttrMap->affineMap().getNumResults()));
}
// Generates the verifyIndexingMapRequiredAttributes method. Parameters:
// {0}: Class name
// {1}: Attribute verification
static const char structuredOpVerifyIndexingMapRequiredAttributes[] = R"FMT(
bool {0}::hasDynamicIndexingMaps() {{ return true; }
LogicalResult {0}::verifyIndexingMapRequiredAttributes() {{
Operation *op = getOperation();
{1}
return success();
}
)FMT";
os << llvm::formatv(structuredOpVerifyIndexingMapRequiredAttributes,
className, llvm::join(attrVerifications, "\n"));
}
// regionBuilder()
{
// Generates a regionBuilder method. Parameters.
// {0}: Class name
// {1}: Number of args
// {2}: Attributes
// {3}: Statements
static const char structuredOpRegionBuilderFormat[] = R"FMT(
void {0}::regionBuilder(ImplicitLocOpBuilder &b,
Block &block, ArrayRef<NamedAttribute> attrs) {{
assert({1} > 0 && block.getNumArguments() == {1} &&
"{0} regionBuilder expects {1} (>=0) args");
RegionBuilderHelper helper(block.getArgument(0).getContext(), block);
SmallVector<Value> yields;
{2}
{3}
helper.yieldOutputs(yields);
}
)FMT";
auto &args = opConfig.structuredOp->args;
auto &assignments = opConfig.structuredOp->assignments;
size_t generatedAssignmentCount = 0;
int localCounter = 0;
SmallVector<std::string> attrs;
SmallVector<std::string> stmts;
for (LinalgOperandDef &arg : args) {
if (!isFunctionAttribute(arg.kind))
continue;
// Obtain the type function attribute values. Parameters.
// {0}: enum name
// {1}: attribute name
// {2}: default type function name
static const char attrDef[] = R"FMT(
{0} {1}Val = {0}::{2};
auto {1}Iter = llvm::find_if(attrs, [&](const NamedAttribute &attr) {{
return attr.getName() == "{1}"; });
if ({1}Iter != attrs.end()) {{
if (auto attr = llvm::dyn_cast<{0}Attr>({1}Iter->getValue()))
{1}Val = attr.getValue();
}
)FMT";
std::string enumName = convertOperandKindToEnumName(arg.kind);
attrs.push_back(
llvm::formatv(attrDef, enumName, arg.name, arg.defaultFn));
}
for (LinalgOperandDef &arg : args) {
if (arg.kind != LinalgOperandDefKind::OutputTensor)
continue;
// Find the assignment that correlates with the argument.
ScalarAssign *assignment = findAssignment(arg.name, assignments);
if (!assignment)
return emitError(genContext.getLoc())
<< "no assignment found for output argument " << arg.name;
++generatedAssignmentCount;
// Recursively generate the expression.
std::function<std::optional<std::string>(ScalarExpression &)>
generateExpression =
[&](ScalarExpression &expression) -> std::optional<std::string> {
if (expression.arg) {
// Argument reference.
std::optional<int> argIndex =
findTensorDefArgIndex(*expression.arg, args);
if (!argIndex) {
emitError(genContext.getLoc())
<< "scalar argument not defined on the op: " << *expression.arg;
return std::nullopt;
}
return std::string(
llvm::formatv("block.getArgument({0})", *argIndex));
}
if (expression.constant) {
std::string cppIdent = llvm::formatv("value{0}", ++localCounter);
stmts.push_back(
llvm::formatv(R"FMT(Value {0} = helper.constant("{1}");)FMT",
cppIdent, expression.constant));
return cppIdent;
}
if (expression.index) {
// Access an iteration index.
std::string cppIdent = llvm::formatv("value{0}", ++localCounter);
stmts.push_back(llvm::formatv("Value {0} = helper.index({1});",
cppIdent, *expression.index));
return cppIdent;
}
if (expression.scalarFn) {
std::string enumName =
convertFunctionKindToEnumName(expression.scalarFn->kind);
// Get the function or attribute name.
assert(expression.scalarFn->fnName || expression.scalarFn->attrName);
std::string funcType;
if (expression.scalarFn->fnName) {
funcType = llvm::formatv("{0}::{1}", enumName,
*expression.scalarFn->fnName);
}
if (expression.scalarFn->attrName) {
if (llvm::none_of(args, [&](LinalgOperandDef &arg) {
return isFunctionAttribute(arg.kind) &&
arg.name == *expression.scalarFn->attrName;
})) {
emitError(genContext.getLoc()) << "missing function attribute "
<< *expression.scalarFn->attrName;
}
funcType = llvm::formatv("{0}Val", *expression.scalarFn->attrName);
}
assert(!funcType.empty());
// Add the optional type parameter to the operands.
SmallVector<std::string> operandCppValues;
if (expression.scalarFn->kind == ScalarFnKind::Type) {
assert(expression.scalarFn->typeVar.has_value());
std::optional<std::string> typeCppValue =
findTypeValue(*expression.scalarFn->typeVar, args);
if (!typeCppValue) {
emitError(genContext.getLoc())
<< "type variable " << *expression.scalarFn->typeVar
<< ", used in a type conversion, must map to a predefined or "
<< "an argument type but it does not";
return std::nullopt;
}
operandCppValues.push_back(*typeCppValue);
}
// Collect the scalar operands.
for (ScalarExpression &operand : expression.scalarFn->operands) {
auto operandCppValue = generateExpression(operand);
if (!operandCppValue)
return std::nullopt;
operandCppValues.push_back(*operandCppValue);
}
// Call the function builder.
std::string cppIdent = llvm::formatv("value{0}", ++localCounter);
stmts.push_back(llvm::formatv(
"Value {0} = helper.build{1}({2}, {3});", cppIdent, enumName,
funcType, interleaveToString(operandCppValues, ", ")));
return cppIdent;
}
emitError(genContext.getLoc()) << "unknown ScalarExpression type";
return std::nullopt;
};
std::optional<std::string> cppValue =
generateExpression(assignment->value);
if (!cppValue)
return failure();
stmts.push_back(llvm::formatv("yields.push_back({0});", *cppValue));
}
if (generatedAssignmentCount != assignments.size())
return emitError(genContext.getLoc())
<< "mismatched number of assignments vs output arguments";
os << llvm::formatv(structuredOpRegionBuilderFormat, className, numOfArgs,
interleaveToString(attrs, "\n "),
interleaveToString(stmts, "\n "));
}
// Parser and printer.
os << llvm::formatv(structuredOpParserFormat, className);
// Canonicalizers and folders.
os << llvm::formatv(structuredOpFoldersFormat, className);
return success();
}
static LogicalResult generateOp(LinalgOpConfig &opConfig,
GenerationContext &genContext) {
// Switch on op type being generated.
if (opConfig.structuredOp) {
return success(
succeeded(generateNamedGenericOpOds(opConfig, genContext)) &&
succeeded(generateNamedGenericOpDefns(opConfig, genContext)));
}
return emitError(genContext.getLoc()) << "unsupported operation type";
}
//===----------------------------------------------------------------------===//
// Command line options and main
//===----------------------------------------------------------------------===//
static llvm::cl::opt<std::string>
inputFilename(llvm::cl::Positional, llvm::cl::desc("<input file>"),
llvm::cl::init("-"), llvm::cl::value_desc("YAML filename"));
static llvm::cl::opt<std::string>
outputOdsDeclFilename("o-ods-decl", llvm::cl::desc("ODS output filename"),
llvm::cl::value_desc("filename"), llvm::cl::init(""));
static llvm::cl::opt<std::string>
outputCppImplFilename("o-impl",
llvm::cl::desc("C++ implementation file name"),
llvm::cl::value_desc("filename"), llvm::cl::init(""));
int main(int argc, char **argv) {
llvm::cl::ParseCommandLineOptions(argc, argv, "Linalg ODS Gen from YAML");
// Set up the input file.
std::string errorMessage;
std::unique_ptr<llvm::MemoryBuffer> file =
mlir::openInputFile(inputFilename, &errorMessage);
if (!file) {
llvm::errs() << errorMessage << "\n";
return 1;
}
MLIRContext mlirContext;
LinalgYAMLContext yamlContext{&mlirContext};
std::vector<LinalgOpConfig> opConfigs;
// Parse input.
Input yin(file->getBuffer(), &yamlContext);
yin >> opConfigs;
if (yin.error())
return 1;
// Open output files.
std::unique_ptr<llvm::ToolOutputFile> outputOdsDecl;
if (!outputOdsDeclFilename.empty()) {
outputOdsDecl = openOutputFile(outputOdsDeclFilename, &errorMessage);
if (!outputOdsDecl) {
llvm::errs() << errorMessage << "\n";
return 1;
}
}
std::unique_ptr<llvm::ToolOutputFile> outputCppImpl;
if (!outputCppImplFilename.empty()) {
outputCppImpl = openOutputFile(outputCppImplFilename, &errorMessage);
if (!outputCppImpl) {
llvm::errs() << errorMessage << "\n";
return 1;
}
}
if (!outputOdsDecl && !outputCppImpl) {
llvm::errs() << "error: No output files specified\n";
return 1;
}
// Generate.
GenerationContext genContext(&mlirContext,
outputOdsDecl ? &outputOdsDecl->os() : nullptr,
outputCppImpl ? &outputCppImpl->os() : nullptr);
for (auto &opConfig : opConfigs) {
if (!opConfig.metadata) {
emitError(genContext.getLoc())
<< "missing operation metadata on subsequent op";
return 1;
}
genContext.setLoc(NameLoc::get(
StringAttr::get(&mlirContext, opConfig.metadata->cppClassName)));
if (failed(generateOp(opConfig, genContext))) {
return 1;
}
}
if (outputOdsDecl)
outputOdsDecl->keep();
if (outputCppImpl)
outputCppImpl->keep();
return 0;
}
|