1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
|
#include "mlir/Dialect/SparseTensor/Utils/Merger.h"
#include "llvm/Support/Compiler.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include <memory>
using namespace mlir;
using namespace mlir::sparse_tensor;
// Silence 'warning C4002: 'too many arguments for function-liked macro
// invocation'
// as MSVC handles ##__VA_ARGS__ differently as gcc/clang
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(push)
#pragma warning(disable : 4002)
#endif
namespace {
///
/// Defines macros to iterate binary and the combination of binary operations.
///
#define FOREVERY_BINOP(DO) \
DO(mulf, TensorExp::Kind::kMulF) \
DO(mulc, TensorExp::Kind::kMulC) \
DO(muli, TensorExp::Kind::kMulI) \
DO(addf, TensorExp::Kind::kAddF) \
DO(addc, TensorExp::Kind::kAddC) \
DO(addi, TensorExp::Kind::kAddI) \
DO(subf, TensorExp::Kind::kSubF) \
DO(subc, TensorExp::Kind::kSubC) \
DO(subi, TensorExp::Kind::kSubI) \
DO(andi, TensorExp::Kind::kAndI) \
DO(xori, TensorExp::Kind::kXorI) \
DO(ori, TensorExp::Kind::kOrI) \
DO(cmpf, TensorExp::Kind::kCmpF) \
DO(cmpi, TensorExp::Kind::kCmpI)
// TODO: Disjunctive binary operations that need special handling are not
// included, e.g., Division are not tested (for now) as it need a constant
// non-zero dividend.
// ##__VA_ARGS__ handles cases when __VA_ARGS__ is empty.
#define FOREVERY_COMMON_DISJ_BINOP(TEST, ...) \
TEST(addf, ##__VA_ARGS__) \
TEST(addc, ##__VA_ARGS__) \
TEST(addi, ##__VA_ARGS__) \
TEST(xori, ##__VA_ARGS__) \
TEST(ori, ##__VA_ARGS__)
// TODO: Conjunctive binary operations that need special handling are not
// included, e.g., substraction yields a different pattern as it is mapped to
// negate operation.
#define FOREVERY_COMMON_CONJ_BINOP(TEST, ...) \
TEST(mulf, ##__VA_ARGS__) \
TEST(mulc, ##__VA_ARGS__) \
TEST(muli, ##__VA_ARGS__) \
TEST(andi, ##__VA_ARGS__)
#define FOREVERY_PAIR_OF_COMMON_CONJ_DISJ_BINOP(TEST) \
FOREVERY_COMMON_CONJ_BINOP(TEST, addf) \
FOREVERY_COMMON_CONJ_BINOP(TEST, addc) \
FOREVERY_COMMON_CONJ_BINOP(TEST, addi) \
FOREVERY_COMMON_CONJ_BINOP(TEST, xori) \
FOREVERY_COMMON_CONJ_BINOP(TEST, ori)
#define FOREVERY_PAIR_OF_COMMON_CONJ_CONJ_BINOP(TEST) \
FOREVERY_COMMON_CONJ_BINOP(TEST, mulf) \
FOREVERY_COMMON_CONJ_BINOP(TEST, mulc) \
FOREVERY_COMMON_CONJ_BINOP(TEST, muli) \
FOREVERY_COMMON_CONJ_BINOP(TEST, andi)
#define FOREVERY_PAIR_OF_COMMON_DISJ_DISJ_BINOP(TEST) \
FOREVERY_COMMON_DISJ_BINOP(TEST, addf) \
FOREVERY_COMMON_DISJ_BINOP(TEST, addc) \
FOREVERY_COMMON_DISJ_BINOP(TEST, addi) \
FOREVERY_COMMON_DISJ_BINOP(TEST, ori) \
FOREVERY_COMMON_DISJ_BINOP(TEST, xori)
///
/// Helper classes/functions for testing Merger.
///
/// Simple recursive data structure used to match expressions in `Merger`.
struct Pattern;
/// Since the patterns we need are rather small and short-lived, we use
/// `Pattern const&` for "pointers" to patterns, rather than using
/// something more elaborate like `std::shared_ptr<Pattern> const&`.
/// (But since we use a typedef rather than spelling it out everywhere,
/// that's easy enough to swap out if we need something more elaborate
/// in the future.)
using PatternRef = const Pattern &;
struct Pattern {
struct Children {
Children(PatternRef e0, PatternRef e1) : e0(e0), e1(e1) {}
PatternRef e0;
PatternRef e1;
};
TensorExp::Kind kind;
union {
/// Expressions representing tensors simply have a tensor number.
TensorId tid;
/// Tensor operations point to their children.
Children children;
};
/// Constructors.
/// Rather than using these, please use the readable helper constructor
/// functions below to make tests more readable.
Pattern() : kind(TensorExp::Kind::kSynZero) {}
Pattern(TensorId tid) : kind(TensorExp::Kind::kTensor), tid(tid) {}
Pattern(TensorExp::Kind kind, PatternRef e0, PatternRef e1)
: kind(kind), children(e0, e1) {
assert(kind >= TensorExp::Kind::kMulF);
}
};
///
/// Readable Pattern builder functions.
/// These should be preferred over the actual constructors.
///
static Pattern tensorPattern(TensorId tid) { return Pattern(tid); }
static Pattern synZeroPattern() { return Pattern(); }
#define IMPL_BINOP_PATTERN(OP, KIND) \
LLVM_ATTRIBUTE_UNUSED static Pattern OP##Pattern(PatternRef e0, \
PatternRef e1) { \
return Pattern(KIND, e0, e1); \
}
FOREVERY_BINOP(IMPL_BINOP_PATTERN)
#undef IMPL_BINOP_PATTERN
class MergerTestBase : public ::testing::Test {
protected:
MergerTestBase(unsigned numTensors, unsigned numLoops)
: merger(numTensors, numLoops, /*numFilterLoops=*/0,
/*maxRank=*/numLoops) {
tensors.reserve(numTensors);
for (unsigned t = 0; t < numTensors; t++)
tensors.push_back(merger.addTensorExp(tid(t)));
}
///
/// Expression construction helpers.
///
TensorId tid(unsigned t) const { return merger.makeTensorId(t); }
LoopId lid(unsigned i) const { return merger.makeLoopId(i); }
ExprId tensor(unsigned t) const {
assert(t < tensors.size());
return tensors[t];
}
#define IMPL_BINOP_EXPR(OP, KIND) \
LLVM_ATTRIBUTE_UNUSED ExprId OP##Expr(ExprId e0, ExprId e1) { \
return merger.addExp(KIND, e0, e1); \
}
FOREVERY_BINOP(IMPL_BINOP_EXPR)
#undef IMPL_BINOP_EXPR
///
/// Comparison helpers.
///
/// Returns true if any lattice point with an expression matching
/// the given `pattern` and bits matching the given `bits` is present
/// in the `[lo, lo+n)` slice of the lattice set `s`. This is useful
/// for testing partial ordering constraints between lattice points.
/// We generally know how contiguous groups of lattice points should
/// be ordered with respect to other groups, but there is no required
/// ordering within groups. If `simple` is true, then compare the
/// `lat.simple` field instead to test the result after optimization.
bool latPointWithinRange(LatSetId s, unsigned lo, unsigned n,
PatternRef pattern, const BitVector &bits,
bool simple) {
for (unsigned k = lo, hi = lo + n; k < hi; ++k) {
if (compareExpression(merger.lat(merger.set(s)[k]).exp, pattern) &&
compareBits(s, k, bits, simple))
return true;
}
return false;
}
/// Wrapper over latPointWithinRange for readability of tests.
void expectLatPointWithinRange(LatSetId s, unsigned lo, unsigned n,
PatternRef pattern, const BitVector &bits,
bool simple = false) {
EXPECT_TRUE(latPointWithinRange(s, lo, n, pattern, bits, simple));
}
/// Wrapper over expectLatPointWithinRange for a single lat point.
void expectLatPoint(LatSetId s, unsigned lo, PatternRef pattern,
const BitVector &bits, bool simple = false) {
EXPECT_TRUE(latPointWithinRange(s, lo, 1, pattern, bits, simple));
}
/// Converts a vector of (loop, tensor) pairs to a bitvector with the
/// corresponding bits set.
BitVector loopsToBits(const std::vector<std::pair<LoopId, TensorId>> &loops) {
BitVector testBits = BitVector(merger.getNumTensors(), false);
for (auto [loop, tensor] : loops)
testBits.set(merger.makeTensorLoopId(tensor, loop));
return testBits;
}
/// Returns true if the bits of the `k`th point in set `s` matches
/// the given `bits`. If `simple` is true, then compares the `lat.simple`
/// field instead, to test the result after optimization
bool compareBits(LatSetId s, unsigned k, const BitVector &bits, bool simple) {
const auto &point = merger.lat(merger.set(s)[k]);
return (simple ? point.simple : point.bits) == bits;
}
/// Check that there are n lattice points in set s.
void expectNumLatPoints(LatSetId s, unsigned n) {
EXPECT_THAT(merger.set(s).size(), n);
}
/// Compares expressions for equality. Equality is defined recursively as:
/// - Operations are equal if they have the same kind and children.
/// - Leaf tensors are equal if they refer to the same tensor.
bool compareExpression(ExprId e, PatternRef pattern) {
const auto &tensorExp = merger.exp(e);
if (tensorExp.kind != pattern.kind)
return false;
switch (tensorExp.kind) {
// Leaf.
case TensorExp::Kind::kTensor:
return tensorExp.tensor == pattern.tid;
case TensorExp::Kind::kSynZero:
// Already checked kind equivalence @L233
return true;
case TensorExp::Kind::kInvariant:
llvm_unreachable("invariant not handled yet");
case TensorExp::Kind::kLoopVar:
llvm_unreachable("loop-variables not handled yet");
// Unary operations.
case TensorExp::Kind::kAbsF:
case TensorExp::Kind::kAbsC:
case TensorExp::Kind::kAbsI:
case TensorExp::Kind::kCeilF:
case TensorExp::Kind::kFloorF:
case TensorExp::Kind::kSqrtF:
case TensorExp::Kind::kSqrtC:
case TensorExp::Kind::kExpm1F:
case TensorExp::Kind::kExpm1C:
case TensorExp::Kind::kLog1pF:
case TensorExp::Kind::kLog1pC:
case TensorExp::Kind::kSinF:
case TensorExp::Kind::kSinC:
case TensorExp::Kind::kTanhF:
case TensorExp::Kind::kTanhC:
case TensorExp::Kind::kNegF:
case TensorExp::Kind::kNegC:
case TensorExp::Kind::kNegI:
case TensorExp::Kind::kTruncF:
case TensorExp::Kind::kExtF:
case TensorExp::Kind::kCastFS:
case TensorExp::Kind::kCastFU:
case TensorExp::Kind::kCastSF:
case TensorExp::Kind::kCastUF:
case TensorExp::Kind::kCastS:
case TensorExp::Kind::kCastU:
case TensorExp::Kind::kCastIdx:
case TensorExp::Kind::kTruncI:
case TensorExp::Kind::kCIm:
case TensorExp::Kind::kCRe:
case TensorExp::Kind::kBitCast:
case TensorExp::Kind::kSelect:
case TensorExp::Kind::kBinaryBranch:
case TensorExp::Kind::kUnary:
return compareExpression(tensorExp.children.e0, pattern.children.e0);
// Binary operations.
case TensorExp::Kind::kMulF:
case TensorExp::Kind::kMulC:
case TensorExp::Kind::kMulI:
case TensorExp::Kind::kDivF:
case TensorExp::Kind::kDivC:
case TensorExp::Kind::kDivS:
case TensorExp::Kind::kDivU:
case TensorExp::Kind::kAddF:
case TensorExp::Kind::kAddC:
case TensorExp::Kind::kAddI:
case TensorExp::Kind::kSubF:
case TensorExp::Kind::kSubC:
case TensorExp::Kind::kSubI:
case TensorExp::Kind::kAndI:
case TensorExp::Kind::kOrI:
case TensorExp::Kind::kXorI:
case TensorExp::Kind::kCmpF:
case TensorExp::Kind::kCmpI:
case TensorExp::Kind::kShrS:
case TensorExp::Kind::kShrU:
case TensorExp::Kind::kShlI:
case TensorExp::Kind::kBinary:
case TensorExp::Kind::kReduce:
return compareExpression(tensorExp.children.e0, pattern.children.e0) &&
compareExpression(tensorExp.children.e1, pattern.children.e1);
case TensorExp::Kind::kDenseOp: {
bool eq = compareExpression(tensorExp.children.e0, pattern.children.e0);
if (eq && tensorExp.children.e1 != sparse_tensor::detail::kInvalidId)
return compareExpression(tensorExp.children.e1, pattern.children.e1);
return eq;
}
}
llvm_unreachable("unexpected kind");
}
// This field is public for convenience.
Merger merger;
private:
// This field is private to prevent mutation after the ctor.
SmallVector<ExprId> tensors;
};
///
/// Tests with all sparse inputs.
///
/// Three tensors (two inputs, one output); and a single loop.
class MergerTest3T1L : public MergerTestBase {
protected:
MergerTest3T1L() : MergerTestBase(3, 1) {
EXPECT_TRUE(merger.getOutTensorID() == tid(2));
// Tensor 0: sparse input vector.
merger.setLevelAndType(tid(0), lid(0), 0, DimLevelType::Compressed);
// Tensor 1: sparse input vector.
merger.setLevelAndType(tid(1), lid(0), 0, DimLevelType::Compressed);
// Tensor 2: dense output vector.
merger.setLevelAndType(tid(2), lid(0), 0, DimLevelType::Dense);
}
};
/// Four tensors (three inputs, one output); and a single loop.
class MergerTest4T1L : public MergerTestBase {
protected:
MergerTest4T1L() : MergerTestBase(4, 1) {
EXPECT_TRUE(merger.getOutTensorID() == tid(3));
// Tensor 0: sparse input vector.
merger.setLevelAndType(tid(0), lid(0), 0, DimLevelType::Compressed);
// Tensor 1: sparse input vector.
merger.setLevelAndType(tid(1), lid(0), 0, DimLevelType::Compressed);
// Tensor 2: sparse input vector
merger.setLevelAndType(tid(2), lid(0), 0, DimLevelType::Compressed);
// Tensor 3: dense output vector
merger.setLevelAndType(tid(3), lid(0), 0, DimLevelType::Dense);
}
};
///
/// Tests with both sparse and dense input.
///
/// Three tensors (two inputs, one output); and a single loop.
class MergerTest3T1LD : public MergerTestBase {
protected:
MergerTest3T1LD() : MergerTestBase(3, 1) {
EXPECT_TRUE(merger.getOutTensorID() == tid(2));
// Tensor 0: sparse input vector.
merger.setLevelAndType(tid(0), lid(0), 0, DimLevelType::Compressed);
// Tensor 1: dense input vector.
merger.setLevelAndType(tid(1), lid(0), 0, DimLevelType::Dense);
// Tensor 2: dense output vector.
merger.setLevelAndType(tid(2), lid(0), 0, DimLevelType::Dense);
}
};
///
/// Tests with both undef and dense input.
///
/// Three tensors (three inputs, one output); and a single loop.
class MergerTest4T1LU : public MergerTestBase {
protected:
MergerTest4T1LU() : MergerTestBase(4, 1) {
EXPECT_TRUE(merger.getOutTensorID() == tid(3));
// Tensor 0: undef input vector.
merger.setLevelAndType(tid(0), lid(0), 0, DimLevelType::Undef);
// Tensor 1: dense input vector.
merger.setLevelAndType(tid(1), lid(0), 0, DimLevelType::Dense);
// Tensor 2: undef input vector.
merger.setLevelAndType(tid(2), lid(0), 0, DimLevelType::Undef);
// Tensor 3: dense output vector.
merger.setLevelAndType(tid(3), lid(0), 0, DimLevelType::Dense);
}
};
///
/// Tests with operation on sparse output.
///
/// Three tensors (two inputs, one output, one synthetic); and a single loop.
class MergerTest3T1LSo : public MergerTestBase {
protected:
MergerTest3T1LSo() : MergerTestBase(3, 1) {
EXPECT_TRUE(merger.getOutTensorID() == tid(2));
EXPECT_TRUE(merger.getSynTensorID() == tid(3));
merger.setHasSparseOut(true);
// Tensor 0: undef input vector.
merger.setLevelAndType(tid(0), lid(0), 0, DimLevelType::Undef);
// Tensor 1: undef input vector.
merger.setLevelAndType(tid(1), lid(0), 0, DimLevelType::Undef);
// Tensor 2: sparse output vector.
merger.setLevelAndType(tid(2), lid(0), 0, DimLevelType::Compressed);
}
};
} // namespace
/// Vector multiplication (conjunction) of 3 vectors, i.e.;
/// a(i) = b(i) * c(i) * d(i)
/// which should form the single lattice point
/// {
/// lat( i_00_U i_01_D i_02_U / (tensor_0 * tensor_1 * tensor2) )
/// }
/// after optimization, the dense dimesion should be kept, despite it appears
/// in the middle
/// {
/// lat( i_01_D / (tensor_0 * tensor_1 * tensor2) )
/// }
#define IMPL_MERGER_TEST_CONJ_CONJ_UNDEF(CONJ1, CONJ2) \
TEST_F(MergerTest4T1LU, vector_##CONJ1##_##CONJ2) { \
const auto em = CONJ1##Expr(tensor(0), tensor(1)); \
const auto e = CONJ2##Expr(em, tensor(2)); \
const auto l0 = lid(0); \
const auto t0 = tid(0); \
const auto t1 = tid(1); \
const auto t2 = tid(2); \
PatternRef p0 = tensorPattern(t0); \
PatternRef p1 = tensorPattern(t1); \
PatternRef p2 = tensorPattern(t2); \
auto s = merger.buildLattices(e, l0); \
expectNumLatPoints(s, 1); \
expectLatPoint(s, 0, CONJ2##Pattern(CONJ1##Pattern(p0, p1), p2), \
loopsToBits({{l0, t0}, {l0, t1}, {l0, t2}})); \
s = merger.optimizeSet(s); \
expectNumLatPoints(s, 1); \
expectLatPoint(s, 0, CONJ2##Pattern(CONJ1##Pattern(p0, p1), p2), \
loopsToBits({{l0, t1}}), true); \
}
FOREVERY_PAIR_OF_COMMON_CONJ_CONJ_BINOP(IMPL_MERGER_TEST_CONJ_CONJ_UNDEF)
#undef IMPL_MERGER_TEST_CONJ_CONJ_UNDEF
/// Vector multiplication (conjunction) of 2 vectors, i.e.;
/// o(i) = b(i) * c(i) * o(i)
/// which should form the single lattice point (note how a synthetic tensor
/// i_03_U is created for the sparse output)
/// {
/// lat( i_00_U i_01_U i_03_U / (tensor_0 * tensor_1 * output_tensor_2) )
/// }
/// after optimization, the synthetic tensor should be preserved.
/// {
/// lat( i_03_U / (tensor_0 * tensor_1 * output_tensor2) )
/// }
#define IMPL_MERGER_TEST_CONJ_CONJ_SPARSE_OUT(CONJ1, CONJ2) \
TEST_F(MergerTest3T1LSo, vector_##CONJ1##_##CONJ2) { \
const auto em = CONJ1##Expr(tensor(0), tensor(1)); \
const auto e = CONJ2##Expr(em, tensor(2)); \
const auto l0 = lid(0); \
const auto t0 = tid(0); \
const auto t1 = tid(1); \
const auto t2 = tid(2); \
const auto t3 = tid(3); \
PatternRef p0 = tensorPattern(t0); \
PatternRef p1 = tensorPattern(t1); \
PatternRef p2 = tensorPattern(t2); \
auto s = merger.buildLattices(e, l0); \
expectNumLatPoints(s, 1); \
expectLatPoint(s, 0, CONJ2##Pattern(CONJ1##Pattern(p0, p1), p2), \
loopsToBits({{l0, t0}, {l0, t1}, {l0, t3}})); \
s = merger.optimizeSet(s); \
expectNumLatPoints(s, 1); \
expectLatPoint(s, 0, CONJ2##Pattern(CONJ1##Pattern(p0, p1), p2), \
loopsToBits({{l0, t3}}), true); \
}
FOREVERY_PAIR_OF_COMMON_CONJ_CONJ_BINOP(IMPL_MERGER_TEST_CONJ_CONJ_SPARSE_OUT)
#undef IMPL_MERGER_TEST_CONJ_CONJ_SPARSE_OUT
/// Vector addition (disjunction) of 2 vectors. i.e.;
/// a(i) = b(i) + c(i)
/// which should form the 3 lattice points
/// {
/// lat( i_00 i_01 / (tensor_0 + tensor_1) )
/// lat( i_00 / tensor_0 )
/// lat( i_01 / tensor_1 )
/// }
/// and after optimization, the lattice points do not change (as there is no
/// duplicated point and all input vectors are sparse vector).
/// {
/// lat( i_00 i_01 / (tensor_0 + tensor_1) )
/// lat( i_00 / tensor_0 )
/// lat( i_01 / tensor_1 )
/// }
#define IMPL_MERGER_TEST_DISJ(OP) \
TEST_F(MergerTest3T1L, vector_##OP) { \
const auto e = OP##Expr(tensor(0), tensor(1)); \
const auto l0 = lid(0); \
const auto t0 = tid(0); \
const auto t1 = tid(1); \
PatternRef p0 = tensorPattern(t0); \
PatternRef p1 = tensorPattern(t1); \
auto s = merger.buildLattices(e, l0); \
\
expectNumLatPoints(s, 3); \
expectLatPoint(s, 0, OP##Pattern(p0, p1), \
loopsToBits({{l0, t0}, {l0, t1}})); \
expectLatPointWithinRange(s, 1, 2, p0, loopsToBits({{l0, t0}})); \
expectLatPointWithinRange(s, 1, 2, p1, loopsToBits({{l0, t1}})); \
\
s = merger.optimizeSet(s); \
expectNumLatPoints(s, 3); \
expectLatPoint(s, 0, OP##Pattern(p0, p1), \
loopsToBits({{l0, t0}, {l0, t1}}), true); \
expectLatPointWithinRange(s, 1, 2, p0, loopsToBits({{l0, t0}}), true); \
expectLatPointWithinRange(s, 1, 2, p1, loopsToBits({{l0, t1}}), true); \
}
FOREVERY_COMMON_DISJ_BINOP(IMPL_MERGER_TEST_DISJ)
#undef IMPL_MERGER_TEST_DISJ
/// Vector multiplication (conjunction) of 2 vectors, i.e.;
/// a(i) = b(i) * c(i)
/// which should form the single lattice point
/// {
/// lat( i_00 i_01 / (tensor_0 * tensor_1) )
/// }
#define IMPL_MERGER_TEST_CONJ(OP) \
TEST_F(MergerTest3T1L, vector_##OP) { \
const auto e = OP##Expr(tensor(0), tensor(1)); \
const auto l0 = lid(0); \
const auto t0 = tid(0); \
const auto t1 = tid(1); \
PatternRef p0 = tensorPattern(t0); \
PatternRef p1 = tensorPattern(t1); \
auto s = merger.buildLattices(e, l0); \
\
expectNumLatPoints(s, 1); \
expectLatPoint(s, 0, OP##Pattern(p0, p1), \
loopsToBits({{l0, t0}, {l0, t1}})); \
\
s = merger.optimizeSet(s); \
expectNumLatPoints(s, 1); \
expectLatPoint(s, 0, OP##Pattern(p0, p1), \
loopsToBits({{l0, t0}, {l0, t1}}), true); \
}
FOREVERY_COMMON_CONJ_BINOP(IMPL_MERGER_TEST_CONJ)
#undef IMPL_MERGER_TEST_CONJ
/// Vector multiplication (conjunction) then addition (disjunction), i.e.;
/// a(i) = b(i) * c(i) + d(i);
/// which should form
/// {
/// lat( i_00 i_01 i_02 / (tensor_0 * tensor_1) + tensor_2 )
/// lat( i_00 i_01 / tensor_0 * tensor_1
/// lat( i_02 / tensor_2 )
/// }
#define IMPL_MERGER_TEST_CONJ_DISJ(CONJ, DISJ) \
TEST_F(MergerTest4T1L, vector_##CONJ##_##DISJ) { \
const auto em = CONJ##Expr(tensor(0), tensor(1)); \
const auto e = DISJ##Expr(em, tensor(2)); \
const auto l0 = lid(0); \
const auto t0 = tid(0); \
const auto t1 = tid(1); \
const auto t2 = tid(2); \
PatternRef p0 = tensorPattern(t0); \
PatternRef p1 = tensorPattern(t1); \
PatternRef p2 = tensorPattern(t2); \
auto s = merger.buildLattices(e, l0); \
\
expectNumLatPoints(s, 3); \
expectLatPoint(s, 0, DISJ##Pattern(CONJ##Pattern(p0, p1), p2), \
loopsToBits({{l0, t0}, {l0, t1}, {l0, t2}})); \
expectLatPointWithinRange(s, 1, 2, CONJ##Pattern(p0, p1), \
loopsToBits({{l0, t0}, {l0, t1}})); \
expectLatPointWithinRange(s, 1, 2, p2, loopsToBits({{l0, t2}})); \
\
s = merger.optimizeSet(s); \
expectNumLatPoints(s, 3); \
expectLatPoint(s, 0, DISJ##Pattern(CONJ##Pattern(p0, p1), p2), \
loopsToBits({{l0, t0}, {l0, t1}, {l0, t2}})); \
expectLatPointWithinRange(s, 1, 2, CONJ##Pattern(p0, p1), \
loopsToBits({{l0, t0}, {l0, t1}})); \
expectLatPointWithinRange(s, 1, 2, p2, loopsToBits({{l0, t2}})); \
}
FOREVERY_PAIR_OF_COMMON_CONJ_DISJ_BINOP(IMPL_MERGER_TEST_CONJ_DISJ)
#undef IMPL_MERGER_TEST_CONJ_DISJ
/// Vector addition (disjunction) then addition (disjunction), i.e.;
/// a(i) = b(i) + c(i) + d(i)
/// which should form
/// {
/// lat( i_00 i_01 i_02 / (tensor_0 + tensor_1) + tensor_2 )
/// lat( i_02 i_01 / tensor_2 + tensor_1 )
/// lat( i_02 i_00 / tensor_2 + tensor_0 )
/// lat( i_01 i_00 / tensor_1 + tensor_0 )
/// lat( i_02 / tensor_2 )
/// lat( i_01 / tensor_1 )
/// lat( i_00 / tensor_0 )
/// }
#define IMPL_MERGER_TEST_DISJ_DISJ(DISJ1, DISJ2) \
TEST_F(MergerTest4T1L, Vector_##DISJ1##_##DISJ2) { \
const auto em = DISJ1##Expr(tensor(0), tensor(1)); \
const auto e = DISJ2##Expr(em, tensor(2)); \
const auto l0 = lid(0); \
const auto t0 = tid(0); \
const auto t1 = tid(1); \
const auto t2 = tid(2); \
PatternRef p0 = tensorPattern(t0); \
PatternRef p1 = tensorPattern(t1); \
PatternRef p2 = tensorPattern(t2); \
auto s = merger.buildLattices(e, l0); \
\
expectNumLatPoints(s, 7); \
expectLatPoint(s, 0, DISJ2##Pattern(DISJ1##Pattern(p0, p1), p2), \
loopsToBits({{l0, t0}, {l0, t1}, {l0, t2}})); \
expectLatPointWithinRange(s, 1, 6, DISJ2##Pattern(p1, p2), \
loopsToBits({{l0, t1}, {l0, t2}})); \
expectLatPointWithinRange(s, 1, 6, DISJ2##Pattern(p0, p2), \
loopsToBits({{l0, t0}, {l0, t2}})); \
expectLatPointWithinRange(s, 1, 6, DISJ1##Pattern(p0, p1), \
loopsToBits({{l0, t0}, {l0, t1}})); \
expectLatPointWithinRange(s, 1, 6, p2, loopsToBits({{l0, t2}})); \
expectLatPointWithinRange(s, 1, 6, p1, loopsToBits({{l0, t1}})); \
expectLatPointWithinRange(s, 1, 6, p0, loopsToBits({{l0, t0}})); \
\
s = merger.optimizeSet(s); \
expectNumLatPoints(s, 7); \
expectLatPoint(s, 0, DISJ2##Pattern(DISJ1##Pattern(p0, p1), p2), \
loopsToBits({{l0, t0}, {l0, t1}, {l0, t2}})); \
expectLatPointWithinRange(s, 1, 6, DISJ2##Pattern(p1, p2), \
loopsToBits({{l0, t1}, {l0, t2}})); \
expectLatPointWithinRange(s, 1, 6, DISJ2##Pattern(p0, p2), \
loopsToBits({{l0, t0}, {l0, t2}})); \
expectLatPointWithinRange(s, 1, 6, DISJ1##Pattern(p0, p1), \
loopsToBits({{l0, t0}, {l0, t1}})); \
expectLatPointWithinRange(s, 1, 6, p2, loopsToBits({{l0, t2}})); \
expectLatPointWithinRange(s, 1, 6, p1, loopsToBits({{l0, t1}})); \
expectLatPointWithinRange(s, 1, 6, p0, loopsToBits({{l0, t0}})); \
}
FOREVERY_PAIR_OF_COMMON_DISJ_DISJ_BINOP(IMPL_MERGER_TEST_DISJ_DISJ)
#undef IMPL_MERGER_TEST_DISJ_DISJ
/// Vector multiplication (conjunction) then multiplication (conjunction), i.e.;
/// a(i) = b(i) * c(i) * d(i);
/// which should form
/// {
/// lat( i_00 i_01 i_02 / tensor_0 * tensor_1 * tensor_2 )
/// }
#define IMPL_MERGER_TEST_CONJ_CONJ(CONJ1, CONJ2) \
TEST_F(MergerTest4T1L, vector_##CONJ1##_##CONJ2) { \
const auto em = CONJ1##Expr(tensor(0), tensor(1)); \
const auto e = CONJ2##Expr(em, tensor(2)); \
const auto l0 = lid(0); \
const auto t0 = tid(0); \
const auto t1 = tid(1); \
const auto t2 = tid(2); \
PatternRef p0 = tensorPattern(t0); \
PatternRef p1 = tensorPattern(t1); \
PatternRef p2 = tensorPattern(t2); \
auto s = merger.buildLattices(e, l0); \
expectNumLatPoints(s, 1); \
expectLatPoint(s, 0, CONJ2##Pattern(CONJ1##Pattern(p0, p1), p2), \
loopsToBits({{l0, t0}, {l0, t1}, {l0, t2}})); \
s = merger.optimizeSet(s); \
expectNumLatPoints(s, 1); \
expectLatPoint(s, 0, CONJ2##Pattern(CONJ1##Pattern(p0, p1), p2), \
loopsToBits({{l0, t0}, {l0, t1}, {l0, t2}}), true); \
}
FOREVERY_PAIR_OF_COMMON_CONJ_CONJ_BINOP(IMPL_MERGER_TEST_CONJ_CONJ)
#undef IMPL_MERGER_TEST_CONJ_CONJ
/// Vector addition (disjunction) of 2 vectors, i.e.;
/// a(i) = b(i) + c(i)
/// which should form the 3 lattice points
/// {
/// lat( i_00 i_01 / (sparse_tensor_0 + dense_tensor_1) )
/// lat( i_00 / sparse_tensor_0 )
/// lat( i_01 / dense_tensor_1 )
/// }
/// which should be optimized to
/// {
/// lat( i_00 i_01 / (sparse_tensor_0 + dense_tensor_1) ) (not singleton)
/// lat( i_01 / dense_tensor_0 ) (no sparse dimension)
/// }
///
/// lat( i_00 / sparse_tensor_0 ) should be opted out as it only has dense diff
/// with lat( i_00 i_01 / (sparse_tensor_0 + dense_tensor_1) ).
#define IMPL_MERGER_TEST_OPTIMIZED_DISJ(OP) \
TEST_F(MergerTest3T1LD, vector_opted_##OP) { \
const auto e = OP##Expr(tensor(0), tensor(1)); \
const auto l0 = lid(0); \
const auto t0 = tid(0); \
const auto t1 = tid(1); \
PatternRef p0 = tensorPattern(t0); \
PatternRef p1 = tensorPattern(t1); \
auto s = merger.buildLattices(e, l0); \
\
expectNumLatPoints(s, 3); \
expectLatPoint(s, 0, OP##Pattern(p0, p1), \
loopsToBits({{l0, t0}, {l0, t1}})); \
expectLatPointWithinRange(s, 1, 2, p0, loopsToBits({{l0, t0}})); \
expectLatPointWithinRange(s, 1, 2, p1, loopsToBits({{l0, t1}})); \
\
s = merger.optimizeSet(s); \
expectNumLatPoints(s, 2); \
expectLatPoint(s, 0, OP##Pattern(p0, p1), \
loopsToBits({{l0, t0}, {l0, t1}}), true); \
expectLatPoint(s, 1, p1, loopsToBits({{l0, t1}}), true); \
}
FOREVERY_COMMON_DISJ_BINOP(IMPL_MERGER_TEST_OPTIMIZED_DISJ)
#undef IMPL_MERGER_TEST_OPTIMIZED_CONJ
/// Vector multiplication (conjunction) of 2 vectors, i.e.:
/// a(i) = b(i) * c(i)
/// which should form the single lattice point
/// {
/// lat( i_00 i_01 / (sparse_tensor_0 * dense_tensor_1) )
/// }
/// it should be optimized to
/// {
/// lat( i_00 / (sparse_tensor_0 * dense_tensor_1) )
/// }
/// since i_01 is a dense dimension.
#define IMPL_MERGER_TEST_OPTIMIZED_CONJ(OP) \
TEST_F(MergerTest3T1LD, vector_opted_##OP) { \
const auto e = OP##Expr(tensor(0), tensor(1)); \
const auto l0 = lid(0); \
const auto t0 = tid(0); \
const auto t1 = tid(1); \
PatternRef p0 = tensorPattern(t0); \
PatternRef p1 = tensorPattern(t1); \
auto s = merger.buildLattices(e, l0); \
\
expectNumLatPoints(s, 1); \
expectLatPoint(s, 0, OP##Pattern(p0, p1), \
loopsToBits({{l0, t0}, {l0, t1}})); \
\
s = merger.optimizeSet(s); \
expectNumLatPoints(s, 1); \
expectLatPoint(s, 0, OP##Pattern(p0, p1), loopsToBits({{l0, t0}}), true); \
}
FOREVERY_COMMON_CONJ_BINOP(IMPL_MERGER_TEST_OPTIMIZED_CONJ)
/// Vector element-wise comparison (disjunction) of 2 vectors. i.e.;
/// a(i) = b(i) + c(i)
/// which should form the 3 lattice points
/// {
/// lat( i_00 i_01 / (tensor_0 cmp tensor_1) )
/// lat( i_00 / tensor_0 cmp 0 )
/// lat( i_01 / 0 cmp tensor_1 )
/// }
/// and after optimization, the lattice points do not change (as there is no
/// duplicated point and all input vectors are sparse vector).
/// {
/// lat( i_00 i_01 / (tensor_0 cmp tensor_1) )
/// lat( i_00 / tensor_0 cmp 0 )
/// lat( i_01 / 0 cmp tensor_1 )
/// }
TEST_F(MergerTest3T1L, vector_cmp) {
const auto e = cmpiExpr(tensor(0), tensor(1));
const auto l0 = lid(0);
const auto t0 = tid(0);
const auto t1 = tid(1);
PatternRef zero = synZeroPattern();
PatternRef p0 = tensorPattern(t0);
PatternRef p1 = tensorPattern(t1);
auto s = merger.buildLattices(e, l0);
expectLatPoint(s, 0, cmpiPattern(p0, p1), loopsToBits({{l0, t0}, {l0, t1}}));
expectLatPointWithinRange(s, 1, 2, cmpiPattern(p0, zero),
loopsToBits({{l0, t0}}));
expectLatPointWithinRange(s, 1, 2, cmpiPattern(zero, p1),
loopsToBits({{l0, t1}}));
s = merger.optimizeSet(s);
expectLatPoint(s, 0, cmpiPattern(p0, p1), loopsToBits({{l0, t0}, {l0, t1}}));
expectLatPointWithinRange(s, 1, 2, cmpiPattern(p0, zero),
loopsToBits({{l0, t0}}));
expectLatPointWithinRange(s, 1, 2, cmpiPattern(zero, p1),
loopsToBits({{l0, t1}}));
}
/// Vector element-wise comparsion (disjunction) of 2 vectors, i.e.;
/// a(i) = b(i) cmp c(i)
/// which should form the 3 lattice points
/// {
/// lat( i_00 i_01 / (sparse_tensor_0 cmp dense_tensor_1) )
/// lat( i_00 / sparse_tensor_0 cmp 0)
/// lat( i_01 / 0 cmp dense_tensor_1 )
/// }
/// which should be optimized to
/// {
/// lat( i_00 i_01 / (sparse_tensor_0 cmp dense_tensor_1) ) (not singleton)
/// lat( i_01 / 0 cmp dense_tensor_0 ) ()
/// }
///
/// lat( i_00 / sparse_tensor_0 ) should be opted out as it only has dense diff
/// with lat( i_00 i_01 / (sparse_tensor_0 cmp dense_tensor_1) ).
TEST_F(MergerTest3T1LD, vector_cmp) {
const auto e = cmpiExpr(tensor(0), tensor(1));
const auto l0 = lid(0);
const auto t0 = tid(0);
const auto t1 = tid(1);
PatternRef zero = synZeroPattern();
PatternRef p0 = tensorPattern(t0);
PatternRef p1 = tensorPattern(t1);
auto s = merger.buildLattices(e, l0);
expectLatPoint(s, 0, cmpiPattern(p0, p1), loopsToBits({{l0, t0}, {l0, t1}}));
expectLatPointWithinRange(s, 1, 2, cmpiPattern(p0, zero),
loopsToBits({{l0, t0}}));
expectLatPointWithinRange(s, 1, 2, cmpiPattern(zero, p1),
loopsToBits({{l0, t1}}));
s = merger.optimizeSet(s);
expectLatPoint(s, 0, cmpiPattern(p0, p1), loopsToBits({{l0, t0}, {l0, t1}}));
expectLatPointWithinRange(s, 1, 2, cmpiPattern(zero, p1),
loopsToBits({{l0, t1}}));
}
#undef IMPL_MERGER_TEST_OPTIMIZED_CONJ
// TODO: mult-dim tests
// restore warning status
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(pop)
#endif
|