1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
|
/*
Name: imath.c
Purpose: Arbitrary precision integer arithmetic routines.
Author: M. J. Fromberger
Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include "imath.h"
#include <assert.h>
#include <ctype.h>
#include <stdlib.h>
#include <string.h>
const mp_result MP_OK = 0; /* no error, all is well */
const mp_result MP_FALSE = 0; /* boolean false */
const mp_result MP_TRUE = -1; /* boolean true */
const mp_result MP_MEMORY = -2; /* out of memory */
const mp_result MP_RANGE = -3; /* argument out of range */
const mp_result MP_UNDEF = -4; /* result undefined */
const mp_result MP_TRUNC = -5; /* output truncated */
const mp_result MP_BADARG = -6; /* invalid null argument */
const mp_result MP_MINERR = -6;
const mp_sign MP_NEG = 1; /* value is strictly negative */
const mp_sign MP_ZPOS = 0; /* value is non-negative */
static const char *s_unknown_err = "unknown result code";
static const char *s_error_msg[] = {"error code 0", "boolean true",
"out of memory", "argument out of range",
"result undefined", "output truncated",
"invalid argument", NULL};
/* The ith entry of this table gives the value of log_i(2).
An integer value n requires ceil(log_i(n)) digits to be represented
in base i. Since it is easy to compute lg(n), by counting bits, we
can compute log_i(n) = lg(n) * log_i(2).
The use of this table eliminates a dependency upon linkage against
the standard math libraries.
If MP_MAX_RADIX is increased, this table should be expanded too.
*/
static const double s_log2[] = {
0.000000000, 0.000000000, 1.000000000, 0.630929754, /* (D)(D) 2 3 */
0.500000000, 0.430676558, 0.386852807, 0.356207187, /* 4 5 6 7 */
0.333333333, 0.315464877, 0.301029996, 0.289064826, /* 8 9 10 11 */
0.278942946, 0.270238154, 0.262649535, 0.255958025, /* 12 13 14 15 */
0.250000000, 0.244650542, 0.239812467, 0.235408913, /* 16 17 18 19 */
0.231378213, 0.227670249, 0.224243824, 0.221064729, /* 20 21 22 23 */
0.218104292, 0.215338279, 0.212746054, 0.210309918, /* 24 25 26 27 */
0.208014598, 0.205846832, 0.203795047, 0.201849087, /* 28 29 30 31 */
0.200000000, 0.198239863, 0.196561632, 0.194959022, /* 32 33 34 35 */
0.193426404, /* 36 */
};
/* Return the number of digits needed to represent a static value */
#define MP_VALUE_DIGITS(V) \
((sizeof(V) + (sizeof(mp_digit) - 1)) / sizeof(mp_digit))
/* Round precision P to nearest word boundary */
static inline mp_size s_round_prec(mp_size P) { return 2 * ((P + 1) / 2); }
/* Set array P of S digits to zero */
static inline void ZERO(mp_digit *P, mp_size S) {
mp_size i__ = S * sizeof(mp_digit);
mp_digit *p__ = P;
memset(p__, 0, i__);
}
/* Copy S digits from array P to array Q */
static inline void COPY(mp_digit *P, mp_digit *Q, mp_size S) {
mp_size i__ = S * sizeof(mp_digit);
mp_digit *p__ = P;
mp_digit *q__ = Q;
memcpy(q__, p__, i__);
}
/* Reverse N elements of unsigned char in A. */
static inline void REV(unsigned char *A, int N) {
unsigned char *u_ = A;
unsigned char *v_ = u_ + N - 1;
while (u_ < v_) {
unsigned char xch = *u_;
*u_++ = *v_;
*v_-- = xch;
}
}
/* Strip leading zeroes from z_ in-place. */
static inline void CLAMP(mp_int z_) {
mp_size uz_ = MP_USED(z_);
mp_digit *dz_ = MP_DIGITS(z_) + uz_ - 1;
while (uz_ > 1 && (*dz_-- == 0)) --uz_;
z_->used = uz_;
}
/* Select min/max. */
static inline int MIN(int A, int B) { return (B < A ? B : A); }
static inline mp_size MAX(mp_size A, mp_size B) { return (B > A ? B : A); }
/* Exchange lvalues A and B of type T, e.g.
SWAP(int, x, y) where x and y are variables of type int. */
#define SWAP(T, A, B) \
do { \
T t_ = (A); \
A = (B); \
B = t_; \
} while (0)
/* Declare a block of N temporary mpz_t values.
These values are initialized to zero.
You must add CLEANUP_TEMP() at the end of the function.
Use TEMP(i) to access a pointer to the ith value.
*/
#define DECLARE_TEMP(N) \
struct { \
mpz_t value[(N)]; \
int len; \
mp_result err; \
} temp_ = { \
.len = (N), \
.err = MP_OK, \
}; \
do { \
for (int i = 0; i < temp_.len; i++) { \
mp_int_init(TEMP(i)); \
} \
} while (0)
/* Clear all allocated temp values. */
#define CLEANUP_TEMP() \
CLEANUP: \
do { \
for (int i = 0; i < temp_.len; i++) { \
mp_int_clear(TEMP(i)); \
} \
if (temp_.err != MP_OK) { \
return temp_.err; \
} \
} while (0)
/* A pointer to the kth temp value. */
#define TEMP(K) (temp_.value + (K))
/* Evaluate E, an expression of type mp_result expected to return MP_OK. If
the value is not MP_OK, the error is cached and control resumes at the
cleanup handler, which returns it.
*/
#define REQUIRE(E) \
do { \
temp_.err = (E); \
if (temp_.err != MP_OK) goto CLEANUP; \
} while (0)
/* Compare value to zero. */
static inline int CMPZ(mp_int Z) {
if (Z->used == 1 && Z->digits[0] == 0) return 0;
return (Z->sign == MP_NEG) ? -1 : 1;
}
static inline mp_word UPPER_HALF(mp_word W) { return (W >> MP_DIGIT_BIT); }
static inline mp_digit LOWER_HALF(mp_word W) { return (mp_digit)(W); }
/* Report whether the highest-order bit of W is 1. */
static inline bool HIGH_BIT_SET(mp_word W) {
return (W >> (MP_WORD_BIT - 1)) != 0;
}
/* Report whether adding W + V will carry out. */
static inline bool ADD_WILL_OVERFLOW(mp_word W, mp_word V) {
return ((MP_WORD_MAX - V) < W);
}
/* Default number of digits allocated to a new mp_int */
static mp_size default_precision = 8;
void mp_int_default_precision(mp_size size) {
assert(size > 0);
default_precision = size;
}
/* Minimum number of digits to invoke recursive multiply */
static mp_size multiply_threshold = 32;
void mp_int_multiply_threshold(mp_size thresh) {
assert(thresh >= sizeof(mp_word));
multiply_threshold = thresh;
}
/* Allocate a buffer of (at least) num digits, or return
NULL if that couldn't be done. */
static mp_digit *s_alloc(mp_size num);
/* Release a buffer of digits allocated by s_alloc(). */
static void s_free(void *ptr);
/* Insure that z has at least min digits allocated, resizing if
necessary. Returns true if successful, false if out of memory. */
static bool s_pad(mp_int z, mp_size min);
/* Ensure Z has at least N digits allocated. */
static inline mp_result GROW(mp_int Z, mp_size N) {
return s_pad(Z, N) ? MP_OK : MP_MEMORY;
}
/* Fill in a "fake" mp_int on the stack with a given value */
static void s_fake(mp_int z, mp_small value, mp_digit vbuf[]);
static void s_ufake(mp_int z, mp_usmall value, mp_digit vbuf[]);
/* Compare two runs of digits of given length, returns <0, 0, >0 */
static int s_cdig(mp_digit *da, mp_digit *db, mp_size len);
/* Pack the unsigned digits of v into array t */
static int s_uvpack(mp_usmall v, mp_digit t[]);
/* Compare magnitudes of a and b, returns <0, 0, >0 */
static int s_ucmp(mp_int a, mp_int b);
/* Compare magnitudes of a and v, returns <0, 0, >0 */
static int s_vcmp(mp_int a, mp_small v);
static int s_uvcmp(mp_int a, mp_usmall uv);
/* Unsigned magnitude addition; assumes dc is big enough.
Carry out is returned (no memory allocated). */
static mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
mp_size size_b);
/* Unsigned magnitude subtraction. Assumes dc is big enough. */
static void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
mp_size size_b);
/* Unsigned recursive multiplication. Assumes dc is big enough. */
static int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
mp_size size_b);
/* Unsigned magnitude multiplication. Assumes dc is big enough. */
static void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
mp_size size_b);
/* Unsigned recursive squaring. Assumes dc is big enough. */
static int s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a);
/* Unsigned magnitude squaring. Assumes dc is big enough. */
static void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a);
/* Single digit addition. Assumes a is big enough. */
static void s_dadd(mp_int a, mp_digit b);
/* Single digit multiplication. Assumes a is big enough. */
static void s_dmul(mp_int a, mp_digit b);
/* Single digit multiplication on buffers; assumes dc is big enough. */
static void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a);
/* Single digit division. Replaces a with the quotient,
returns the remainder. */
static mp_digit s_ddiv(mp_int a, mp_digit b);
/* Quick division by a power of 2, replaces z (no allocation) */
static void s_qdiv(mp_int z, mp_size p2);
/* Quick remainder by a power of 2, replaces z (no allocation) */
static void s_qmod(mp_int z, mp_size p2);
/* Quick multiplication by a power of 2, replaces z.
Allocates if necessary; returns false in case this fails. */
static int s_qmul(mp_int z, mp_size p2);
/* Quick subtraction from a power of 2, replaces z.
Allocates if necessary; returns false in case this fails. */
static int s_qsub(mp_int z, mp_size p2);
/* Return maximum k such that 2^k divides z. */
static int s_dp2k(mp_int z);
/* Return k >= 0 such that z = 2^k, or -1 if there is no such k. */
static int s_isp2(mp_int z);
/* Set z to 2^k. May allocate; returns false in case this fails. */
static int s_2expt(mp_int z, mp_small k);
/* Normalize a and b for division, returns normalization constant */
static int s_norm(mp_int a, mp_int b);
/* Compute constant mu for Barrett reduction, given modulus m, result
replaces z, m is untouched. */
static mp_result s_brmu(mp_int z, mp_int m);
/* Reduce a modulo m, using Barrett's algorithm. */
static int s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2);
/* Modular exponentiation, using Barrett reduction */
static mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c);
/* Unsigned magnitude division. Assumes |a| > |b|. Allocates temporaries;
overwrites a with quotient, b with remainder. */
static mp_result s_udiv_knuth(mp_int a, mp_int b);
/* Compute the number of digits in radix r required to represent the given
value. Does not account for sign flags, terminators, etc. */
static int s_outlen(mp_int z, mp_size r);
/* Guess how many digits of precision will be needed to represent a radix r
value of the specified number of digits. Returns a value guaranteed to be
no smaller than the actual number required. */
static mp_size s_inlen(int len, mp_size r);
/* Convert a character to a digit value in radix r, or
-1 if out of range */
static int s_ch2val(char c, int r);
/* Convert a digit value to a character */
static char s_val2ch(int v, int caps);
/* Take 2's complement of a buffer in place */
static void s_2comp(unsigned char *buf, int len);
/* Convert a value to binary, ignoring sign. On input, *limpos is the bound on
how many bytes should be written to buf; on output, *limpos is set to the
number of bytes actually written. */
static mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad);
/* Multiply X by Y into Z, ignoring signs. Requires that Z have enough storage
preallocated to hold the result. */
static inline void UMUL(mp_int X, mp_int Y, mp_int Z) {
mp_size ua_ = MP_USED(X);
mp_size ub_ = MP_USED(Y);
mp_size o_ = ua_ + ub_;
ZERO(MP_DIGITS(Z), o_);
(void)s_kmul(MP_DIGITS(X), MP_DIGITS(Y), MP_DIGITS(Z), ua_, ub_);
Z->used = o_;
CLAMP(Z);
}
/* Square X into Z. Requires that Z have enough storage to hold the result. */
static inline void USQR(mp_int X, mp_int Z) {
mp_size ua_ = MP_USED(X);
mp_size o_ = ua_ + ua_;
ZERO(MP_DIGITS(Z), o_);
(void)s_ksqr(MP_DIGITS(X), MP_DIGITS(Z), ua_);
Z->used = o_;
CLAMP(Z);
}
mp_result mp_int_init(mp_int z) {
if (z == NULL) return MP_BADARG;
z->single = 0;
z->digits = &(z->single);
z->alloc = 1;
z->used = 1;
z->sign = MP_ZPOS;
return MP_OK;
}
mp_int mp_int_alloc(void) {
mp_int out = malloc(sizeof(mpz_t));
if (out != NULL) mp_int_init(out);
return out;
}
mp_result mp_int_init_size(mp_int z, mp_size prec) {
assert(z != NULL);
if (prec == 0) {
prec = default_precision;
} else if (prec == 1) {
return mp_int_init(z);
} else {
prec = s_round_prec(prec);
}
z->digits = s_alloc(prec);
if (MP_DIGITS(z) == NULL) return MP_MEMORY;
z->digits[0] = 0;
z->used = 1;
z->alloc = prec;
z->sign = MP_ZPOS;
return MP_OK;
}
mp_result mp_int_init_copy(mp_int z, mp_int old) {
assert(z != NULL && old != NULL);
mp_size uold = MP_USED(old);
if (uold == 1) {
mp_int_init(z);
} else {
mp_size target = MAX(uold, default_precision);
mp_result res = mp_int_init_size(z, target);
if (res != MP_OK) return res;
}
z->used = uold;
z->sign = old->sign;
COPY(MP_DIGITS(old), MP_DIGITS(z), uold);
return MP_OK;
}
mp_result mp_int_init_value(mp_int z, mp_small value) {
mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(value)];
s_fake(&vtmp, value, vbuf);
return mp_int_init_copy(z, &vtmp);
}
mp_result mp_int_init_uvalue(mp_int z, mp_usmall uvalue) {
mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(uvalue)];
s_ufake(&vtmp, uvalue, vbuf);
return mp_int_init_copy(z, &vtmp);
}
mp_result mp_int_set_value(mp_int z, mp_small value) {
mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(value)];
s_fake(&vtmp, value, vbuf);
return mp_int_copy(&vtmp, z);
}
mp_result mp_int_set_uvalue(mp_int z, mp_usmall uvalue) {
mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(uvalue)];
s_ufake(&vtmp, uvalue, vbuf);
return mp_int_copy(&vtmp, z);
}
void mp_int_clear(mp_int z) {
if (z == NULL) return;
if (MP_DIGITS(z) != NULL) {
if (MP_DIGITS(z) != &(z->single)) s_free(MP_DIGITS(z));
z->digits = NULL;
}
}
void mp_int_free(mp_int z) {
assert(z != NULL);
mp_int_clear(z);
free(z); /* note: NOT s_free() */
}
mp_result mp_int_copy(mp_int a, mp_int c) {
assert(a != NULL && c != NULL);
if (a != c) {
mp_size ua = MP_USED(a);
mp_digit *da, *dc;
if (!s_pad(c, ua)) return MP_MEMORY;
da = MP_DIGITS(a);
dc = MP_DIGITS(c);
COPY(da, dc, ua);
c->used = ua;
c->sign = a->sign;
}
return MP_OK;
}
void mp_int_swap(mp_int a, mp_int c) {
if (a != c) {
mpz_t tmp = *a;
*a = *c;
*c = tmp;
if (MP_DIGITS(a) == &(c->single)) a->digits = &(a->single);
if (MP_DIGITS(c) == &(a->single)) c->digits = &(c->single);
}
}
void mp_int_zero(mp_int z) {
assert(z != NULL);
z->digits[0] = 0;
z->used = 1;
z->sign = MP_ZPOS;
}
mp_result mp_int_abs(mp_int a, mp_int c) {
assert(a != NULL && c != NULL);
mp_result res;
if ((res = mp_int_copy(a, c)) != MP_OK) return res;
c->sign = MP_ZPOS;
return MP_OK;
}
mp_result mp_int_neg(mp_int a, mp_int c) {
assert(a != NULL && c != NULL);
mp_result res;
if ((res = mp_int_copy(a, c)) != MP_OK) return res;
if (CMPZ(c) != 0) c->sign = 1 - MP_SIGN(a);
return MP_OK;
}
mp_result mp_int_add(mp_int a, mp_int b, mp_int c) {
assert(a != NULL && b != NULL && c != NULL);
mp_size ua = MP_USED(a);
mp_size ub = MP_USED(b);
mp_size max = MAX(ua, ub);
if (MP_SIGN(a) == MP_SIGN(b)) {
/* Same sign -- add magnitudes, preserve sign of addends */
if (!s_pad(c, max)) return MP_MEMORY;
mp_digit carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
mp_size uc = max;
if (carry) {
if (!s_pad(c, max + 1)) return MP_MEMORY;
c->digits[max] = carry;
++uc;
}
c->used = uc;
c->sign = a->sign;
} else {
/* Different signs -- subtract magnitudes, preserve sign of greater */
int cmp = s_ucmp(a, b); /* magnitude comparison, sign ignored */
/* Set x to max(a, b), y to min(a, b) to simplify later code.
A special case yields zero for equal magnitudes.
*/
mp_int x, y;
if (cmp == 0) {
mp_int_zero(c);
return MP_OK;
} else if (cmp < 0) {
x = b;
y = a;
} else {
x = a;
y = b;
}
if (!s_pad(c, MP_USED(x))) return MP_MEMORY;
/* Subtract smaller from larger */
s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
c->used = x->used;
CLAMP(c);
/* Give result the sign of the larger */
c->sign = x->sign;
}
return MP_OK;
}
mp_result mp_int_add_value(mp_int a, mp_small value, mp_int c) {
mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(value)];
s_fake(&vtmp, value, vbuf);
return mp_int_add(a, &vtmp, c);
}
mp_result mp_int_sub(mp_int a, mp_int b, mp_int c) {
assert(a != NULL && b != NULL && c != NULL);
mp_size ua = MP_USED(a);
mp_size ub = MP_USED(b);
mp_size max = MAX(ua, ub);
if (MP_SIGN(a) != MP_SIGN(b)) {
/* Different signs -- add magnitudes and keep sign of a */
if (!s_pad(c, max)) return MP_MEMORY;
mp_digit carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
mp_size uc = max;
if (carry) {
if (!s_pad(c, max + 1)) return MP_MEMORY;
c->digits[max] = carry;
++uc;
}
c->used = uc;
c->sign = a->sign;
} else {
/* Same signs -- subtract magnitudes */
if (!s_pad(c, max)) return MP_MEMORY;
mp_int x, y;
mp_sign osign;
int cmp = s_ucmp(a, b);
if (cmp >= 0) {
x = a;
y = b;
osign = MP_ZPOS;
} else {
x = b;
y = a;
osign = MP_NEG;
}
if (MP_SIGN(a) == MP_NEG && cmp != 0) osign = 1 - osign;
s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
c->used = x->used;
CLAMP(c);
c->sign = osign;
}
return MP_OK;
}
mp_result mp_int_sub_value(mp_int a, mp_small value, mp_int c) {
mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(value)];
s_fake(&vtmp, value, vbuf);
return mp_int_sub(a, &vtmp, c);
}
mp_result mp_int_mul(mp_int a, mp_int b, mp_int c) {
assert(a != NULL && b != NULL && c != NULL);
/* If either input is zero, we can shortcut multiplication */
if (mp_int_compare_zero(a) == 0 || mp_int_compare_zero(b) == 0) {
mp_int_zero(c);
return MP_OK;
}
/* Output is positive if inputs have same sign, otherwise negative */
mp_sign osign = (MP_SIGN(a) == MP_SIGN(b)) ? MP_ZPOS : MP_NEG;
/* If the output is not identical to any of the inputs, we'll write the
results directly; otherwise, allocate a temporary space. */
mp_size ua = MP_USED(a);
mp_size ub = MP_USED(b);
mp_size osize = MAX(ua, ub);
osize = 4 * ((osize + 1) / 2);
mp_digit *out;
mp_size p = 0;
if (c == a || c == b) {
p = MAX(s_round_prec(osize), default_precision);
if ((out = s_alloc(p)) == NULL) return MP_MEMORY;
} else {
if (!s_pad(c, osize)) return MP_MEMORY;
out = MP_DIGITS(c);
}
ZERO(out, osize);
if (!s_kmul(MP_DIGITS(a), MP_DIGITS(b), out, ua, ub)) return MP_MEMORY;
/* If we allocated a new buffer, get rid of whatever memory c was already
using, and fix up its fields to reflect that.
*/
if (out != MP_DIGITS(c)) {
if ((void *)MP_DIGITS(c) != (void *)c) s_free(MP_DIGITS(c));
c->digits = out;
c->alloc = p;
}
c->used = osize; /* might not be true, but we'll fix it ... */
CLAMP(c); /* ... right here */
c->sign = osign;
return MP_OK;
}
mp_result mp_int_mul_value(mp_int a, mp_small value, mp_int c) {
mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(value)];
s_fake(&vtmp, value, vbuf);
return mp_int_mul(a, &vtmp, c);
}
mp_result mp_int_mul_pow2(mp_int a, mp_small p2, mp_int c) {
assert(a != NULL && c != NULL && p2 >= 0);
mp_result res = mp_int_copy(a, c);
if (res != MP_OK) return res;
if (s_qmul(c, (mp_size)p2)) {
return MP_OK;
} else {
return MP_MEMORY;
}
}
mp_result mp_int_sqr(mp_int a, mp_int c) {
assert(a != NULL && c != NULL);
/* Get a temporary buffer big enough to hold the result */
mp_size osize = (mp_size)4 * ((MP_USED(a) + 1) / 2);
mp_size p = 0;
mp_digit *out;
if (a == c) {
p = s_round_prec(osize);
p = MAX(p, default_precision);
if ((out = s_alloc(p)) == NULL) return MP_MEMORY;
} else {
if (!s_pad(c, osize)) return MP_MEMORY;
out = MP_DIGITS(c);
}
ZERO(out, osize);
s_ksqr(MP_DIGITS(a), out, MP_USED(a));
/* Get rid of whatever memory c was already using, and fix up its fields to
reflect the new digit array it's using
*/
if (out != MP_DIGITS(c)) {
if ((void *)MP_DIGITS(c) != (void *)c) s_free(MP_DIGITS(c));
c->digits = out;
c->alloc = p;
}
c->used = osize; /* might not be true, but we'll fix it ... */
CLAMP(c); /* ... right here */
c->sign = MP_ZPOS;
return MP_OK;
}
mp_result mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r) {
assert(a != NULL && b != NULL && q != r);
int cmp;
mp_result res = MP_OK;
mp_int qout, rout;
mp_sign sa = MP_SIGN(a);
mp_sign sb = MP_SIGN(b);
if (CMPZ(b) == 0) {
return MP_UNDEF;
} else if ((cmp = s_ucmp(a, b)) < 0) {
/* If |a| < |b|, no division is required:
q = 0, r = a
*/
if (r && (res = mp_int_copy(a, r)) != MP_OK) return res;
if (q) mp_int_zero(q);
return MP_OK;
} else if (cmp == 0) {
/* If |a| = |b|, no division is required:
q = 1 or -1, r = 0
*/
if (r) mp_int_zero(r);
if (q) {
mp_int_zero(q);
q->digits[0] = 1;
if (sa != sb) q->sign = MP_NEG;
}
return MP_OK;
}
/* When |a| > |b|, real division is required. We need someplace to store
quotient and remainder, but q and r are allowed to be NULL or to overlap
with the inputs.
*/
DECLARE_TEMP(2);
int lg;
if ((lg = s_isp2(b)) < 0) {
if (q && b != q) {
REQUIRE(mp_int_copy(a, q));
qout = q;
} else {
REQUIRE(mp_int_copy(a, TEMP(0)));
qout = TEMP(0);
}
if (r && a != r) {
REQUIRE(mp_int_copy(b, r));
rout = r;
} else {
REQUIRE(mp_int_copy(b, TEMP(1)));
rout = TEMP(1);
}
REQUIRE(s_udiv_knuth(qout, rout));
} else {
if (q) REQUIRE(mp_int_copy(a, q));
if (r) REQUIRE(mp_int_copy(a, r));
if (q) s_qdiv(q, (mp_size)lg);
qout = q;
if (r) s_qmod(r, (mp_size)lg);
rout = r;
}
/* Recompute signs for output */
if (rout) {
rout->sign = sa;
if (CMPZ(rout) == 0) rout->sign = MP_ZPOS;
}
if (qout) {
qout->sign = (sa == sb) ? MP_ZPOS : MP_NEG;
if (CMPZ(qout) == 0) qout->sign = MP_ZPOS;
}
if (q) REQUIRE(mp_int_copy(qout, q));
if (r) REQUIRE(mp_int_copy(rout, r));
CLEANUP_TEMP();
return res;
}
mp_result mp_int_mod(mp_int a, mp_int m, mp_int c) {
DECLARE_TEMP(1);
mp_int out = (m == c) ? TEMP(0) : c;
REQUIRE(mp_int_div(a, m, NULL, out));
if (CMPZ(out) < 0) {
REQUIRE(mp_int_add(out, m, c));
} else {
REQUIRE(mp_int_copy(out, c));
}
CLEANUP_TEMP();
return MP_OK;
}
mp_result mp_int_div_value(mp_int a, mp_small value, mp_int q, mp_small *r) {
mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(value)];
s_fake(&vtmp, value, vbuf);
DECLARE_TEMP(1);
REQUIRE(mp_int_div(a, &vtmp, q, TEMP(0)));
if (r) (void)mp_int_to_int(TEMP(0), r); /* can't fail */
CLEANUP_TEMP();
return MP_OK;
}
mp_result mp_int_div_pow2(mp_int a, mp_small p2, mp_int q, mp_int r) {
assert(a != NULL && p2 >= 0 && q != r);
mp_result res = MP_OK;
if (q != NULL && (res = mp_int_copy(a, q)) == MP_OK) {
s_qdiv(q, (mp_size)p2);
}
if (res == MP_OK && r != NULL && (res = mp_int_copy(a, r)) == MP_OK) {
s_qmod(r, (mp_size)p2);
}
return res;
}
mp_result mp_int_expt(mp_int a, mp_small b, mp_int c) {
assert(c != NULL);
if (b < 0) return MP_RANGE;
DECLARE_TEMP(1);
REQUIRE(mp_int_copy(a, TEMP(0)));
(void)mp_int_set_value(c, 1);
unsigned int v = labs(b);
while (v != 0) {
if (v & 1) {
REQUIRE(mp_int_mul(c, TEMP(0), c));
}
v >>= 1;
if (v == 0) break;
REQUIRE(mp_int_sqr(TEMP(0), TEMP(0)));
}
CLEANUP_TEMP();
return MP_OK;
}
mp_result mp_int_expt_value(mp_small a, mp_small b, mp_int c) {
assert(c != NULL);
if (b < 0) return MP_RANGE;
DECLARE_TEMP(1);
REQUIRE(mp_int_set_value(TEMP(0), a));
(void)mp_int_set_value(c, 1);
unsigned int v = labs(b);
while (v != 0) {
if (v & 1) {
REQUIRE(mp_int_mul(c, TEMP(0), c));
}
v >>= 1;
if (v == 0) break;
REQUIRE(mp_int_sqr(TEMP(0), TEMP(0)));
}
CLEANUP_TEMP();
return MP_OK;
}
mp_result mp_int_expt_full(mp_int a, mp_int b, mp_int c) {
assert(a != NULL && b != NULL && c != NULL);
if (MP_SIGN(b) == MP_NEG) return MP_RANGE;
DECLARE_TEMP(1);
REQUIRE(mp_int_copy(a, TEMP(0)));
(void)mp_int_set_value(c, 1);
for (unsigned ix = 0; ix < MP_USED(b); ++ix) {
mp_digit d = b->digits[ix];
for (unsigned jx = 0; jx < MP_DIGIT_BIT; ++jx) {
if (d & 1) {
REQUIRE(mp_int_mul(c, TEMP(0), c));
}
d >>= 1;
if (d == 0 && ix + 1 == MP_USED(b)) break;
REQUIRE(mp_int_sqr(TEMP(0), TEMP(0)));
}
}
CLEANUP_TEMP();
return MP_OK;
}
int mp_int_compare(mp_int a, mp_int b) {
assert(a != NULL && b != NULL);
mp_sign sa = MP_SIGN(a);
if (sa == MP_SIGN(b)) {
int cmp = s_ucmp(a, b);
/* If they're both zero or positive, the normal comparison applies; if both
negative, the sense is reversed. */
if (sa == MP_ZPOS) {
return cmp;
} else {
return -cmp;
}
} else if (sa == MP_ZPOS) {
return 1;
} else {
return -1;
}
}
int mp_int_compare_unsigned(mp_int a, mp_int b) {
assert(a != NULL && b != NULL);
return s_ucmp(a, b);
}
int mp_int_compare_zero(mp_int z) {
assert(z != NULL);
if (MP_USED(z) == 1 && z->digits[0] == 0) {
return 0;
} else if (MP_SIGN(z) == MP_ZPOS) {
return 1;
} else {
return -1;
}
}
int mp_int_compare_value(mp_int z, mp_small value) {
assert(z != NULL);
mp_sign vsign = (value < 0) ? MP_NEG : MP_ZPOS;
if (vsign == MP_SIGN(z)) {
int cmp = s_vcmp(z, value);
return (vsign == MP_ZPOS) ? cmp : -cmp;
} else {
return (value < 0) ? 1 : -1;
}
}
int mp_int_compare_uvalue(mp_int z, mp_usmall uv) {
assert(z != NULL);
if (MP_SIGN(z) == MP_NEG) {
return -1;
} else {
return s_uvcmp(z, uv);
}
}
mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c) {
assert(a != NULL && b != NULL && c != NULL && m != NULL);
/* Zero moduli and negative exponents are not considered. */
if (CMPZ(m) == 0) return MP_UNDEF;
if (CMPZ(b) < 0) return MP_RANGE;
mp_size um = MP_USED(m);
DECLARE_TEMP(3);
REQUIRE(GROW(TEMP(0), 2 * um));
REQUIRE(GROW(TEMP(1), 2 * um));
mp_int s;
if (c == b || c == m) {
REQUIRE(GROW(TEMP(2), 2 * um));
s = TEMP(2);
} else {
s = c;
}
REQUIRE(mp_int_mod(a, m, TEMP(0)));
REQUIRE(s_brmu(TEMP(1), m));
REQUIRE(s_embar(TEMP(0), b, m, TEMP(1), s));
REQUIRE(mp_int_copy(s, c));
CLEANUP_TEMP();
return MP_OK;
}
mp_result mp_int_exptmod_evalue(mp_int a, mp_small value, mp_int m, mp_int c) {
mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(value)];
s_fake(&vtmp, value, vbuf);
return mp_int_exptmod(a, &vtmp, m, c);
}
mp_result mp_int_exptmod_bvalue(mp_small value, mp_int b, mp_int m, mp_int c) {
mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(value)];
s_fake(&vtmp, value, vbuf);
return mp_int_exptmod(&vtmp, b, m, c);
}
mp_result mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu,
mp_int c) {
assert(a && b && m && c);
/* Zero moduli and negative exponents are not considered. */
if (CMPZ(m) == 0) return MP_UNDEF;
if (CMPZ(b) < 0) return MP_RANGE;
DECLARE_TEMP(2);
mp_size um = MP_USED(m);
REQUIRE(GROW(TEMP(0), 2 * um));
mp_int s;
if (c == b || c == m) {
REQUIRE(GROW(TEMP(1), 2 * um));
s = TEMP(1);
} else {
s = c;
}
REQUIRE(mp_int_mod(a, m, TEMP(0)));
REQUIRE(s_embar(TEMP(0), b, m, mu, s));
REQUIRE(mp_int_copy(s, c));
CLEANUP_TEMP();
return MP_OK;
}
mp_result mp_int_redux_const(mp_int m, mp_int c) {
assert(m != NULL && c != NULL && m != c);
return s_brmu(c, m);
}
mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c) {
assert(a != NULL && m != NULL && c != NULL);
if (CMPZ(a) == 0 || CMPZ(m) <= 0) return MP_RANGE;
DECLARE_TEMP(2);
REQUIRE(mp_int_egcd(a, m, TEMP(0), TEMP(1), NULL));
if (mp_int_compare_value(TEMP(0), 1) != 0) {
REQUIRE(MP_UNDEF);
}
/* It is first necessary to constrain the value to the proper range */
REQUIRE(mp_int_mod(TEMP(1), m, TEMP(1)));
/* Now, if 'a' was originally negative, the value we have is actually the
magnitude of the negative representative; to get the positive value we
have to subtract from the modulus. Otherwise, the value is okay as it
stands.
*/
if (MP_SIGN(a) == MP_NEG) {
REQUIRE(mp_int_sub(m, TEMP(1), c));
} else {
REQUIRE(mp_int_copy(TEMP(1), c));
}
CLEANUP_TEMP();
return MP_OK;
}
/* Binary GCD algorithm due to Josef Stein, 1961 */
mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c) {
assert(a != NULL && b != NULL && c != NULL);
int ca = CMPZ(a);
int cb = CMPZ(b);
if (ca == 0 && cb == 0) {
return MP_UNDEF;
} else if (ca == 0) {
return mp_int_abs(b, c);
} else if (cb == 0) {
return mp_int_abs(a, c);
}
DECLARE_TEMP(3);
REQUIRE(mp_int_copy(a, TEMP(0)));
REQUIRE(mp_int_copy(b, TEMP(1)));
TEMP(0)->sign = MP_ZPOS;
TEMP(1)->sign = MP_ZPOS;
int k = 0;
{ /* Divide out common factors of 2 from u and v */
int div2_u = s_dp2k(TEMP(0));
int div2_v = s_dp2k(TEMP(1));
k = MIN(div2_u, div2_v);
s_qdiv(TEMP(0), (mp_size)k);
s_qdiv(TEMP(1), (mp_size)k);
}
if (mp_int_is_odd(TEMP(0))) {
REQUIRE(mp_int_neg(TEMP(1), TEMP(2)));
} else {
REQUIRE(mp_int_copy(TEMP(0), TEMP(2)));
}
for (;;) {
s_qdiv(TEMP(2), s_dp2k(TEMP(2)));
if (CMPZ(TEMP(2)) > 0) {
REQUIRE(mp_int_copy(TEMP(2), TEMP(0)));
} else {
REQUIRE(mp_int_neg(TEMP(2), TEMP(1)));
}
REQUIRE(mp_int_sub(TEMP(0), TEMP(1), TEMP(2)));
if (CMPZ(TEMP(2)) == 0) break;
}
REQUIRE(mp_int_abs(TEMP(0), c));
if (!s_qmul(c, (mp_size)k)) REQUIRE(MP_MEMORY);
CLEANUP_TEMP();
return MP_OK;
}
/* This is the binary GCD algorithm again, but this time we keep track of the
elementary matrix operations as we go, so we can get values x and y
satisfying c = ax + by.
*/
mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c, mp_int x, mp_int y) {
assert(a != NULL && b != NULL && c != NULL && (x != NULL || y != NULL));
mp_result res = MP_OK;
int ca = CMPZ(a);
int cb = CMPZ(b);
if (ca == 0 && cb == 0) {
return MP_UNDEF;
} else if (ca == 0) {
if ((res = mp_int_abs(b, c)) != MP_OK) return res;
mp_int_zero(x);
(void)mp_int_set_value(y, 1);
return MP_OK;
} else if (cb == 0) {
if ((res = mp_int_abs(a, c)) != MP_OK) return res;
(void)mp_int_set_value(x, 1);
mp_int_zero(y);
return MP_OK;
}
/* Initialize temporaries:
A:0, B:1, C:2, D:3, u:4, v:5, ou:6, ov:7 */
DECLARE_TEMP(8);
REQUIRE(mp_int_set_value(TEMP(0), 1));
REQUIRE(mp_int_set_value(TEMP(3), 1));
REQUIRE(mp_int_copy(a, TEMP(4)));
REQUIRE(mp_int_copy(b, TEMP(5)));
/* We will work with absolute values here */
TEMP(4)->sign = MP_ZPOS;
TEMP(5)->sign = MP_ZPOS;
int k = 0;
{ /* Divide out common factors of 2 from u and v */
int div2_u = s_dp2k(TEMP(4)), div2_v = s_dp2k(TEMP(5));
k = MIN(div2_u, div2_v);
s_qdiv(TEMP(4), k);
s_qdiv(TEMP(5), k);
}
REQUIRE(mp_int_copy(TEMP(4), TEMP(6)));
REQUIRE(mp_int_copy(TEMP(5), TEMP(7)));
for (;;) {
while (mp_int_is_even(TEMP(4))) {
s_qdiv(TEMP(4), 1);
if (mp_int_is_odd(TEMP(0)) || mp_int_is_odd(TEMP(1))) {
REQUIRE(mp_int_add(TEMP(0), TEMP(7), TEMP(0)));
REQUIRE(mp_int_sub(TEMP(1), TEMP(6), TEMP(1)));
}
s_qdiv(TEMP(0), 1);
s_qdiv(TEMP(1), 1);
}
while (mp_int_is_even(TEMP(5))) {
s_qdiv(TEMP(5), 1);
if (mp_int_is_odd(TEMP(2)) || mp_int_is_odd(TEMP(3))) {
REQUIRE(mp_int_add(TEMP(2), TEMP(7), TEMP(2)));
REQUIRE(mp_int_sub(TEMP(3), TEMP(6), TEMP(3)));
}
s_qdiv(TEMP(2), 1);
s_qdiv(TEMP(3), 1);
}
if (mp_int_compare(TEMP(4), TEMP(5)) >= 0) {
REQUIRE(mp_int_sub(TEMP(4), TEMP(5), TEMP(4)));
REQUIRE(mp_int_sub(TEMP(0), TEMP(2), TEMP(0)));
REQUIRE(mp_int_sub(TEMP(1), TEMP(3), TEMP(1)));
} else {
REQUIRE(mp_int_sub(TEMP(5), TEMP(4), TEMP(5)));
REQUIRE(mp_int_sub(TEMP(2), TEMP(0), TEMP(2)));
REQUIRE(mp_int_sub(TEMP(3), TEMP(1), TEMP(3)));
}
if (CMPZ(TEMP(4)) == 0) {
if (x) REQUIRE(mp_int_copy(TEMP(2), x));
if (y) REQUIRE(mp_int_copy(TEMP(3), y));
if (c) {
if (!s_qmul(TEMP(5), k)) {
REQUIRE(MP_MEMORY);
}
REQUIRE(mp_int_copy(TEMP(5), c));
}
break;
}
}
CLEANUP_TEMP();
return MP_OK;
}
mp_result mp_int_lcm(mp_int a, mp_int b, mp_int c) {
assert(a != NULL && b != NULL && c != NULL);
/* Since a * b = gcd(a, b) * lcm(a, b), we can compute
lcm(a, b) = (a / gcd(a, b)) * b.
This formulation insures everything works even if the input
variables share space.
*/
DECLARE_TEMP(1);
REQUIRE(mp_int_gcd(a, b, TEMP(0)));
REQUIRE(mp_int_div(a, TEMP(0), TEMP(0), NULL));
REQUIRE(mp_int_mul(TEMP(0), b, TEMP(0)));
REQUIRE(mp_int_copy(TEMP(0), c));
CLEANUP_TEMP();
return MP_OK;
}
bool mp_int_divisible_value(mp_int a, mp_small v) {
mp_small rem = 0;
if (mp_int_div_value(a, v, NULL, &rem) != MP_OK) {
return false;
}
return rem == 0;
}
int mp_int_is_pow2(mp_int z) {
assert(z != NULL);
return s_isp2(z);
}
/* Implementation of Newton's root finding method, based loosely on a patch
contributed by Hal Finkel <half@halssoftware.com>
modified by M. J. Fromberger.
*/
mp_result mp_int_root(mp_int a, mp_small b, mp_int c) {
assert(a != NULL && c != NULL && b > 0);
if (b == 1) {
return mp_int_copy(a, c);
}
bool flips = false;
if (MP_SIGN(a) == MP_NEG) {
if (b % 2 == 0) {
return MP_UNDEF; /* root does not exist for negative a with even b */
} else {
flips = true;
}
}
DECLARE_TEMP(5);
REQUIRE(mp_int_copy(a, TEMP(0)));
REQUIRE(mp_int_copy(a, TEMP(1)));
TEMP(0)->sign = MP_ZPOS;
TEMP(1)->sign = MP_ZPOS;
for (;;) {
REQUIRE(mp_int_expt(TEMP(1), b, TEMP(2)));
if (mp_int_compare_unsigned(TEMP(2), TEMP(0)) <= 0) break;
REQUIRE(mp_int_sub(TEMP(2), TEMP(0), TEMP(2)));
REQUIRE(mp_int_expt(TEMP(1), b - 1, TEMP(3)));
REQUIRE(mp_int_mul_value(TEMP(3), b, TEMP(3)));
REQUIRE(mp_int_div(TEMP(2), TEMP(3), TEMP(4), NULL));
REQUIRE(mp_int_sub(TEMP(1), TEMP(4), TEMP(4)));
if (mp_int_compare_unsigned(TEMP(1), TEMP(4)) == 0) {
REQUIRE(mp_int_sub_value(TEMP(4), 1, TEMP(4)));
}
REQUIRE(mp_int_copy(TEMP(4), TEMP(1)));
}
REQUIRE(mp_int_copy(TEMP(1), c));
/* If the original value of a was negative, flip the output sign. */
if (flips) (void)mp_int_neg(c, c); /* cannot fail */
CLEANUP_TEMP();
return MP_OK;
}
mp_result mp_int_to_int(mp_int z, mp_small *out) {
assert(z != NULL);
/* Make sure the value is representable as a small integer */
mp_sign sz = MP_SIGN(z);
if ((sz == MP_ZPOS && mp_int_compare_value(z, MP_SMALL_MAX) > 0) ||
mp_int_compare_value(z, MP_SMALL_MIN) < 0) {
return MP_RANGE;
}
mp_usmall uz = MP_USED(z);
mp_digit *dz = MP_DIGITS(z) + uz - 1;
mp_small uv = 0;
while (uz > 0) {
uv <<= MP_DIGIT_BIT / 2;
uv = (uv << (MP_DIGIT_BIT / 2)) | *dz--;
--uz;
}
if (out) *out = (mp_small)((sz == MP_NEG) ? -uv : uv);
return MP_OK;
}
mp_result mp_int_to_uint(mp_int z, mp_usmall *out) {
assert(z != NULL);
/* Make sure the value is representable as an unsigned small integer */
mp_size sz = MP_SIGN(z);
if (sz == MP_NEG || mp_int_compare_uvalue(z, MP_USMALL_MAX) > 0) {
return MP_RANGE;
}
mp_size uz = MP_USED(z);
mp_digit *dz = MP_DIGITS(z) + uz - 1;
mp_usmall uv = 0;
while (uz > 0) {
uv <<= MP_DIGIT_BIT / 2;
uv = (uv << (MP_DIGIT_BIT / 2)) | *dz--;
--uz;
}
if (out) *out = uv;
return MP_OK;
}
mp_result mp_int_to_string(mp_int z, mp_size radix, char *str, int limit) {
assert(z != NULL && str != NULL && limit >= 2);
assert(radix >= MP_MIN_RADIX && radix <= MP_MAX_RADIX);
int cmp = 0;
if (CMPZ(z) == 0) {
*str++ = s_val2ch(0, 1);
} else {
mp_result res;
mpz_t tmp;
char *h, *t;
if ((res = mp_int_init_copy(&tmp, z)) != MP_OK) return res;
if (MP_SIGN(z) == MP_NEG) {
*str++ = '-';
--limit;
}
h = str;
/* Generate digits in reverse order until finished or limit reached */
for (/* */; limit > 0; --limit) {
mp_digit d;
if ((cmp = CMPZ(&tmp)) == 0) break;
d = s_ddiv(&tmp, (mp_digit)radix);
*str++ = s_val2ch(d, 1);
}
t = str - 1;
/* Put digits back in correct output order */
while (h < t) {
char tc = *h;
*h++ = *t;
*t-- = tc;
}
mp_int_clear(&tmp);
}
*str = '\0';
if (cmp == 0) {
return MP_OK;
} else {
return MP_TRUNC;
}
}
mp_result mp_int_string_len(mp_int z, mp_size radix) {
assert(z != NULL);
assert(radix >= MP_MIN_RADIX && radix <= MP_MAX_RADIX);
int len = s_outlen(z, radix) + 1; /* for terminator */
/* Allow for sign marker on negatives */
if (MP_SIGN(z) == MP_NEG) len += 1;
return len;
}
/* Read zero-terminated string into z */
mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str) {
return mp_int_read_cstring(z, radix, str, NULL);
}
mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str,
char **end) {
assert(z != NULL && str != NULL);
assert(radix >= MP_MIN_RADIX && radix <= MP_MAX_RADIX);
/* Skip leading whitespace */
while (isspace((unsigned char)*str)) ++str;
/* Handle leading sign tag (+/-, positive default) */
switch (*str) {
case '-':
z->sign = MP_NEG;
++str;
break;
case '+':
++str; /* fallthrough */
default:
z->sign = MP_ZPOS;
break;
}
/* Skip leading zeroes */
int ch;
while ((ch = s_ch2val(*str, radix)) == 0) ++str;
/* Make sure there is enough space for the value */
if (!s_pad(z, s_inlen(strlen(str), radix))) return MP_MEMORY;
z->used = 1;
z->digits[0] = 0;
while (*str != '\0' && ((ch = s_ch2val(*str, radix)) >= 0)) {
s_dmul(z, (mp_digit)radix);
s_dadd(z, (mp_digit)ch);
++str;
}
CLAMP(z);
/* Override sign for zero, even if negative specified. */
if (CMPZ(z) == 0) z->sign = MP_ZPOS;
if (end != NULL) *end = (char *)str;
/* Return a truncation error if the string has unprocessed characters
remaining, so the caller can tell if the whole string was done */
if (*str != '\0') {
return MP_TRUNC;
} else {
return MP_OK;
}
}
mp_result mp_int_count_bits(mp_int z) {
assert(z != NULL);
mp_size uz = MP_USED(z);
if (uz == 1 && z->digits[0] == 0) return 1;
--uz;
mp_size nbits = uz * MP_DIGIT_BIT;
mp_digit d = z->digits[uz];
while (d != 0) {
d >>= 1;
++nbits;
}
return nbits;
}
mp_result mp_int_to_binary(mp_int z, unsigned char *buf, int limit) {
static const int PAD_FOR_2C = 1;
assert(z != NULL && buf != NULL);
int limpos = limit;
mp_result res = s_tobin(z, buf, &limpos, PAD_FOR_2C);
if (MP_SIGN(z) == MP_NEG) s_2comp(buf, limpos);
return res;
}
mp_result mp_int_read_binary(mp_int z, unsigned char *buf, int len) {
assert(z != NULL && buf != NULL && len > 0);
/* Figure out how many digits are needed to represent this value */
mp_size need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
if (!s_pad(z, need)) return MP_MEMORY;
mp_int_zero(z);
/* If the high-order bit is set, take the 2's complement before reading the
value (it will be restored afterward) */
if (buf[0] >> (CHAR_BIT - 1)) {
z->sign = MP_NEG;
s_2comp(buf, len);
}
mp_digit *dz = MP_DIGITS(z);
unsigned char *tmp = buf;
for (int i = len; i > 0; --i, ++tmp) {
s_qmul(z, (mp_size)CHAR_BIT);
*dz |= *tmp;
}
/* Restore 2's complement if we took it before */
if (MP_SIGN(z) == MP_NEG) s_2comp(buf, len);
return MP_OK;
}
mp_result mp_int_binary_len(mp_int z) {
mp_result res = mp_int_count_bits(z);
if (res <= 0) return res;
int bytes = mp_int_unsigned_len(z);
/* If the highest-order bit falls exactly on a byte boundary, we need to pad
with an extra byte so that the sign will be read correctly when reading it
back in. */
if (bytes * CHAR_BIT == res) ++bytes;
return bytes;
}
mp_result mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit) {
static const int NO_PADDING = 0;
assert(z != NULL && buf != NULL);
return s_tobin(z, buf, &limit, NO_PADDING);
}
mp_result mp_int_read_unsigned(mp_int z, unsigned char *buf, int len) {
assert(z != NULL && buf != NULL && len > 0);
/* Figure out how many digits are needed to represent this value */
mp_size need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
if (!s_pad(z, need)) return MP_MEMORY;
mp_int_zero(z);
unsigned char *tmp = buf;
for (int i = len; i > 0; --i, ++tmp) {
(void)s_qmul(z, CHAR_BIT);
*MP_DIGITS(z) |= *tmp;
}
return MP_OK;
}
mp_result mp_int_unsigned_len(mp_int z) {
mp_result res = mp_int_count_bits(z);
if (res <= 0) return res;
int bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT;
return bytes;
}
const char *mp_error_string(mp_result res) {
if (res > 0) return s_unknown_err;
res = -res;
int ix;
for (ix = 0; ix < res && s_error_msg[ix] != NULL; ++ix)
;
if (s_error_msg[ix] != NULL) {
return s_error_msg[ix];
} else {
return s_unknown_err;
}
}
/*------------------------------------------------------------------------*/
/* Private functions for internal use. These make assumptions. */
#if DEBUG
static const mp_digit fill = (mp_digit)0xdeadbeefabad1dea;
#endif
static mp_digit *s_alloc(mp_size num) {
mp_digit *out = malloc(num * sizeof(mp_digit));
assert(out != NULL);
#if DEBUG
for (mp_size ix = 0; ix < num; ++ix) out[ix] = fill;
#endif
return out;
}
static mp_digit *s_realloc(mp_digit *old, mp_size osize, mp_size nsize) {
#if DEBUG
mp_digit *new = s_alloc(nsize);
assert(new != NULL);
for (mp_size ix = 0; ix < nsize; ++ix) new[ix] = fill;
memcpy(new, old, osize * sizeof(mp_digit));
#else
mp_digit *new = realloc(old, nsize * sizeof(mp_digit));
assert(new != NULL);
#endif
return new;
}
static void s_free(void *ptr) { free(ptr); }
static bool s_pad(mp_int z, mp_size min) {
if (MP_ALLOC(z) < min) {
mp_size nsize = s_round_prec(min);
mp_digit *tmp;
if (z->digits == &(z->single)) {
if ((tmp = s_alloc(nsize)) == NULL) return false;
tmp[0] = z->single;
} else if ((tmp = s_realloc(MP_DIGITS(z), MP_ALLOC(z), nsize)) == NULL) {
return false;
}
z->digits = tmp;
z->alloc = nsize;
}
return true;
}
/* Note: This will not work correctly when value == MP_SMALL_MIN */
static void s_fake(mp_int z, mp_small value, mp_digit vbuf[]) {
mp_usmall uv = (mp_usmall)(value < 0) ? -value : value;
s_ufake(z, uv, vbuf);
if (value < 0) z->sign = MP_NEG;
}
static void s_ufake(mp_int z, mp_usmall value, mp_digit vbuf[]) {
mp_size ndig = (mp_size)s_uvpack(value, vbuf);
z->used = ndig;
z->alloc = MP_VALUE_DIGITS(value);
z->sign = MP_ZPOS;
z->digits = vbuf;
}
static int s_cdig(mp_digit *da, mp_digit *db, mp_size len) {
mp_digit *dat = da + len - 1, *dbt = db + len - 1;
for (/* */; len != 0; --len, --dat, --dbt) {
if (*dat > *dbt) {
return 1;
} else if (*dat < *dbt) {
return -1;
}
}
return 0;
}
static int s_uvpack(mp_usmall uv, mp_digit t[]) {
int ndig = 0;
if (uv == 0)
t[ndig++] = 0;
else {
while (uv != 0) {
t[ndig++] = (mp_digit)uv;
uv >>= MP_DIGIT_BIT / 2;
uv >>= MP_DIGIT_BIT / 2;
}
}
return ndig;
}
static int s_ucmp(mp_int a, mp_int b) {
mp_size ua = MP_USED(a), ub = MP_USED(b);
if (ua > ub) {
return 1;
} else if (ub > ua) {
return -1;
} else {
return s_cdig(MP_DIGITS(a), MP_DIGITS(b), ua);
}
}
static int s_vcmp(mp_int a, mp_small v) {
mp_usmall uv = (v < 0) ? -(mp_usmall)v : (mp_usmall)v;
return s_uvcmp(a, uv);
}
static int s_uvcmp(mp_int a, mp_usmall uv) {
mpz_t vtmp;
mp_digit vdig[MP_VALUE_DIGITS(uv)];
s_ufake(&vtmp, uv, vdig);
return s_ucmp(a, &vtmp);
}
static mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
mp_size size_b) {
mp_size pos;
mp_word w = 0;
/* Insure that da is the longer of the two to simplify later code */
if (size_b > size_a) {
SWAP(mp_digit *, da, db);
SWAP(mp_size, size_a, size_b);
}
/* Add corresponding digits until the shorter number runs out */
for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc) {
w = w + (mp_word)*da + (mp_word)*db;
*dc = LOWER_HALF(w);
w = UPPER_HALF(w);
}
/* Propagate carries as far as necessary */
for (/* */; pos < size_a; ++pos, ++da, ++dc) {
w = w + *da;
*dc = LOWER_HALF(w);
w = UPPER_HALF(w);
}
/* Return carry out */
return (mp_digit)w;
}
static void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
mp_size size_b) {
mp_size pos;
mp_word w = 0;
/* We assume that |a| >= |b| so this should definitely hold */
assert(size_a >= size_b);
/* Subtract corresponding digits and propagate borrow */
for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc) {
w = ((mp_word)MP_DIGIT_MAX + 1 + /* MP_RADIX */
(mp_word)*da) -
w - (mp_word)*db;
*dc = LOWER_HALF(w);
w = (UPPER_HALF(w) == 0);
}
/* Finish the subtraction for remaining upper digits of da */
for (/* */; pos < size_a; ++pos, ++da, ++dc) {
w = ((mp_word)MP_DIGIT_MAX + 1 + /* MP_RADIX */
(mp_word)*da) -
w;
*dc = LOWER_HALF(w);
w = (UPPER_HALF(w) == 0);
}
/* If there is a borrow out at the end, it violates the precondition */
assert(w == 0);
}
static int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
mp_size size_b) {
mp_size bot_size;
/* Make sure b is the smaller of the two input values */
if (size_b > size_a) {
SWAP(mp_digit *, da, db);
SWAP(mp_size, size_a, size_b);
}
/* Insure that the bottom is the larger half in an odd-length split; the code
below relies on this being true.
*/
bot_size = (size_a + 1) / 2;
/* If the values are big enough to bother with recursion, use the Karatsuba
algorithm to compute the product; otherwise use the normal multiplication
algorithm
*/
if (multiply_threshold && size_a >= multiply_threshold && size_b > bot_size) {
mp_digit *t1, *t2, *t3, carry;
mp_digit *a_top = da + bot_size;
mp_digit *b_top = db + bot_size;
mp_size at_size = size_a - bot_size;
mp_size bt_size = size_b - bot_size;
mp_size buf_size = 2 * bot_size;
/* Do a single allocation for all three temporary buffers needed; each
buffer must be big enough to hold the product of two bottom halves, and
one buffer needs space for the completed product; twice the space is
plenty.
*/
if ((t1 = s_alloc(4 * buf_size)) == NULL) return 0;
t2 = t1 + buf_size;
t3 = t2 + buf_size;
ZERO(t1, 4 * buf_size);
/* t1 and t2 are initially used as temporaries to compute the inner product
(a1 + a0)(b1 + b0) = a1b1 + a1b0 + a0b1 + a0b0
*/
carry = s_uadd(da, a_top, t1, bot_size, at_size); /* t1 = a1 + a0 */
t1[bot_size] = carry;
carry = s_uadd(db, b_top, t2, bot_size, bt_size); /* t2 = b1 + b0 */
t2[bot_size] = carry;
(void)s_kmul(t1, t2, t3, bot_size + 1, bot_size + 1); /* t3 = t1 * t2 */
/* Now we'll get t1 = a0b0 and t2 = a1b1, and subtract them out so that
we're left with only the pieces we want: t3 = a1b0 + a0b1
*/
ZERO(t1, buf_size);
ZERO(t2, buf_size);
(void)s_kmul(da, db, t1, bot_size, bot_size); /* t1 = a0 * b0 */
(void)s_kmul(a_top, b_top, t2, at_size, bt_size); /* t2 = a1 * b1 */
/* Subtract out t1 and t2 to get the inner product */
s_usub(t3, t1, t3, buf_size + 2, buf_size);
s_usub(t3, t2, t3, buf_size + 2, buf_size);
/* Assemble the output value */
COPY(t1, dc, buf_size);
carry = s_uadd(t3, dc + bot_size, dc + bot_size, buf_size + 1, buf_size);
assert(carry == 0);
carry =
s_uadd(t2, dc + 2 * bot_size, dc + 2 * bot_size, buf_size, buf_size);
assert(carry == 0);
s_free(t1); /* note t2 and t3 are just internal pointers to t1 */
} else {
s_umul(da, db, dc, size_a, size_b);
}
return 1;
}
static void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
mp_size size_b) {
mp_size a, b;
mp_word w;
for (a = 0; a < size_a; ++a, ++dc, ++da) {
mp_digit *dct = dc;
mp_digit *dbt = db;
if (*da == 0) continue;
w = 0;
for (b = 0; b < size_b; ++b, ++dbt, ++dct) {
w = (mp_word)*da * (mp_word)*dbt + w + (mp_word)*dct;
*dct = LOWER_HALF(w);
w = UPPER_HALF(w);
}
*dct = (mp_digit)w;
}
}
static int s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a) {
if (multiply_threshold && size_a > multiply_threshold) {
mp_size bot_size = (size_a + 1) / 2;
mp_digit *a_top = da + bot_size;
mp_digit *t1, *t2, *t3, carry;
mp_size at_size = size_a - bot_size;
mp_size buf_size = 2 * bot_size;
if ((t1 = s_alloc(4 * buf_size)) == NULL) return 0;
t2 = t1 + buf_size;
t3 = t2 + buf_size;
ZERO(t1, 4 * buf_size);
(void)s_ksqr(da, t1, bot_size); /* t1 = a0 ^ 2 */
(void)s_ksqr(a_top, t2, at_size); /* t2 = a1 ^ 2 */
(void)s_kmul(da, a_top, t3, bot_size, at_size); /* t3 = a0 * a1 */
/* Quick multiply t3 by 2, shifting left (can't overflow) */
{
int i, top = bot_size + at_size;
mp_word w, save = 0;
for (i = 0; i < top; ++i) {
w = t3[i];
w = (w << 1) | save;
t3[i] = LOWER_HALF(w);
save = UPPER_HALF(w);
}
t3[i] = LOWER_HALF(save);
}
/* Assemble the output value */
COPY(t1, dc, 2 * bot_size);
carry = s_uadd(t3, dc + bot_size, dc + bot_size, buf_size + 1, buf_size);
assert(carry == 0);
carry =
s_uadd(t2, dc + 2 * bot_size, dc + 2 * bot_size, buf_size, buf_size);
assert(carry == 0);
s_free(t1); /* note that t2 and t2 are internal pointers only */
} else {
s_usqr(da, dc, size_a);
}
return 1;
}
static void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a) {
mp_size i, j;
mp_word w;
for (i = 0; i < size_a; ++i, dc += 2, ++da) {
mp_digit *dct = dc, *dat = da;
if (*da == 0) continue;
/* Take care of the first digit, no rollover */
w = (mp_word)*dat * (mp_word)*dat + (mp_word)*dct;
*dct = LOWER_HALF(w);
w = UPPER_HALF(w);
++dat;
++dct;
for (j = i + 1; j < size_a; ++j, ++dat, ++dct) {
mp_word t = (mp_word)*da * (mp_word)*dat;
mp_word u = w + (mp_word)*dct, ov = 0;
/* Check if doubling t will overflow a word */
if (HIGH_BIT_SET(t)) ov = 1;
w = t + t;
/* Check if adding u to w will overflow a word */
if (ADD_WILL_OVERFLOW(w, u)) ov = 1;
w += u;
*dct = LOWER_HALF(w);
w = UPPER_HALF(w);
if (ov) {
w += MP_DIGIT_MAX; /* MP_RADIX */
++w;
}
}
w = w + *dct;
*dct = (mp_digit)w;
while ((w = UPPER_HALF(w)) != 0) {
++dct;
w = w + *dct;
*dct = LOWER_HALF(w);
}
assert(w == 0);
}
}
static void s_dadd(mp_int a, mp_digit b) {
mp_word w = 0;
mp_digit *da = MP_DIGITS(a);
mp_size ua = MP_USED(a);
w = (mp_word)*da + b;
*da++ = LOWER_HALF(w);
w = UPPER_HALF(w);
for (ua -= 1; ua > 0; --ua, ++da) {
w = (mp_word)*da + w;
*da = LOWER_HALF(w);
w = UPPER_HALF(w);
}
if (w) {
*da = (mp_digit)w;
a->used += 1;
}
}
static void s_dmul(mp_int a, mp_digit b) {
mp_word w = 0;
mp_digit *da = MP_DIGITS(a);
mp_size ua = MP_USED(a);
while (ua > 0) {
w = (mp_word)*da * b + w;
*da++ = LOWER_HALF(w);
w = UPPER_HALF(w);
--ua;
}
if (w) {
*da = (mp_digit)w;
a->used += 1;
}
}
static void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a) {
mp_word w = 0;
while (size_a > 0) {
w = (mp_word)*da++ * (mp_word)b + w;
*dc++ = LOWER_HALF(w);
w = UPPER_HALF(w);
--size_a;
}
if (w) *dc = LOWER_HALF(w);
}
static mp_digit s_ddiv(mp_int a, mp_digit b) {
mp_word w = 0, qdigit;
mp_size ua = MP_USED(a);
mp_digit *da = MP_DIGITS(a) + ua - 1;
for (/* */; ua > 0; --ua, --da) {
w = (w << MP_DIGIT_BIT) | *da;
if (w >= b) {
qdigit = w / b;
w = w % b;
} else {
qdigit = 0;
}
*da = (mp_digit)qdigit;
}
CLAMP(a);
return (mp_digit)w;
}
static void s_qdiv(mp_int z, mp_size p2) {
mp_size ndig = p2 / MP_DIGIT_BIT, nbits = p2 % MP_DIGIT_BIT;
mp_size uz = MP_USED(z);
if (ndig) {
mp_size mark;
mp_digit *to, *from;
if (ndig >= uz) {
mp_int_zero(z);
return;
}
to = MP_DIGITS(z);
from = to + ndig;
for (mark = ndig; mark < uz; ++mark) {
*to++ = *from++;
}
z->used = uz - ndig;
}
if (nbits) {
mp_digit d = 0, *dz, save;
mp_size up = MP_DIGIT_BIT - nbits;
uz = MP_USED(z);
dz = MP_DIGITS(z) + uz - 1;
for (/* */; uz > 0; --uz, --dz) {
save = *dz;
*dz = (*dz >> nbits) | (d << up);
d = save;
}
CLAMP(z);
}
if (MP_USED(z) == 1 && z->digits[0] == 0) z->sign = MP_ZPOS;
}
static void s_qmod(mp_int z, mp_size p2) {
mp_size start = p2 / MP_DIGIT_BIT + 1, rest = p2 % MP_DIGIT_BIT;
mp_size uz = MP_USED(z);
mp_digit mask = (1u << rest) - 1;
if (start <= uz) {
z->used = start;
z->digits[start - 1] &= mask;
CLAMP(z);
}
}
static int s_qmul(mp_int z, mp_size p2) {
mp_size uz, need, rest, extra, i;
mp_digit *from, *to, d;
if (p2 == 0) return 1;
uz = MP_USED(z);
need = p2 / MP_DIGIT_BIT;
rest = p2 % MP_DIGIT_BIT;
/* Figure out if we need an extra digit at the top end; this occurs if the
topmost `rest' bits of the high-order digit of z are not zero, meaning
they will be shifted off the end if not preserved */
extra = 0;
if (rest != 0) {
mp_digit *dz = MP_DIGITS(z) + uz - 1;
if ((*dz >> (MP_DIGIT_BIT - rest)) != 0) extra = 1;
}
if (!s_pad(z, uz + need + extra)) return 0;
/* If we need to shift by whole digits, do that in one pass, then
to back and shift by partial digits.
*/
if (need > 0) {
from = MP_DIGITS(z) + uz - 1;
to = from + need;
for (i = 0; i < uz; ++i) *to-- = *from--;
ZERO(MP_DIGITS(z), need);
uz += need;
}
if (rest) {
d = 0;
for (i = need, from = MP_DIGITS(z) + need; i < uz; ++i, ++from) {
mp_digit save = *from;
*from = (*from << rest) | (d >> (MP_DIGIT_BIT - rest));
d = save;
}
d >>= (MP_DIGIT_BIT - rest);
if (d != 0) {
*from = d;
uz += extra;
}
}
z->used = uz;
CLAMP(z);
return 1;
}
/* Compute z = 2^p2 - |z|; requires that 2^p2 >= |z|
The sign of the result is always zero/positive.
*/
static int s_qsub(mp_int z, mp_size p2) {
mp_digit hi = (1u << (p2 % MP_DIGIT_BIT)), *zp;
mp_size tdig = (p2 / MP_DIGIT_BIT), pos;
mp_word w = 0;
if (!s_pad(z, tdig + 1)) return 0;
for (pos = 0, zp = MP_DIGITS(z); pos < tdig; ++pos, ++zp) {
w = ((mp_word)MP_DIGIT_MAX + 1) - w - (mp_word)*zp;
*zp = LOWER_HALF(w);
w = UPPER_HALF(w) ? 0 : 1;
}
w = ((mp_word)MP_DIGIT_MAX + 1 + hi) - w - (mp_word)*zp;
*zp = LOWER_HALF(w);
assert(UPPER_HALF(w) != 0); /* no borrow out should be possible */
z->sign = MP_ZPOS;
CLAMP(z);
return 1;
}
static int s_dp2k(mp_int z) {
int k = 0;
mp_digit *dp = MP_DIGITS(z), d;
if (MP_USED(z) == 1 && *dp == 0) return 1;
while (*dp == 0) {
k += MP_DIGIT_BIT;
++dp;
}
d = *dp;
while ((d & 1) == 0) {
d >>= 1;
++k;
}
return k;
}
static int s_isp2(mp_int z) {
mp_size uz = MP_USED(z), k = 0;
mp_digit *dz = MP_DIGITS(z), d;
while (uz > 1) {
if (*dz++ != 0) return -1;
k += MP_DIGIT_BIT;
--uz;
}
d = *dz;
while (d > 1) {
if (d & 1) return -1;
++k;
d >>= 1;
}
return (int)k;
}
static int s_2expt(mp_int z, mp_small k) {
mp_size ndig, rest;
mp_digit *dz;
ndig = (k + MP_DIGIT_BIT) / MP_DIGIT_BIT;
rest = k % MP_DIGIT_BIT;
if (!s_pad(z, ndig)) return 0;
dz = MP_DIGITS(z);
ZERO(dz, ndig);
*(dz + ndig - 1) = (1u << rest);
z->used = ndig;
return 1;
}
static int s_norm(mp_int a, mp_int b) {
mp_digit d = b->digits[MP_USED(b) - 1];
int k = 0;
while (d < (1u << (mp_digit)(MP_DIGIT_BIT - 1))) { /* d < (MP_RADIX / 2) */
d <<= 1;
++k;
}
/* These multiplications can't fail */
if (k != 0) {
(void)s_qmul(a, (mp_size)k);
(void)s_qmul(b, (mp_size)k);
}
return k;
}
static mp_result s_brmu(mp_int z, mp_int m) {
mp_size um = MP_USED(m) * 2;
if (!s_pad(z, um)) return MP_MEMORY;
s_2expt(z, MP_DIGIT_BIT * um);
return mp_int_div(z, m, z, NULL);
}
static int s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2) {
mp_size um = MP_USED(m), umb_p1, umb_m1;
umb_p1 = (um + 1) * MP_DIGIT_BIT;
umb_m1 = (um - 1) * MP_DIGIT_BIT;
if (mp_int_copy(x, q1) != MP_OK) return 0;
/* Compute q2 = floor((floor(x / b^(k-1)) * mu) / b^(k+1)) */
s_qdiv(q1, umb_m1);
UMUL(q1, mu, q2);
s_qdiv(q2, umb_p1);
/* Set x = x mod b^(k+1) */
s_qmod(x, umb_p1);
/* Now, q is a guess for the quotient a / m.
Compute x - q * m mod b^(k+1), replacing x. This may be off
by a factor of 2m, but no more than that.
*/
UMUL(q2, m, q1);
s_qmod(q1, umb_p1);
(void)mp_int_sub(x, q1, x); /* can't fail */
/* The result may be < 0; if it is, add b^(k+1) to pin it in the proper
range. */
if ((CMPZ(x) < 0) && !s_qsub(x, umb_p1)) return 0;
/* If x > m, we need to back it off until it is in range. This will be
required at most twice. */
if (mp_int_compare(x, m) >= 0) {
(void)mp_int_sub(x, m, x);
if (mp_int_compare(x, m) >= 0) {
(void)mp_int_sub(x, m, x);
}
}
/* At this point, x has been properly reduced. */
return 1;
}
/* Perform modular exponentiation using Barrett's method, where mu is the
reduction constant for m. Assumes a < m, b > 0. */
static mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c) {
mp_digit umu = MP_USED(mu);
mp_digit *db = MP_DIGITS(b);
mp_digit *dbt = db + MP_USED(b) - 1;
DECLARE_TEMP(3);
REQUIRE(GROW(TEMP(0), 4 * umu));
REQUIRE(GROW(TEMP(1), 4 * umu));
REQUIRE(GROW(TEMP(2), 4 * umu));
ZERO(TEMP(0)->digits, TEMP(0)->alloc);
ZERO(TEMP(1)->digits, TEMP(1)->alloc);
ZERO(TEMP(2)->digits, TEMP(2)->alloc);
(void)mp_int_set_value(c, 1);
/* Take care of low-order digits */
while (db < dbt) {
mp_digit d = *db;
for (int i = MP_DIGIT_BIT; i > 0; --i, d >>= 1) {
if (d & 1) {
/* The use of a second temporary avoids allocation */
UMUL(c, a, TEMP(0));
if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
REQUIRE(MP_MEMORY);
}
mp_int_copy(TEMP(0), c);
}
USQR(a, TEMP(0));
assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
REQUIRE(MP_MEMORY);
}
assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
mp_int_copy(TEMP(0), a);
}
++db;
}
/* Take care of highest-order digit */
mp_digit d = *dbt;
for (;;) {
if (d & 1) {
UMUL(c, a, TEMP(0));
if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
REQUIRE(MP_MEMORY);
}
mp_int_copy(TEMP(0), c);
}
d >>= 1;
if (!d) break;
USQR(a, TEMP(0));
if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
REQUIRE(MP_MEMORY);
}
(void)mp_int_copy(TEMP(0), a);
}
CLEANUP_TEMP();
return MP_OK;
}
/* Division of nonnegative integers
This function implements division algorithm for unsigned multi-precision
integers. The algorithm is based on Algorithm D from Knuth's "The Art of
Computer Programming", 3rd ed. 1998, pg 272-273.
We diverge from Knuth's algorithm in that we do not perform the subtraction
from the remainder until we have determined that we have the correct
quotient digit. This makes our algorithm less efficient that Knuth because
we might have to perform multiple multiplication and comparison steps before
the subtraction. The advantage is that it is easy to implement and ensure
correctness without worrying about underflow from the subtraction.
inputs: u a n+m digit integer in base b (b is 2^MP_DIGIT_BIT)
v a n digit integer in base b (b is 2^MP_DIGIT_BIT)
n >= 1
m >= 0
outputs: u / v stored in u
u % v stored in v
*/
static mp_result s_udiv_knuth(mp_int u, mp_int v) {
/* Force signs to positive */
u->sign = MP_ZPOS;
v->sign = MP_ZPOS;
/* Use simple division algorithm when v is only one digit long */
if (MP_USED(v) == 1) {
mp_digit d, rem;
d = v->digits[0];
rem = s_ddiv(u, d);
mp_int_set_value(v, rem);
return MP_OK;
}
/* Algorithm D
The n and m variables are defined as used by Knuth.
u is an n digit number with digits u_{n-1}..u_0.
v is an n+m digit number with digits from v_{m+n-1}..v_0.
We require that n > 1 and m >= 0
*/
mp_size n = MP_USED(v);
mp_size m = MP_USED(u) - n;
assert(n > 1);
/* assert(m >= 0) follows because m is unsigned. */
/* D1: Normalize.
The normalization step provides the necessary condition for Theorem B,
which states that the quotient estimate for q_j, call it qhat
qhat = u_{j+n}u_{j+n-1} / v_{n-1}
is bounded by
qhat - 2 <= q_j <= qhat.
That is, qhat is always greater than the actual quotient digit q,
and it is never more than two larger than the actual quotient digit.
*/
int k = s_norm(u, v);
/* Extend size of u by one if needed.
The algorithm begins with a value of u that has one more digit of input.
The normalization step sets u_{m+n}..u_0 = 2^k * u_{m+n-1}..u_0. If the
multiplication did not increase the number of digits of u, we need to add
a leading zero here.
*/
if (k == 0 || MP_USED(u) != m + n + 1) {
if (!s_pad(u, m + n + 1)) return MP_MEMORY;
u->digits[m + n] = 0;
u->used = m + n + 1;
}
/* Add a leading 0 to v.
The multiplication in step D4 multiplies qhat * 0v_{n-1}..v_0. We need to
add the leading zero to v here to ensure that the multiplication will
produce the full n+1 digit result.
*/
if (!s_pad(v, n + 1)) return MP_MEMORY;
v->digits[n] = 0;
/* Initialize temporary variables q and t.
q allocates space for m+1 digits to store the quotient digits
t allocates space for n+1 digits to hold the result of q_j*v
*/
DECLARE_TEMP(2);
REQUIRE(GROW(TEMP(0), m + 1));
REQUIRE(GROW(TEMP(1), n + 1));
/* D2: Initialize j */
int j = m;
mpz_t r;
r.digits = MP_DIGITS(u) + j; /* The contents of r are shared with u */
r.used = n + 1;
r.sign = MP_ZPOS;
r.alloc = MP_ALLOC(u);
ZERO(TEMP(1)->digits, TEMP(1)->alloc);
/* Calculate the m+1 digits of the quotient result */
for (; j >= 0; j--) {
/* D3: Calculate q' */
/* r->digits is aligned to position j of the number u */
mp_word pfx, qhat;
pfx = r.digits[n];
pfx <<= MP_DIGIT_BIT / 2;
pfx <<= MP_DIGIT_BIT / 2;
pfx |= r.digits[n - 1]; /* pfx = u_{j+n}{j+n-1} */
qhat = pfx / v->digits[n - 1];
/* Check to see if qhat > b, and decrease qhat if so.
Theorem B guarantess that qhat is at most 2 larger than the
actual value, so it is possible that qhat is greater than
the maximum value that will fit in a digit */
if (qhat > MP_DIGIT_MAX) qhat = MP_DIGIT_MAX;
/* D4,D5,D6: Multiply qhat * v and test for a correct value of q
We proceed a bit different than the way described by Knuth. This way is
simpler but less efficent. Instead of doing the multiply and subtract
then checking for underflow, we first do the multiply of qhat * v and
see if it is larger than the current remainder r. If it is larger, we
decrease qhat by one and try again. We may need to decrease qhat one
more time before we get a value that is smaller than r.
This way is less efficent than Knuth because we do more multiplies, but
we do not need to worry about underflow this way.
*/
/* t = qhat * v */
s_dbmul(MP_DIGITS(v), (mp_digit)qhat, TEMP(1)->digits, n + 1);
TEMP(1)->used = n + 1;
CLAMP(TEMP(1));
/* Clamp r for the comparison. Comparisons do not like leading zeros. */
CLAMP(&r);
if (s_ucmp(TEMP(1), &r) > 0) { /* would the remainder be negative? */
qhat -= 1; /* try a smaller q */
s_dbmul(MP_DIGITS(v), (mp_digit)qhat, TEMP(1)->digits, n + 1);
TEMP(1)->used = n + 1;
CLAMP(TEMP(1));
if (s_ucmp(TEMP(1), &r) > 0) { /* would the remainder be negative? */
assert(qhat > 0);
qhat -= 1; /* try a smaller q */
s_dbmul(MP_DIGITS(v), (mp_digit)qhat, TEMP(1)->digits, n + 1);
TEMP(1)->used = n + 1;
CLAMP(TEMP(1));
}
assert(s_ucmp(TEMP(1), &r) <= 0 && "The mathematics failed us.");
}
/* Unclamp r. The D algorithm expects r = u_{j+n}..u_j to always be n+1
digits long. */
r.used = n + 1;
/* D4: Multiply and subtract
Note: The multiply was completed above so we only need to subtract here.
*/
s_usub(r.digits, TEMP(1)->digits, r.digits, r.used, TEMP(1)->used);
/* D5: Test remainder
Note: Not needed because we always check that qhat is the correct value
before performing the subtract. Value cast to mp_digit to prevent
warning, qhat has been clamped to MP_DIGIT_MAX
*/
TEMP(0)->digits[j] = (mp_digit)qhat;
/* D6: Add back
Note: Not needed because we always check that qhat is the correct value
before performing the subtract.
*/
/* D7: Loop on j */
r.digits--;
ZERO(TEMP(1)->digits, TEMP(1)->alloc);
}
/* Get rid of leading zeros in q */
TEMP(0)->used = m + 1;
CLAMP(TEMP(0));
/* Denormalize the remainder */
CLAMP(u); /* use u here because the r.digits pointer is off-by-one */
if (k != 0) s_qdiv(u, k);
mp_int_copy(u, v); /* ok: 0 <= r < v */
mp_int_copy(TEMP(0), u); /* ok: q <= u */
CLEANUP_TEMP();
return MP_OK;
}
static int s_outlen(mp_int z, mp_size r) {
assert(r >= MP_MIN_RADIX && r <= MP_MAX_RADIX);
mp_result bits = mp_int_count_bits(z);
double raw = (double)bits * s_log2[r];
return (int)(raw + 0.999999);
}
static mp_size s_inlen(int len, mp_size r) {
double raw = (double)len / s_log2[r];
mp_size bits = (mp_size)(raw + 0.5);
return (mp_size)((bits + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT) + 1;
}
static int s_ch2val(char c, int r) {
int out;
/*
* In some locales, isalpha() accepts characters outside the range A-Z,
* producing out<0 or out>=36. The "out >= r" check will always catch
* out>=36. Though nothing explicitly catches out<0, our caller reacts the
* same way to every negative return value.
*/
if (isdigit((unsigned char)c))
out = c - '0';
else if (r > 10 && isalpha((unsigned char)c))
out = toupper((unsigned char)c) - 'A' + 10;
else
return -1;
return (out >= r) ? -1 : out;
}
static char s_val2ch(int v, int caps) {
assert(v >= 0);
if (v < 10) {
return v + '0';
} else {
char out = (v - 10) + 'a';
if (caps) {
return toupper((unsigned char)out);
} else {
return out;
}
}
}
static void s_2comp(unsigned char *buf, int len) {
unsigned short s = 1;
for (int i = len - 1; i >= 0; --i) {
unsigned char c = ~buf[i];
s = c + s;
c = s & UCHAR_MAX;
s >>= CHAR_BIT;
buf[i] = c;
}
/* last carry out is ignored */
}
static mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad) {
int pos = 0, limit = *limpos;
mp_size uz = MP_USED(z);
mp_digit *dz = MP_DIGITS(z);
while (uz > 0 && pos < limit) {
mp_digit d = *dz++;
int i;
for (i = sizeof(mp_digit); i > 0 && pos < limit; --i) {
buf[pos++] = (unsigned char)d;
d >>= CHAR_BIT;
/* Don't write leading zeroes */
if (d == 0 && uz == 1) i = 0; /* exit loop without signaling truncation */
}
/* Detect truncation (loop exited with pos >= limit) */
if (i > 0) break;
--uz;
}
if (pad != 0 && (buf[pos - 1] >> (CHAR_BIT - 1))) {
if (pos < limit) {
buf[pos++] = 0;
} else {
uz = 1;
}
}
/* Digits are in reverse order, fix that */
REV(buf, pos);
/* Return the number of bytes actually written */
*limpos = pos;
return (uz == 0) ? MP_OK : MP_TRUNC;
}
/* Here there be dragons */
|