1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
|
/*
* Copyright 2010 INRIA Saclay
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
* 91893 Orsay, France
*/
#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include <isl_bound.h>
#include <isl_bernstein.h>
#include <isl_range.h>
#include <isl_polynomial_private.h>
#include <isl_options_private.h>
/* Given a polynomial "poly" that is constant in terms
* of the domain variables, construct a polynomial reduction
* of type "type" that is equal to "poly" on "bset",
* with the domain projected onto the parameters.
*/
__isl_give isl_pw_qpolynomial_fold *isl_qpolynomial_cst_bound(
__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly,
enum isl_fold type, isl_bool *tight)
{
isl_set *dom;
isl_qpolynomial_fold *fold;
isl_pw_qpolynomial_fold *pwf;
fold = isl_qpolynomial_fold_alloc(type, poly);
dom = isl_set_from_basic_set(bset);
if (tight)
*tight = isl_bool_true;
pwf = isl_pw_qpolynomial_fold_alloc(type, dom, fold);
return isl_pw_qpolynomial_fold_project_domain_on_params(pwf);
}
/* Add the bound "pwf", which is not known to be tight,
* to the output of "bound".
*/
isl_stat isl_bound_add(struct isl_bound *bound,
__isl_take isl_pw_qpolynomial_fold *pwf)
{
bound->pwf = isl_pw_qpolynomial_fold_fold(bound->pwf, pwf);
return isl_stat_non_null(bound->pwf);
}
/* Add the bound "pwf", which is known to be tight,
* to the output of "bound".
*/
isl_stat isl_bound_add_tight(struct isl_bound *bound,
__isl_take isl_pw_qpolynomial_fold *pwf)
{
bound->pwf_tight = isl_pw_qpolynomial_fold_fold(bound->pwf_tight, pwf);
return isl_stat_non_null(bound->pwf);
}
/* Given a polynomial "poly" that is constant in terms
* of the domain variables and the domain "bset",
* construct the corresponding polynomial reduction and
* add it to the tight bounds of "bound".
*/
static isl_stat add_constant_poly(__isl_take isl_basic_set *bset,
__isl_take isl_qpolynomial *poly, struct isl_bound *bound)
{
isl_pw_qpolynomial_fold *pwf;
pwf = isl_qpolynomial_cst_bound(bset, poly, bound->type, NULL);
return isl_bound_add_tight(bound, pwf);
}
/* Compute a bound on the polynomial defined over the parametric polytope
* using either range propagation or bernstein expansion and
* store the result in bound->pwf and bound->pwf_tight.
* Since bernstein expansion requires bounded domains, we apply
* range propagation on unbounded domains. Otherwise, we respect the choice
* of the user.
*
* If the polynomial does not depend on the set variables
* then the bound is equal to the polynomial and
* it can be added to "bound" directly.
*/
static isl_stat compressed_guarded_poly_bound(__isl_take isl_basic_set *bset,
__isl_take isl_qpolynomial *poly, void *user)
{
struct isl_bound *bound = (struct isl_bound *)user;
isl_ctx *ctx;
int bounded;
int degree;
if (!bset || !poly)
goto error;
degree = isl_qpolynomial_degree(poly);
if (degree < -1)
goto error;
if (degree <= 0)
return add_constant_poly(bset, poly, bound);
ctx = isl_basic_set_get_ctx(bset);
if (ctx->opt->bound == ISL_BOUND_RANGE)
return isl_qpolynomial_bound_on_domain_range(bset, poly, bound);
bounded = isl_basic_set_is_bounded(bset);
if (bounded < 0)
goto error;
if (bounded)
return isl_qpolynomial_bound_on_domain_bernstein(bset, poly, bound);
else
return isl_qpolynomial_bound_on_domain_range(bset, poly, bound);
error:
isl_basic_set_free(bset);
isl_qpolynomial_free(poly);
return isl_stat_error;
}
static isl_stat unwrapped_guarded_poly_bound(__isl_take isl_basic_set *bset,
__isl_take isl_qpolynomial *poly, void *user)
{
struct isl_bound *bound = (struct isl_bound *)user;
isl_pw_qpolynomial_fold *top_pwf;
isl_pw_qpolynomial_fold *top_pwf_tight;
isl_space *space;
isl_morph *morph;
isl_stat r;
bset = isl_basic_set_detect_equalities(bset);
if (!bset)
goto error;
if (bset->n_eq == 0)
return compressed_guarded_poly_bound(bset, poly, user);
morph = isl_basic_set_full_compression(bset);
bset = isl_morph_basic_set(isl_morph_copy(morph), bset);
poly = isl_qpolynomial_morph_domain(poly, isl_morph_copy(morph));
space = isl_morph_get_ran_space(morph);
space = isl_space_params(space);
top_pwf = bound->pwf;
top_pwf_tight = bound->pwf_tight;
space = isl_space_from_domain(space);
space = isl_space_add_dims(space, isl_dim_out, 1);
bound->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(space),
bound->type);
bound->pwf_tight = isl_pw_qpolynomial_fold_zero(space, bound->type);
r = compressed_guarded_poly_bound(bset, poly, user);
morph = isl_morph_dom_params(morph);
morph = isl_morph_ran_params(morph);
morph = isl_morph_inverse(morph);
bound->pwf = isl_pw_qpolynomial_fold_morph_domain(bound->pwf,
isl_morph_copy(morph));
bound->pwf_tight = isl_pw_qpolynomial_fold_morph_domain(
bound->pwf_tight, morph);
isl_bound_add(bound, top_pwf);
isl_bound_add_tight(bound, top_pwf_tight);
return r;
error:
isl_basic_set_free(bset);
isl_qpolynomial_free(poly);
return isl_stat_error;
}
/* Update bound->pwf and bound->pwf_tight with a bound
* of type bound->type on the polynomial "poly" over the domain "bset".
*
* If the original problem had a wrapped relation in the domain,
* meaning that the bound should be computed over the range
* of this relation, then temporarily treat the domain dimensions
* of this wrapped relation as parameters, compute a bound
* in terms of these and the original parameters,
* turn the parameters back into set dimensions and
* add the results to bound->pwf and bound->pwf_tight.
*
* Note that even though "bset" is known to live in the same space
* as the domain of "poly", the names of the set dimensions
* may be different (or missing). Make sure the naming is exactly
* the same before turning these dimensions into parameters
* to ensure that the spaces are still the same after
* this operation.
*/
static isl_stat guarded_poly_bound(__isl_take isl_basic_set *bset,
__isl_take isl_qpolynomial *poly, void *user)
{
struct isl_bound *bound = (struct isl_bound *)user;
isl_space *space;
isl_pw_qpolynomial_fold *top_pwf;
isl_pw_qpolynomial_fold *top_pwf_tight;
isl_size nparam;
isl_size n_in;
isl_stat r;
if (!bound->wrapping)
return unwrapped_guarded_poly_bound(bset, poly, user);
nparam = isl_space_dim(bound->dim, isl_dim_param);
n_in = isl_space_dim(bound->dim, isl_dim_in);
if (nparam < 0 || n_in < 0)
goto error;
space = isl_qpolynomial_get_domain_space(poly);
bset = isl_basic_set_reset_space(bset, space);
bset = isl_basic_set_move_dims(bset, isl_dim_param, nparam,
isl_dim_set, 0, n_in);
poly = isl_qpolynomial_move_dims(poly, isl_dim_param, nparam,
isl_dim_in, 0, n_in);
space = isl_basic_set_get_space(bset);
space = isl_space_params(space);
top_pwf = bound->pwf;
top_pwf_tight = bound->pwf_tight;
space = isl_space_from_domain(space);
space = isl_space_add_dims(space, isl_dim_out, 1);
bound->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(space),
bound->type);
bound->pwf_tight = isl_pw_qpolynomial_fold_zero(space, bound->type);
r = unwrapped_guarded_poly_bound(bset, poly, user);
bound->pwf = isl_pw_qpolynomial_fold_reset_space(bound->pwf,
isl_space_copy(bound->dim));
bound->pwf_tight = isl_pw_qpolynomial_fold_reset_space(bound->pwf_tight,
isl_space_copy(bound->dim));
isl_bound_add(bound, top_pwf);
isl_bound_add_tight(bound, top_pwf_tight);
return r;
error:
isl_basic_set_free(bset);
isl_qpolynomial_free(poly);
return isl_stat_error;
}
static isl_stat guarded_qp(__isl_take isl_qpolynomial *qp, void *user)
{
struct isl_bound *bound = (struct isl_bound *)user;
isl_stat r;
r = isl_qpolynomial_as_polynomial_on_domain(qp, bound->bset,
&guarded_poly_bound, user);
isl_qpolynomial_free(qp);
return r;
}
static isl_stat basic_guarded_fold(__isl_take isl_basic_set *bset, void *user)
{
struct isl_bound *bound = (struct isl_bound *)user;
isl_stat r;
bound->bset = bset;
r = isl_qpolynomial_fold_foreach_qpolynomial(bound->fold,
&guarded_qp, user);
isl_basic_set_free(bset);
return r;
}
static isl_stat guarded_fold(__isl_take isl_set *set,
__isl_take isl_qpolynomial_fold *fold, void *user)
{
struct isl_bound *bound = (struct isl_bound *)user;
if (!set || !fold)
goto error;
set = isl_set_make_disjoint(set);
bound->fold = fold;
bound->type = isl_qpolynomial_fold_get_type(fold);
if (isl_set_foreach_basic_set(set, &basic_guarded_fold, bound) < 0)
goto error;
isl_set_free(set);
isl_qpolynomial_fold_free(fold);
return isl_stat_ok;
error:
isl_set_free(set);
isl_qpolynomial_fold_free(fold);
return isl_stat_error;
}
__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_bound(
__isl_take isl_pw_qpolynomial_fold *pwf, isl_bool *tight)
{
isl_size nvar;
struct isl_bound bound;
isl_bool covers;
if (!pwf)
return NULL;
bound.dim = isl_pw_qpolynomial_fold_get_domain_space(pwf);
bound.wrapping = isl_space_is_wrapping(bound.dim);
if (bound.wrapping)
bound.dim = isl_space_unwrap(bound.dim);
nvar = isl_space_dim(bound.dim, isl_dim_out);
if (nvar < 0)
bound.dim = isl_space_free(bound.dim);
bound.dim = isl_space_domain(bound.dim);
bound.dim = isl_space_from_domain(bound.dim);
bound.dim = isl_space_add_dims(bound.dim, isl_dim_out, 1);
if (nvar == 0) {
if (tight)
*tight = isl_bool_true;
return isl_pw_qpolynomial_fold_reset_space(pwf, bound.dim);
}
if (isl_pw_qpolynomial_fold_is_zero(pwf)) {
enum isl_fold type = pwf->type;
isl_pw_qpolynomial_fold_free(pwf);
if (tight)
*tight = isl_bool_true;
return isl_pw_qpolynomial_fold_zero(bound.dim, type);
}
bound.pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(bound.dim),
pwf->type);
bound.pwf_tight = isl_pw_qpolynomial_fold_zero(isl_space_copy(bound.dim),
pwf->type);
bound.check_tight = !!tight;
if (isl_pw_qpolynomial_fold_foreach_lifted_piece(pwf,
guarded_fold, &bound) < 0)
goto error;
covers = isl_pw_qpolynomial_fold_covers(bound.pwf_tight, bound.pwf);
if (covers < 0)
goto error;
if (tight)
*tight = covers;
isl_space_free(bound.dim);
isl_pw_qpolynomial_fold_free(pwf);
if (covers) {
isl_pw_qpolynomial_fold_free(bound.pwf);
return bound.pwf_tight;
}
bound.pwf = isl_pw_qpolynomial_fold_fold(bound.pwf, bound.pwf_tight);
return bound.pwf;
error:
isl_pw_qpolynomial_fold_free(bound.pwf_tight);
isl_pw_qpolynomial_fold_free(bound.pwf);
isl_pw_qpolynomial_fold_free(pwf);
isl_space_free(bound.dim);
return NULL;
}
__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
__isl_take isl_pw_qpolynomial *pwqp, enum isl_fold type,
isl_bool *tight)
{
isl_pw_qpolynomial_fold *pwf;
pwf = isl_pw_qpolynomial_fold_from_pw_qpolynomial(type, pwqp);
return isl_pw_qpolynomial_fold_bound(pwf, tight);
}
struct isl_union_bound_data {
enum isl_fold type;
isl_bool tight;
isl_union_pw_qpolynomial_fold *res;
};
static isl_stat bound_pw(__isl_take isl_pw_qpolynomial *pwqp, void *user)
{
struct isl_union_bound_data *data = user;
isl_pw_qpolynomial_fold *pwf;
pwf = isl_pw_qpolynomial_bound(pwqp, data->type,
data->tight ? &data->tight : NULL);
data->res = isl_union_pw_qpolynomial_fold_fold_pw_qpolynomial_fold(
data->res, pwf);
return isl_stat_ok;
}
__isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
__isl_take isl_union_pw_qpolynomial *upwqp,
enum isl_fold type, isl_bool *tight)
{
isl_space *space;
struct isl_union_bound_data data = { type, 1, NULL };
if (!upwqp)
return NULL;
if (!tight)
data.tight = isl_bool_false;
space = isl_union_pw_qpolynomial_get_space(upwqp);
data.res = isl_union_pw_qpolynomial_fold_zero(space, type);
if (isl_union_pw_qpolynomial_foreach_pw_qpolynomial(upwqp,
&bound_pw, &data) < 0)
goto error;
isl_union_pw_qpolynomial_free(upwqp);
if (tight)
*tight = data.tight;
return data.res;
error:
isl_union_pw_qpolynomial_free(upwqp);
isl_union_pw_qpolynomial_fold_free(data.res);
return NULL;
}
|