File: isl_scheduler_scc.c

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (1209 lines) | stat: -rw-r--r-- 36,222 bytes parent folder | download | duplicates (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
/*
 * Copyright 2021      Sven Verdoolaege
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege
 */

#include <stdio.h>

#include <isl/ctx.h>
#include <isl/schedule_node.h>
#include <isl/union_set.h>

#include "isl_hash_private.h"
#include "isl_scheduler_scc.h"
#include "isl_sort.h"

/* Internal data structure for ordering the SCCs of "graph",
 * where each SCC i consists of the single cluster determined
 * by c->scc_cluster[i].  The nodes in this cluster all have
 * their "scc" field set to i.
 *
 * "graph" is the original schedule graph.
 * "c" contains the clustering information.
 *
 * "n" is the number of SCCs in the isl_scc_graph, which may be
 * a subset of those in "graph".
 * "graph_scc" maps the local index of an SCC in this isl_scc_graph
 * to the corresponding index in "graph", i.e, the index of c->scc_cluster.
 * The entries of "graph_scc" are kept in topological order.
 *
 * "component" contains the component to which an SCC belongs,
 * where the component is represented by the index of the first SCC
 * in the component.
 * The index of this first SCC is always smaller than or equal
 * to the index of the SCC itself.
 * This field is initialized by isl_scc_graph_init_component and
 * used by detect_components.
 * During construction, "component" may also contain the index
 * of some other SCC in the component, but then it is necessarily
 * smaller than the index of the current SCC and the first SCC
 * can be reached by recursively looking up "component".
 * "size" contains the number of elements in the components
 * indexed by a component sequence number.
 *
 * "pos" is used locally inside isl_scc_graph_sort_components
 * to store the position of the next SCC within a component.
 * It is also used inside isl_scc_graph_sub to map
 * the position in the original graph to the position in the subgraph.
 *
 * "sorted" contains the (possibly) reordered local indices,
 * sorted per component.  Within each component, the original
 * topological order is preserved.
 *
 * "edge_table" contains "n" edge tables, one for each SCC
 * in this isl_scc_graph.  Each table contains the local indices
 * of the SCCs that depend on this SCC.  These local indices
 * are encoded as pointers to the corresponding entry in "graph_scc".
 * The value stored at that location is the global SCC index.
 * "reverse_edge_table" contains the inverse edges.
 */
struct isl_scc_graph {
	isl_ctx *ctx;
	struct isl_sched_graph *graph;
	struct isl_clustering *c;

	int n;
	int *graph_scc;
	int *component;
	int *size;
	int *pos;
	int *sorted;
	struct isl_hash_table **edge_table;
	struct isl_hash_table **reverse_edge_table;
};

/* The source SCC of a collection of edges.
 *
 * "scc_graph" is the SCC graph containing the edges.
 * "src" is the local index of the source SCC.
 */
struct isl_edge_src {
	struct isl_scc_graph *scc_graph;
	int src;
};

/* isl_hash_table_foreach callback for printing an edge
 * between "src" and the node identified by "entry".
 * The edge is printed in terms of the global SCC indices.
 */
static isl_stat print_edge(void **entry, void *user)
{
	int *dst = *entry;
	int *src = user;

	fprintf(stderr, "%d -> %d; ", *src, *dst);

	return isl_stat_ok;
}

/* Print some debugging information about "scc_graph".
 *
 * In particular, print the nodes and the edges (both forward and backward).
 */
void isl_scc_graph_dump(struct isl_scc_graph *scc_graph)
{
	int i;
	isl_ctx *ctx;

	if (!scc_graph)
		return;

	ctx = scc_graph->ctx;
	for (i = 0; i < scc_graph->n; ++i) {
		if (i)
			fprintf(stderr, ", ");
		fprintf(stderr, "%d", scc_graph->graph_scc[i]);
	}
	fprintf(stderr, "\n");
	for (i = 0; i < scc_graph->n; ++i) {
		isl_hash_table_foreach(ctx, scc_graph->edge_table[i],
			&print_edge, &scc_graph->graph_scc[i]);
	}
	fprintf(stderr, "\n");
	for (i = 0; i < scc_graph->n; ++i) {
		isl_hash_table_foreach(ctx, scc_graph->reverse_edge_table[i],
			&print_edge, &scc_graph->graph_scc[i]);
	}
	fprintf(stderr, "\n");
}

/* Free all memory allocated for "scc_graph" and return NULL.
 */
struct isl_scc_graph *isl_scc_graph_free(struct isl_scc_graph *scc_graph)
{
	int i;
	isl_ctx *ctx;

	if (!scc_graph)
		return NULL;

	ctx = scc_graph->ctx;
	if (scc_graph->edge_table) {
		for (i = 0; i < scc_graph->n; ++i)
			isl_hash_table_free(ctx, scc_graph->edge_table[i]);
	}
	if (scc_graph->reverse_edge_table) {
		for (i = 0; i < scc_graph->n; ++i)
			isl_hash_table_free(ctx,
					    scc_graph->reverse_edge_table[i]);
	}

	free(scc_graph->graph_scc);
	free(scc_graph->component);
	free(scc_graph->size);
	free(scc_graph->pos);
	free(scc_graph->sorted);
	free(scc_graph->edge_table);
	free(scc_graph->reverse_edge_table);
	isl_ctx_deref(scc_graph->ctx);
	free(scc_graph);
	return NULL;
}

/* Return an encoding of the local SCC index "pos" in "scc_graph"
 * as a pointer.
 * In particular, return a pointer to the corresponding entry
 * in scc_graph->graph_scc.
 */
static void *isl_scc_graph_encode_local_index(struct isl_scc_graph *scc_graph,
	int pos)
{
	return &scc_graph->graph_scc[pos];
}

/* Return the local SCC index in "scc_graph" corresponding
 * to the "data" encoding in the edge table.
 */
static int isl_scc_graph_local_index(struct isl_scc_graph *scc_graph, int *data)
{
	return data - &scc_graph->graph_scc[0];
}

/* isl_hash_table_find callback to check whether the given entry
 * refers to an SCC encoded as "val".
 */
static isl_bool is_scc_node(const void *entry, const void *val)
{
	return entry == val;
}

/* Return the edge from local SCC index "src" to local SCC index "dst"
 * in "edge_table" of "scc_graph", creating one if "reserve" is set.
 * If "reserve" is not set, then return isl_hash_table_entry_none
 * if there is no such edge.
 *
 * The destination of the edge is encoded as a pointer
 * to the corresponding entry in scc_graph->graph_scc.
 */
struct isl_hash_table_entry *isl_scc_graph_find_edge(
	struct isl_scc_graph *scc_graph, struct isl_hash_table **edge_table,
	int src, int dst, int reserve)
{
	isl_ctx *ctx;
	uint32_t hash;
	void *val;

	ctx = scc_graph->ctx;
	hash = isl_hash_builtin(isl_hash_init(), dst);
	val = isl_scc_graph_encode_local_index(scc_graph, dst);
	return isl_hash_table_find(ctx, edge_table[src], hash,
					&is_scc_node, val, reserve);
}

/* Remove the edge between the SCCs with local indices "src" and
 * "dst" in "scc_graph", if it exits.
 * Return isl_bool_true if this is the case.
 *
 * The edge is only removed from scc_graph->edge_table.
 * scc_graph->reverse_edge_table is assumed to be empty
 * when this function is called.
 */
static isl_bool isl_scc_graph_remove_edge(struct isl_scc_graph *scc_graph,
	int src, int dst)
{
	isl_ctx *ctx;
	struct isl_hash_table_entry *edge_entry;

	edge_entry = isl_scc_graph_find_edge(scc_graph, scc_graph->edge_table,
						src, dst, 0);
	if (edge_entry == isl_hash_table_entry_none)
		return isl_bool_false;
	if (!edge_entry)
		return isl_bool_error;

	ctx = scc_graph->ctx;
	isl_hash_table_remove(ctx, scc_graph->edge_table[src], edge_entry);

	return isl_bool_true;
}

/* Internal data structure used by next_nodes.
 *
 * "scc_graph" is the SCC graph.
 * "next" collects the next nodes.
 * "n" is the number of next nodes already collected.
 */
struct isl_extract_dst_data {
	struct isl_scc_graph *scc_graph;
	int *next;
	int n;
};

/* Given an entry in the edge table, add the corresponding
 * target local SCC index to data->next.
 */
static isl_stat extract_dst(void **entry, void *user)
{
	int *dst = *entry;
	struct isl_extract_dst_data *data = user;

	data->next[data->n++] = isl_scc_graph_local_index(data->scc_graph, dst);

	return isl_stat_ok;
}

/* isl_sort callback for sorting integers in increasing order.
 */
static int cmp_int(const void *a, const void *b, void *data)
{
	const int *i1 = a;
	const int *i2 = b;

	return *i1 - *i2;
}

/* Return the local indices of the SCCs in "scc_graph"
 * for which there is an edge from the SCC with local index "i".
 * The indices are returned in increasing order,
 * i.e., in the original topological order.
 */
static int *next_nodes(struct isl_scc_graph *scc_graph, int i)
{
	struct isl_extract_dst_data data;
	int n_next;
	int *next;

	n_next = scc_graph->edge_table[i]->n;
	next = isl_alloc_array(scc_graph->ctx, int, n_next);
	if (!next)
		return NULL;
	data.scc_graph = scc_graph;
	data.next = next;
	data.n = 0;
	if (isl_hash_table_foreach(scc_graph->ctx, scc_graph->edge_table[i],
			&extract_dst, &data) < 0)
		goto error;
	if (isl_sort(next, n_next, sizeof(int), &cmp_int, NULL) < 0)
		goto error;
	return next;
error:
	free(next);
	return NULL;
}

/* Internal data structure for foreach_reachable.
 *
 * "scc_graph" is the SCC graph being visited.
 * "fn" is the function that needs to be called on each reachable node.
 * "user" is the user argument to "fn".
 */
struct isl_foreach_reachable_data {
	struct isl_scc_graph *scc_graph;
	isl_bool (*fn)(int pos, void *user);
	void *user;
};

static isl_stat foreach_reachable(struct isl_foreach_reachable_data *data,
	int pos);

/* isl_hash_table_foreach callback for calling data->fn on each SCC
 * reachable from the SCC encoded in "entry",
 * continuing from an SCC as long as data->fn returns isl_bool_true.
 */
static isl_stat recurse_foreach_reachable(void **entry, void *user)
{
	struct isl_foreach_reachable_data *data = user;
	int pos;
	isl_bool more;

	pos = isl_scc_graph_local_index(data->scc_graph, *entry);
	more = data->fn(pos, data->user);
	if (more < 0)
		return isl_stat_error;
	if (!more)
		return isl_stat_ok;

	return foreach_reachable(data, pos);
}

/* Call data->fn on each SCC reachable from the SCC with local index "pos",
 * continuing from an SCC as long as data->fn returns isl_bool_true.
 *
 * Handle chains directly and recurse when an SCC has more than one
 * outgoing edge.
 */
static isl_stat foreach_reachable(struct isl_foreach_reachable_data *data,
	int pos)
{
	isl_ctx *ctx;
	struct isl_hash_table **edge_table = data->scc_graph->edge_table;

	while (edge_table[pos]->n == 1) {
		struct isl_hash_table_entry *entry;
		isl_bool more;

		entry = isl_hash_table_first(edge_table[pos]);
		pos = isl_scc_graph_local_index(data->scc_graph, entry->data);
		more = data->fn(pos, data->user);
		if (more < 0)
			return isl_stat_error;
		if (!more)
			return isl_stat_ok;
	}

	if (edge_table[pos]->n == 0)
		return isl_stat_ok;

	ctx = data->scc_graph->ctx;
	return isl_hash_table_foreach(ctx, edge_table[pos],
					&recurse_foreach_reachable, data);
}

/* If there is an edge from data->src to "pos", then remove it.
 * Return isl_bool_true if descendants of "pos" still need to be considered.
 *
 * Descendants only need to be considered if no edge is removed.
 */
static isl_bool elim_or_next(int pos, void *user)
{
	struct isl_edge_src *data = user;
	struct isl_scc_graph *scc_graph = data->scc_graph;
	isl_bool removed;

	removed = isl_scc_graph_remove_edge(scc_graph, data->src, pos);
	return isl_bool_not(removed);
}

/* Remove transitive edges from "scc_graph".
 *
 * Consider the SCC nodes "i" in reverse topological order.
 * If there is more than one edge emanating from a node,
 * then eliminate the edges to those nodes that can also be reached
 * through an edge to a node with a smaller index.
 * In particular, consider all but the last next nodes "next[j]"
 * in reverse topological order.  If any node "k" can be reached
 * from such a node for which there is also an edge from "i"
 * then this edge can be removed because this node can also
 * be reached from "i" through the edge to "next[j]".
 * If such an edge is removed, then any further descendant of "k"
 * does not need to be considered since these were already considered
 * for a previous "next[j]" equal to "k", or "k" is the last next node,
 * in which case there is no further node with an edge from "i".
 */
static struct isl_scc_graph *isl_scc_graph_reduce(
	struct isl_scc_graph *scc_graph)
{
	struct isl_edge_src elim_data;
	struct isl_foreach_reachable_data data = {
		.scc_graph = scc_graph,
		.fn = &elim_or_next,
		.user = &elim_data,
	};
	int i, j;

	elim_data.scc_graph = scc_graph;
	for (i = scc_graph->n - 3; i >= 0; --i) {
		int *next;
		int n_next;

		n_next = scc_graph->edge_table[i]->n;
		if (n_next <= 1)
			continue;
		next = next_nodes(scc_graph, i);
		if (!next)
			return isl_scc_graph_free(scc_graph);

		elim_data.src = i;
		for (j = n_next - 2; j >= 0; --j)
			if (foreach_reachable(&data, next[j]) < 0)
				break;
		free(next);
		if (j >= 0)
			return isl_scc_graph_free(scc_graph);
	}

	return scc_graph;
}

/* Add an edge to "edge_table" between the SCCs with local indices "src" and
 * "dst" in "scc_graph".
 *
 * If the edge already appeared in the table, then it is simply overwritten
 * with the same information.
 */
static isl_stat isl_scc_graph_add_edge(struct isl_scc_graph *scc_graph,
	struct isl_hash_table **edge_table, int src, int dst)
{
	struct isl_hash_table_entry *edge_entry;

	edge_entry =
		isl_scc_graph_find_edge(scc_graph, edge_table, src, dst, 1);
	if (!edge_entry)
		return isl_stat_error;
	edge_entry->data = &scc_graph->graph_scc[dst];

	return isl_stat_ok;
}

/* Add an edge from "dst" to data->src
 * to data->scc_graph->reverse_edge_table.
 */
static isl_stat add_reverse(void **entry, void *user)
{
	struct isl_edge_src *data = user;
	int dst;

	dst = isl_scc_graph_local_index(data->scc_graph, *entry);
	return isl_scc_graph_add_edge(data->scc_graph,
			data->scc_graph->reverse_edge_table, dst, data->src);
}

/* Add an (inverse) edge to scc_graph->reverse_edge_table
 * for each edge in scc_graph->edge_table.
 */
static struct isl_scc_graph *isl_scc_graph_add_reverse_edges(
	struct isl_scc_graph *scc_graph)
{
	struct isl_edge_src data;
	isl_ctx *ctx;

	if (!scc_graph)
		return NULL;

	ctx = scc_graph->ctx;
	data.scc_graph = scc_graph;
	for (data.src = 0; data.src < scc_graph->n; ++data.src) {
		if (isl_hash_table_foreach(ctx, scc_graph->edge_table[data.src],
				&add_reverse, &data) < 0)
			return isl_scc_graph_free(scc_graph);
	}
	return scc_graph;
}

/* Given an edge in the schedule graph, add an edge between
 * the corresponding SCCs in "scc_graph", if they are distinct.
 *
 * This function is used to create edges in the original isl_scc_graph.
 * where the local SCC indices are equal to the corresponding global
 * indices.
 */
static isl_stat add_scc_edge(void **entry, void *user)
{
	struct isl_sched_edge *edge = *entry;
	struct isl_scc_graph *scc_graph = user;
	int src = edge->src->scc;
	int dst = edge->dst->scc;

	if (src == dst)
		return isl_stat_ok;

	return isl_scc_graph_add_edge(scc_graph, scc_graph->edge_table,
					src, dst);
}

/* Allocate an isl_scc_graph for ordering "n" SCCs of "graph"
 * with clustering information in "c".
 *
 * The caller still needs to fill in the edges.
 */
static struct isl_scc_graph *isl_scc_graph_alloc(isl_ctx *ctx, int n,
	struct isl_sched_graph *graph, struct isl_clustering *c)
{
	int i;
	struct isl_scc_graph *scc_graph;

	scc_graph = isl_alloc_type(ctx, struct isl_scc_graph);
	if (!scc_graph)
		return NULL;

	scc_graph->ctx = ctx;
	isl_ctx_ref(ctx);
	scc_graph->graph = graph;
	scc_graph->c = c;

	scc_graph->n = n;
	scc_graph->graph_scc = isl_alloc_array(ctx, int, n);
	scc_graph->component = isl_alloc_array(ctx, int, n);
	scc_graph->size = isl_alloc_array(ctx, int, n);
	scc_graph->pos = isl_alloc_array(ctx, int, n);
	scc_graph->sorted = isl_alloc_array(ctx, int, n);
	scc_graph->edge_table =
		isl_calloc_array(ctx, struct isl_hash_table *, n);
	scc_graph->reverse_edge_table =
		isl_calloc_array(ctx, struct isl_hash_table *, n);
	if (!scc_graph->graph_scc || !scc_graph->component ||
	    !scc_graph->size || !scc_graph->pos || !scc_graph->sorted ||
	    !scc_graph->edge_table || !scc_graph->reverse_edge_table)
		return isl_scc_graph_free(scc_graph);

	for (i = 0; i < n; ++i) {
		scc_graph->edge_table[i] = isl_hash_table_alloc(ctx, 2);
		scc_graph->reverse_edge_table[i] = isl_hash_table_alloc(ctx, 2);
		if (!scc_graph->edge_table[i] ||
		    !scc_graph->reverse_edge_table[i])
			return isl_scc_graph_free(scc_graph);
	}

	return scc_graph;
}

/* Construct an isl_scc_graph for ordering the SCCs of "graph",
 * where each SCC i consists of the single cluster determined
 * by c->scc_cluster[i].  The nodes in this cluster all have
 * their "scc" field set to i.
 *
 * The initial isl_scc_graph has as many SCCs as "graph" and
 * their local indices are the same as their indices in "graph".
 *
 * Add edges between different SCCs for each (conditional) validity edge
 * between nodes in those SCCs, remove transitive edges and
 * construct the inverse edges from the remaining forward edges.
 */
struct isl_scc_graph *isl_scc_graph_from_sched_graph(isl_ctx *ctx,
	struct isl_sched_graph *graph, struct isl_clustering *c)
{
	int i;
	struct isl_scc_graph *scc_graph;

	scc_graph = isl_scc_graph_alloc(ctx, graph->scc, graph, c);
	if (!scc_graph)
		return NULL;

	for (i = 0; i < graph->scc; ++i)
		scc_graph->graph_scc[i] = i;

	if (isl_hash_table_foreach(ctx, graph->edge_table[isl_edge_validity],
					&add_scc_edge, scc_graph) < 0)
		return isl_scc_graph_free(scc_graph);
	if (isl_hash_table_foreach(ctx,
			    graph->edge_table[isl_edge_conditional_validity],
			    &add_scc_edge, scc_graph) < 0)
		return isl_scc_graph_free(scc_graph);

	scc_graph = isl_scc_graph_reduce(scc_graph);
	scc_graph = isl_scc_graph_add_reverse_edges(scc_graph);

	return scc_graph;
}

/* Internal data structure for copy_edge.
 *
 * "scc_graph" is the original graph.
 * "sub" is the subgraph to which edges are being copied.
 * "src" is the local index in "scc_graph" of the source of the edges
 * currently being copied.
 */
struct isl_copy_edge_data {
	struct isl_scc_graph *scc_graph;
	struct isl_scc_graph *sub;
	int src;
};

/* isl_hash_table_foreach callback for copying the edge
 * from data->src to the node identified by "entry"
 * to data->sub, provided the two nodes belong to the same component.
 * Note that by construction, there are no edges between different components
 * in the region handled by detect_components, but there may
 * be edges to nodes outside this region.
 * The components therefore need to be initialized for all nodes
 * in isl_scc_graph_init_component.
 */
static isl_stat copy_edge(void **entry, void *user)
{
	struct isl_copy_edge_data *data = user;
	struct isl_scc_graph *scc_graph = data->scc_graph;
	struct isl_scc_graph *sub = data->sub;
	int dst, sub_dst, sub_src;

	dst = isl_scc_graph_local_index(data->scc_graph, *entry);
	if (scc_graph->component[dst] != scc_graph->component[data->src])
		return isl_stat_ok;

	sub_src = scc_graph->pos[data->src];
	sub_dst = scc_graph->pos[dst];

	return isl_scc_graph_add_edge(sub, sub->edge_table, sub_src, sub_dst);
}

/* Construct a subgraph of "scc_graph" for the components
 * consisting of the "n" SCCs with local indices in "pos".
 * These SCCs have the same value in scc_graph->component and
 * this value is different from that of any other SCC.
 *
 * The forward edges with source and destination in the component
 * are copied from "scc_graph".
 * The local index in the subgraph corresponding to a local index
 * in "scc_graph" is stored in scc_graph->pos for use by copy_edge().
 * The inverse edges are constructed directly from the forward edges.
 */
static struct isl_scc_graph *isl_scc_graph_sub(struct isl_scc_graph *scc_graph,
	int *pos, int n)
{
	int i;
	isl_ctx *ctx;
	struct isl_scc_graph *sub;
	struct isl_copy_edge_data data;

	if (!scc_graph)
		return NULL;

	ctx = scc_graph->ctx;
	sub = isl_scc_graph_alloc(ctx, n, scc_graph->graph, scc_graph->c);
	if (!sub)
		return sub;

	for (i = 0; i < n; ++i)
		sub->graph_scc[i] = scc_graph->graph_scc[pos[i]];

	for (i = 0; i < n; ++i)
		scc_graph->pos[pos[i]] = i;

	data.scc_graph = scc_graph;
	data.sub = sub;
	for (i = 0; i < n; ++i) {
		data.src = pos[i];
		if (isl_hash_table_foreach(ctx, scc_graph->edge_table[pos[i]],
				&copy_edge, &data) < 0)
			return isl_scc_graph_free(sub);
	}

	sub = isl_scc_graph_add_reverse_edges(sub);

	return sub;
}

/* Return a union of universe domains corresponding to the nodes
 * in the SCC with local index "pos".
 */
static __isl_give isl_union_set *isl_scc_graph_extract_local_scc(
	struct isl_scc_graph *scc_graph, int pos)
{
	return isl_sched_graph_extract_scc(scc_graph->ctx, scc_graph->graph,
					scc_graph->graph_scc[pos]);
}

/* Construct a filter corresponding to a sequence of "n" local SCC indices
 * determined by successive calls to "el",
 * add this filter to "list" and
 * return the result.
 */
static __isl_give isl_union_set_list *add_scc_seq(
	struct isl_scc_graph *scc_graph,
	int (*el)(int i, void *user), void *user, int n,
	__isl_take isl_union_set_list *list)
{
	int i;
	isl_union_set *dom;

	dom = isl_union_set_empty_ctx(scc_graph->ctx);
	for (i = 0; i < n; ++i)
		dom = isl_union_set_union(dom,
		    isl_scc_graph_extract_local_scc(scc_graph, el(i, user)));

	return isl_union_set_list_add(list, dom);
}

/* add_scc_seq callback that, on successive calls, returns a sequence
 * of local SCC indices starting at "first".
 */
static int offset(int i, void *user)
{
	int *first = user;

	return *first + i;
}

/* Construct a filter corresponding to a sequence of "n" local SCC indices
 * starting at "first", add this filter to "list" and return the result.
 */
static __isl_give isl_union_set_list *isl_scc_graph_add_scc_seq(
	struct isl_scc_graph *scc_graph, int first, int n,
	__isl_take isl_union_set_list *list)
{
	return add_scc_seq(scc_graph, &offset, &first, n, list);
}

/* add_scc_seq callback that, on successive calls, returns the sequence
 * of local SCC indices in "seq".
 */
static int at(int i, void *user)
{
	int *seq = user;

	return seq[i];
}

/* Construct a filter corresponding to the sequence of "n" local SCC indices
 * stored in "seq", add this filter to "list" and return the result.
 */
static __isl_give isl_union_set_list *isl_scc_graph_add_scc_indirect_seq(
	struct isl_scc_graph *scc_graph, int *seq, int n,
	__isl_take isl_union_set_list *list)
{
	return add_scc_seq(scc_graph, &at, seq, n, list);
}

/* Extract out a list of filters for a sequence node that splits
 * the graph along the SCC with local index "pos".
 *
 * The list contains (at most) three elements,
 * the SCCs before "pos" (in the topological order),
 * "pos" itself, and
 * the SCCs after "pos".
 */
static __isl_give isl_union_set_list *extract_split_scc(
	struct isl_scc_graph *scc_graph, int pos)
{
	isl_union_set *dom;
	isl_union_set_list *filters;

	filters = isl_union_set_list_alloc(scc_graph->ctx, 3);
	if (pos > 0)
		filters = isl_scc_graph_add_scc_seq(scc_graph, 0, pos, filters);
	dom = isl_scc_graph_extract_local_scc(scc_graph, pos);
	filters = isl_union_set_list_add(filters, dom);
	if (pos + 1 < scc_graph->n)
		filters = isl_scc_graph_add_scc_seq(scc_graph,
				pos + 1, scc_graph->n - (pos + 1), filters);
	return filters;
}

/* Call isl_schedule_node_compute_finish_band on the cluster
 * corresponding to the SCC with local index "pos".
 *
 * First obtain the corresponding SCC index in scc_graph->graph and
 * then obtain the corresponding cluster.
 */
static __isl_give isl_schedule_node *isl_scc_graph_finish_band(
	struct isl_scc_graph *scc_graph, __isl_take isl_schedule_node *node,
	int pos)
{
	struct isl_clustering *c = scc_graph->c;
	int cluster;

	cluster = c->scc_cluster[scc_graph->graph_scc[pos]];
	return isl_schedule_node_compute_finish_band(node,
						&c->cluster[cluster], 0);
}

/* Given that the SCCs in "scc_graph" form a chain,
 * call isl_schedule_node_compute_finish_band on each of the clusters
 * in scc_graph->c and update "node" to arrange for them to be executed
 * in topological order.
 */
static __isl_give isl_schedule_node *isl_scc_graph_chain(
	struct isl_scc_graph *scc_graph, __isl_take isl_schedule_node *node)
{
	int i;
	isl_union_set *dom;
	isl_union_set_list *filters;

	filters = isl_union_set_list_alloc(scc_graph->ctx, scc_graph->n);
	for (i = 0; i < scc_graph->n; ++i) {
		dom = isl_scc_graph_extract_local_scc(scc_graph, i);
		filters = isl_union_set_list_add(filters, dom);
	}

	node = isl_schedule_node_insert_sequence(node, filters);

	for (i = 0; i < scc_graph->n; ++i) {
		node = isl_schedule_node_grandchild(node, i, 0);
		node = isl_scc_graph_finish_band(scc_graph, node, i);
		node = isl_schedule_node_grandparent(node);
	}

	return node;
}

/* Recursively call isl_scc_graph_decompose on a subgraph
 * consisting of the "n" SCCs with local indices in "pos".
 *
 * If this component contains only a single SCC,
 * then there is no need for a further recursion and
 * isl_schedule_node_compute_finish_band can be called directly.
 */
static __isl_give isl_schedule_node *recurse(struct isl_scc_graph *scc_graph,
	int *pos, int n, __isl_take isl_schedule_node *node)
{
	struct isl_scc_graph *sub;

	if (n == 1)
		return isl_scc_graph_finish_band(scc_graph, node, pos[0]);

	sub = isl_scc_graph_sub(scc_graph, pos, n);
	if (!sub)
		return isl_schedule_node_free(node);
	node = isl_scc_graph_decompose(sub, node);
	isl_scc_graph_free(sub);

	return node;
}

/* Initialize the component field of "scc_graph".
 * Initially, each SCC belongs to its own single-element component.
 *
 * Note that the SCC on which isl_scc_graph_decompose performs a split
 * also needs to be assigned a component because the components
 * are also used in copy_edge to extract a subgraph.
 */
static void isl_scc_graph_init_component(struct isl_scc_graph *scc_graph)
{
	int i;

	for (i = 0; i < scc_graph->n; ++i)
		scc_graph->component[i] = i;
}

/* Set the component of "a" to be the same as that of "b" and
 * return the original component of "a".
 */
static int assign(int *component, int a, int b)
{
	int t;

	t = component[a];
	component[a] = component[b];
	return t;
}

/* Merge the components containing the SCCs with indices "a" and "b".
 *
 * If "a" and "b" already belong to the same component, then nothing
 * needs to be done.
 * Otherwise, make sure both point to the same component.
 * In particular, use the SCC in the component entries with the smallest index.
 * If the other SCC was the first of its component then the entire
 * component now (eventually) points to the other component.
 * Otherwise, the earlier parts of the component still need
 * to be merged with the other component.
 *
 * At each stage, either a or b is replaced by either a or b itself,
 * in which case the merging terminates because a and b already
 * point to the same component, or an SCC index with a smaller value.
 * This ensures the merging terminates at some point.
 */
static void isl_scc_graph_merge_src_dst(struct isl_scc_graph *scc_graph,
	int a, int b)
{
	int *component = scc_graph->component;

	while (component[a] != component[b]) {
		if (component[a] < component[b])
			b = assign(component, b, a);
		else
			a = assign(component, a, b);
	}
}

/* Internal data structure for isl_scc_graph_merge_components.
 *
 * "scc_graph" is the SCC graph containing the edges.
 * "src" is the local index of the source SCC.
 * "end" is the local index beyond the sequence being considered.
 */
struct isl_merge_src_dst_data {
	struct isl_scc_graph *scc_graph;
	int src;
	int end;
};

/* isl_hash_table_foreach callback for merging the components
 * of data->src and the node represented by "entry", provided
 * it is within the sequence being considered.
 */
static isl_stat merge_src_dst(void **entry, void *user)
{
	struct isl_merge_src_dst_data *data = user;
	int dst;

	dst = isl_scc_graph_local_index(data->scc_graph, *entry);
	if (dst >= data->end)
		return isl_stat_ok;

	isl_scc_graph_merge_src_dst(data->scc_graph, data->src, dst);

	return isl_stat_ok;
}

/* Merge components of the "n" SCCs starting at "first" that are connected
 * by an edge.
 */
static isl_stat isl_scc_graph_merge_components(struct isl_scc_graph *scc_graph,
	int first, int n)
{
	int i;
	struct isl_merge_src_dst_data data;
	isl_ctx *ctx = scc_graph->ctx;

	data.scc_graph = scc_graph;
	data.end = first + n;
	for (i = 0; i < n; ++i) {
		data.src = first + i;
		if (isl_hash_table_foreach(ctx, scc_graph->edge_table[data.src],
				&merge_src_dst, &data) < 0)
			return isl_stat_error;
	}

	return isl_stat_ok;
}

/* Sort the "n" local SCC indices starting at "first" according
 * to component, store them in scc_graph->sorted and
 * return the number of components.
 * The sizes of the components are stored in scc_graph->size.
 * Only positions starting at "first" are used within
 * scc_graph->sorted and scc_graph->size.
 *
 * The representation of the components is first normalized.
 * The normalization ensures that each SCC in a component
 * points to the first SCC in the component, whereas
 * before this function is called, some SCCs may only point
 * to some other SCC in the component with a smaller index.
 *
 * Internally, the sizes of the components are first stored
 * at indices corresponding to the first SCC in the component.
 * They are subsequently moved into consecutive positions
 * while reordering the local indices.
 * This reordering is performed by first determining the position
 * of the first SCC in each component and
 * then putting the "n" local indices in the right position
 * according to the component, preserving the topological order
 * within each component.
 */
static int isl_scc_graph_sort_components(struct isl_scc_graph *scc_graph,
	int first, int n)
{
	int i, j;
	int sum;
	int *component = scc_graph->component;
	int *size = scc_graph->size;
	int *pos = scc_graph->pos;
	int *sorted = scc_graph->sorted;
	int n_component;

	n_component = 0;
	for (i = 0; i < n; ++i) {
		size[first + i] = 0;
		if (component[first + i] == first + i)
			n_component++;
		else
			component[first + i] = component[component[first + i]];
		size[component[first + i]]++;
	}

	sum = first;
	i = 0;
	for (j = 0; j < n_component; ++j) {
		while (size[first + i] == 0)
			++i;
		pos[first + i] = sum;
		sum += size[first + i];
		size[first + j] = size[first + i++];
	}
	for (i = 0; i < n; ++i)
		sorted[pos[component[first + i]]++] = first + i;

	return n_component;
}

/* Extract out a list of filters for a set node that splits up
 * the graph into "n_component" components.
 * "first" is the initial position in "scc_graph" where information
 * about the components is stored.
 * In particular, the first "n_component" entries of scc_graph->size
 * at this position contain the number of SCCs in each component.
 * The entries of scc_graph->sorted starting at "first"
 * contain the local indices of the SCC in those components.
 */
static __isl_give isl_union_set_list *extract_components(
	struct isl_scc_graph *scc_graph, int first, int n_component)
{
	int i;
	int sum;
	int *size = scc_graph->size;
	int *sorted = scc_graph->sorted;
	isl_ctx *ctx = scc_graph->ctx;
	isl_union_set_list *filters;

	filters = isl_union_set_list_alloc(ctx, n_component);
	sum = first;
	for (i = 0; i < n_component; ++i) {
		int n;

		n = size[first + i];
		filters = isl_scc_graph_add_scc_indirect_seq(scc_graph,
			&sorted[sum], n, filters);
		sum += n;
	}

	return filters;
}

/* Detect components in the subgraph consisting of the "n" SCCs
 * with local index starting at "first" and further decompose them,
 * calling isl_schedule_node_compute_finish_band on each
 * of the corresponding clusters.
 *
 * If there is only one SCC, then isl_schedule_node_compute_finish_band
 * can be called directly.
 * Otherwise, determine the components and rearrange the local indices
 * according to component, but preserving the topological order within
 * each component, in scc_graph->sorted.  The sizes of the components
 * are stored in scc_graph->size.
 * If there is only one component, it can be further decomposed
 * directly by a call to recurse().
 * Otherwise, introduce a set node separating the components and
 * call recurse() on each component separately.
 */
static __isl_give isl_schedule_node *detect_components(
	struct isl_scc_graph *scc_graph, int first, int n,
	__isl_take isl_schedule_node *node)
{
	int i;
	int *size = scc_graph->size;
	int *sorted = scc_graph->sorted;
	int n_component;
	int sum;
	isl_union_set_list *filters;

	if (n == 1)
		return isl_scc_graph_finish_band(scc_graph, node, first);

	if (isl_scc_graph_merge_components(scc_graph, first, n) < 0)
		return isl_schedule_node_free(node);

	n_component = isl_scc_graph_sort_components(scc_graph, first, n);
	if (n_component == 1)
		return recurse(scc_graph, &sorted[first], n, node);

	filters = extract_components(scc_graph, first, n_component);
	node = isl_schedule_node_insert_set(node, filters);

	sum = first;
	for (i = 0; i < n_component; ++i) {
		int n;

		n = size[first + i];
		node = isl_schedule_node_grandchild(node, i, 0);
		node = recurse(scc_graph, &sorted[sum], n, node);
		node = isl_schedule_node_grandparent(node);
		sum += n;
	}

	return node;
}

/* Given a sequence node "node", where the filter at position "child"
 * represents the "n" SCCs with local index starting at "first",
 * detect components in this subgraph and further decompose them,
 * calling isl_schedule_node_compute_finish_band on each
 * of the corresponding clusters.
 */
static __isl_give isl_schedule_node *detect_components_at(
	struct isl_scc_graph *scc_graph, int first, int n,
	__isl_take isl_schedule_node *node, int child)
{
	node = isl_schedule_node_grandchild(node, child, 0);
	node = detect_components(scc_graph, first, n, node);
	node = isl_schedule_node_grandparent(node);

	return node;
}

/* Return the local index of an SCC on which to split "scc_graph".
 * Return scc_graph->n if no suitable split SCC can be found.
 *
 * In particular, look for an SCC that is involved in the largest number
 * of edges.  Splitting the graph on such an SCC has the highest chance
 * of exposing independent SCCs in the remaining part(s).
 * There is no point in splitting a chain of nodes,
 * so return scc_graph->n if the entire graph forms a chain.
 */
static int best_split(struct isl_scc_graph *scc_graph)
{
	int i;
	int split = scc_graph->n;
	int split_score = -1;

	for (i = 0; i < scc_graph->n; ++i) {
		int n_fwd, n_bwd;

		n_fwd = scc_graph->edge_table[i]->n;
		n_bwd = scc_graph->reverse_edge_table[i]->n;
		if (n_fwd <= 1 && n_bwd <= 1)
			continue;
		if (split_score >= n_fwd + n_bwd)
			continue;
		split = i;
		split_score = n_fwd + n_bwd;
	}

	return split;
}

/* Call isl_schedule_node_compute_finish_band on each of the clusters
 * in scc_graph->c and update "node" to arrange for them to be executed
 * in an order possibly involving set nodes that generalizes
 * the topological order determined by the scc fields of the nodes
 * in scc_graph->graph.
 *
 * First try and find a suitable SCC on which to split the graph.
 * If no such SCC can be found then the graph forms a chain and
 * it is handled as such.
 * Otherwise, break up the graph into (at most) three parts,
 * the SCCs before the selected SCC (in the topological order),
 * the selected SCC itself, and
 * the SCCs after the selected SCC.
 * The first and last part (if they exist) are decomposed recursively and
 * the three parts are combined in a sequence.
 *
 * Since the outermost node of the recursive pieces may also be a sequence,
 * these potential sequence nodes are spliced into the top-level sequence node.
 */
__isl_give isl_schedule_node *isl_scc_graph_decompose(
	struct isl_scc_graph *scc_graph, __isl_take isl_schedule_node *node)
{
	int i;
	int split;
	isl_union_set_list *filters;

	if (!scc_graph)
		return isl_schedule_node_free(node);

	split = best_split(scc_graph);

	if (split == scc_graph->n)
		return isl_scc_graph_chain(scc_graph, node);

	filters = extract_split_scc(scc_graph, split);
	node = isl_schedule_node_insert_sequence(node, filters);

	isl_scc_graph_init_component(scc_graph);

	i = 0;
	if (split > 0)
		node = detect_components_at(scc_graph, 0, split, node, i++);
	node = isl_schedule_node_grandchild(node, i++, 0);
	node = isl_scc_graph_finish_band(scc_graph, node, split);
	node = isl_schedule_node_grandparent(node);
	if (split + 1 < scc_graph->n)
		node = detect_components_at(scc_graph,
			    split + 1, scc_graph->n - (split + 1), node, i++);

	node = isl_schedule_node_sequence_splice_children(node);

	return node;
}