1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
|
//===- ScheduleOptimizer.cpp - Calculate an optimized schedule ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass generates an entirely new schedule tree from the data dependences
// and iteration domains. The new schedule tree is computed in two steps:
//
// 1) The isl scheduling optimizer is run
//
// The isl scheduling optimizer creates a new schedule tree that maximizes
// parallelism and tileability and minimizes data-dependence distances. The
// algorithm used is a modified version of the ``Pluto'' algorithm:
//
// U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
// A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
// In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
// Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008.
//
// 2) A set of post-scheduling transformations is applied on the schedule tree.
//
// These optimizations include:
//
// - Tiling of the innermost tilable bands
// - Prevectorization - The choice of a possible outer loop that is strip-mined
// to the innermost level to enable inner-loop
// vectorization.
// - Some optimizations for spatial locality are also planned.
//
// For a detailed description of the schedule tree itself please see section 6
// of:
//
// Polyhedral AST generation is more than scanning polyhedra
// Tobias Grosser, Sven Verdoolaege, Albert Cohen
// ACM Transactions on Programming Languages and Systems (TOPLAS),
// 37(4), July 2015
// http://www.grosser.es/#pub-polyhedral-AST-generation
//
// This publication also contains a detailed discussion of the different options
// for polyhedral loop unrolling, full/partial tile separation and other uses
// of the schedule tree.
//
//===----------------------------------------------------------------------===//
#include "polly/ScheduleOptimizer.h"
#include "polly/CodeGen/CodeGeneration.h"
#include "polly/DependenceInfo.h"
#include "polly/ManualOptimizer.h"
#include "polly/MatmulOptimizer.h"
#include "polly/Options.h"
#include "polly/ScheduleTreeTransform.h"
#include "polly/Support/ISLOStream.h"
#include "polly/Support/ISLTools.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "isl/options.h"
using namespace llvm;
using namespace polly;
namespace llvm {
class Loop;
class Module;
} // namespace llvm
#define DEBUG_TYPE "polly-opt-isl"
static cl::opt<std::string>
OptimizeDeps("polly-opt-optimize-only",
cl::desc("Only a certain kind of dependences (all/raw)"),
cl::Hidden, cl::init("all"), cl::cat(PollyCategory));
static cl::opt<std::string>
SimplifyDeps("polly-opt-simplify-deps",
cl::desc("Dependences should be simplified (yes/no)"),
cl::Hidden, cl::init("yes"), cl::cat(PollyCategory));
static cl::opt<int> MaxConstantTerm(
"polly-opt-max-constant-term",
cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
cl::init(20), cl::cat(PollyCategory));
static cl::opt<int> MaxCoefficient(
"polly-opt-max-coefficient",
cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
cl::init(20), cl::cat(PollyCategory));
static cl::opt<std::string>
MaximizeBandDepth("polly-opt-maximize-bands",
cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
cl::init("yes"), cl::cat(PollyCategory));
static cl::opt<bool>
GreedyFusion("polly-loopfusion-greedy",
cl::desc("Aggressively try to fuse everything"), cl::Hidden,
cl::cat(PollyCategory));
static cl::opt<std::string> OuterCoincidence(
"polly-opt-outer-coincidence",
cl::desc("Try to construct schedules where the outer member of each band "
"satisfies the coincidence constraints (yes/no)"),
cl::Hidden, cl::init("no"), cl::cat(PollyCategory));
static cl::opt<int> PrevectorWidth(
"polly-prevect-width",
cl::desc(
"The number of loop iterations to strip-mine for pre-vectorization"),
cl::Hidden, cl::init(4), cl::cat(PollyCategory));
static cl::opt<bool> FirstLevelTiling("polly-tiling",
cl::desc("Enable loop tiling"),
cl::init(true), cl::cat(PollyCategory));
static cl::opt<int> FirstLevelDefaultTileSize(
"polly-default-tile-size",
cl::desc("The default tile size (if not enough were provided by"
" --polly-tile-sizes)"),
cl::Hidden, cl::init(32), cl::cat(PollyCategory));
static cl::list<int>
FirstLevelTileSizes("polly-tile-sizes",
cl::desc("A tile size for each loop dimension, filled "
"with --polly-default-tile-size"),
cl::Hidden, cl::CommaSeparated, cl::cat(PollyCategory));
static cl::opt<bool>
SecondLevelTiling("polly-2nd-level-tiling",
cl::desc("Enable a 2nd level loop of loop tiling"),
cl::cat(PollyCategory));
static cl::opt<int> SecondLevelDefaultTileSize(
"polly-2nd-level-default-tile-size",
cl::desc("The default 2nd-level tile size (if not enough were provided by"
" --polly-2nd-level-tile-sizes)"),
cl::Hidden, cl::init(16), cl::cat(PollyCategory));
static cl::list<int>
SecondLevelTileSizes("polly-2nd-level-tile-sizes",
cl::desc("A tile size for each loop dimension, filled "
"with --polly-default-tile-size"),
cl::Hidden, cl::CommaSeparated,
cl::cat(PollyCategory));
static cl::opt<bool> RegisterTiling("polly-register-tiling",
cl::desc("Enable register tiling"),
cl::cat(PollyCategory));
static cl::opt<int> RegisterDefaultTileSize(
"polly-register-tiling-default-tile-size",
cl::desc("The default register tile size (if not enough were provided by"
" --polly-register-tile-sizes)"),
cl::Hidden, cl::init(2), cl::cat(PollyCategory));
static cl::list<int>
RegisterTileSizes("polly-register-tile-sizes",
cl::desc("A tile size for each loop dimension, filled "
"with --polly-register-tile-size"),
cl::Hidden, cl::CommaSeparated, cl::cat(PollyCategory));
static cl::opt<bool> PragmaBasedOpts(
"polly-pragma-based-opts",
cl::desc("Apply user-directed transformation from metadata"),
cl::init(true), cl::cat(PollyCategory));
static cl::opt<bool> EnableReschedule("polly-reschedule",
cl::desc("Optimize SCoPs using ISL"),
cl::init(true), cl::cat(PollyCategory));
static cl::opt<bool>
PMBasedOpts("polly-pattern-matching-based-opts",
cl::desc("Perform optimizations based on pattern matching"),
cl::init(true), cl::cat(PollyCategory));
static cl::opt<bool>
EnablePostopts("polly-postopts",
cl::desc("Apply post-rescheduling optimizations such as "
"tiling (requires -polly-reschedule)"),
cl::init(true), cl::cat(PollyCategory));
static cl::opt<bool> OptimizedScops(
"polly-optimized-scops",
cl::desc("Polly - Dump polyhedral description of Scops optimized with "
"the isl scheduling optimizer and the set of post-scheduling "
"transformations is applied on the schedule tree"),
cl::cat(PollyCategory));
STATISTIC(ScopsProcessed, "Number of scops processed");
STATISTIC(ScopsRescheduled, "Number of scops rescheduled");
STATISTIC(ScopsOptimized, "Number of scops optimized");
STATISTIC(NumAffineLoopsOptimized, "Number of affine loops optimized");
STATISTIC(NumBoxedLoopsOptimized, "Number of boxed loops optimized");
#define THREE_STATISTICS(VARNAME, DESC) \
static Statistic VARNAME[3] = { \
{DEBUG_TYPE, #VARNAME "0", DESC " (original)"}, \
{DEBUG_TYPE, #VARNAME "1", DESC " (after scheduler)"}, \
{DEBUG_TYPE, #VARNAME "2", DESC " (after optimizer)"}}
THREE_STATISTICS(NumBands, "Number of bands");
THREE_STATISTICS(NumBandMembers, "Number of band members");
THREE_STATISTICS(NumCoincident, "Number of coincident band members");
THREE_STATISTICS(NumPermutable, "Number of permutable bands");
THREE_STATISTICS(NumFilters, "Number of filter nodes");
THREE_STATISTICS(NumExtension, "Number of extension nodes");
STATISTIC(FirstLevelTileOpts, "Number of first level tiling applied");
STATISTIC(SecondLevelTileOpts, "Number of second level tiling applied");
STATISTIC(RegisterTileOpts, "Number of register tiling applied");
STATISTIC(PrevectOpts, "Number of strip-mining for prevectorization applied");
STATISTIC(MatMulOpts,
"Number of matrix multiplication patterns detected and optimized");
namespace {
/// Additional parameters of the schedule optimizer.
///
/// Target Transform Info and the SCoP dependencies used by the schedule
/// optimizer.
struct OptimizerAdditionalInfoTy {
const llvm::TargetTransformInfo *TTI;
const Dependences *D;
bool PatternOpts;
bool Postopts;
bool Prevect;
bool &DepsChanged;
};
class ScheduleTreeOptimizer final {
public:
/// Apply schedule tree transformations.
///
/// This function takes an (possibly already optimized) schedule tree and
/// applies a set of additional optimizations on the schedule tree. The
/// transformations applied include:
///
/// - Pattern-based optimizations
/// - Tiling
/// - Prevectorization
///
/// @param Schedule The schedule object the transformations will be applied
/// to.
/// @param OAI Target Transform Info and the SCoP dependencies.
/// @returns The transformed schedule.
static isl::schedule
optimizeSchedule(isl::schedule Schedule,
const OptimizerAdditionalInfoTy *OAI = nullptr);
/// Apply schedule tree transformations.
///
/// This function takes a node in an (possibly already optimized) schedule
/// tree and applies a set of additional optimizations on this schedule tree
/// node and its descendants. The transformations applied include:
///
/// - Pattern-based optimizations
/// - Tiling
/// - Prevectorization
///
/// @param Node The schedule object post-transformations will be applied to.
/// @param OAI Target Transform Info and the SCoP dependencies.
/// @returns The transformed schedule.
static isl::schedule_node
optimizeScheduleNode(isl::schedule_node Node,
const OptimizerAdditionalInfoTy *OAI = nullptr);
/// Decide if the @p NewSchedule is profitable for @p S.
///
/// @param S The SCoP we optimize.
/// @param NewSchedule The new schedule we computed.
///
/// @return True, if we believe @p NewSchedule is an improvement for @p S.
static bool isProfitableSchedule(polly::Scop &S, isl::schedule NewSchedule);
/// Isolate a set of partial tile prefixes.
///
/// This set should ensure that it contains only partial tile prefixes that
/// have exactly VectorWidth iterations.
///
/// @param Node A schedule node band, which is a parent of a band node,
/// that contains a vector loop.
/// @return Modified isl_schedule_node.
static isl::schedule_node isolateFullPartialTiles(isl::schedule_node Node,
int VectorWidth);
private:
/// Check if this node is a band node we want to tile.
///
/// We look for innermost band nodes where individual dimensions are marked as
/// permutable.
///
/// @param Node The node to check.
static bool isTileableBandNode(isl::schedule_node Node);
/// Check if this node is a band node we want to transform using pattern
/// matching.
///
/// We look for innermost band nodes where individual dimensions are marked as
/// permutable. There is no restriction on the number of individual
/// dimensions.
///
/// @param Node The node to check.
static bool isPMOptimizableBandNode(isl::schedule_node Node);
/// Pre-vectorizes one scheduling dimension of a schedule band.
///
/// prevectSchedBand splits out the dimension DimToVectorize, tiles it and
/// sinks the resulting point loop.
///
/// Example (DimToVectorize=0, VectorWidth=4):
///
/// | Before transformation:
/// |
/// | A[i,j] -> [i,j]
/// |
/// | for (i = 0; i < 128; i++)
/// | for (j = 0; j < 128; j++)
/// | A(i,j);
///
/// | After transformation:
/// |
/// | for (it = 0; it < 32; it+=1)
/// | for (j = 0; j < 128; j++)
/// | for (ip = 0; ip <= 3; ip++)
/// | A(4 * it + ip,j);
///
/// The goal of this transformation is to create a trivially vectorizable
/// loop. This means a parallel loop at the innermost level that has a
/// constant number of iterations corresponding to the target vector width.
///
/// This transformation creates a loop at the innermost level. The loop has
/// a constant number of iterations, if the number of loop iterations at
/// DimToVectorize can be divided by VectorWidth. The default VectorWidth is
/// currently constant and not yet target specific. This function does not
/// reason about parallelism.
static isl::schedule_node prevectSchedBand(isl::schedule_node Node,
unsigned DimToVectorize,
int VectorWidth);
/// Apply additional optimizations on the bands in the schedule tree.
///
/// We are looking for an innermost band node and apply the following
/// transformations:
///
/// - Tile the band
/// - if the band is tileable
/// - if the band has more than one loop dimension
///
/// - Prevectorize the schedule of the band (or the point loop in case of
/// tiling).
/// - if vectorization is enabled
///
/// @param Node The schedule node to (possibly) optimize.
/// @param User A pointer to forward some use information
/// (currently unused).
static isl_schedule_node *optimizeBand(isl_schedule_node *Node, void *User);
/// Apply tiling optimizations on the bands in the schedule tree.
///
/// @param Node The schedule node to (possibly) optimize.
static isl::schedule_node applyTileBandOpt(isl::schedule_node Node);
/// Apply prevectorization on the bands in the schedule tree.
///
/// @param Node The schedule node to (possibly) prevectorize.
static isl::schedule_node applyPrevectBandOpt(isl::schedule_node Node);
};
isl::schedule_node
ScheduleTreeOptimizer::isolateFullPartialTiles(isl::schedule_node Node,
int VectorWidth) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
Node = Node.child(0).child(0);
isl::union_map SchedRelUMap = Node.get_prefix_schedule_relation();
isl::union_set ScheduleRangeUSet = SchedRelUMap.range();
isl::set ScheduleRange{ScheduleRangeUSet};
isl::set IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth);
auto AtomicOption = getDimOptions(IsolateDomain.ctx(), "atomic");
isl::union_set IsolateOption = getIsolateOptions(IsolateDomain, 1);
Node = Node.parent().parent();
isl::union_set Options = IsolateOption.unite(AtomicOption);
isl::schedule_node_band Result =
Node.as<isl::schedule_node_band>().set_ast_build_options(Options);
return Result;
}
struct InsertSimdMarkers final : ScheduleNodeRewriter<InsertSimdMarkers> {
isl::schedule_node visitBand(isl::schedule_node_band Band) {
isl::schedule_node Node = visitChildren(Band);
// Only add SIMD markers to innermost bands.
if (!Node.first_child().isa<isl::schedule_node_leaf>())
return Node;
isl::id LoopMarker = isl::id::alloc(Band.ctx(), "SIMD", nullptr);
return Band.insert_mark(LoopMarker);
}
};
isl::schedule_node ScheduleTreeOptimizer::prevectSchedBand(
isl::schedule_node Node, unsigned DimToVectorize, int VectorWidth) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
unsigned ScheduleDimensions = unsignedFromIslSize(Space.dim(isl::dim::set));
assert(DimToVectorize < ScheduleDimensions);
if (DimToVectorize > 0) {
Node = isl::manage(
isl_schedule_node_band_split(Node.release(), DimToVectorize));
Node = Node.child(0);
}
if (DimToVectorize < ScheduleDimensions - 1)
Node = isl::manage(isl_schedule_node_band_split(Node.release(), 1));
Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
auto Sizes = isl::multi_val::zero(Space);
Sizes = Sizes.set_val(0, isl::val(Node.ctx(), VectorWidth));
Node =
isl::manage(isl_schedule_node_band_tile(Node.release(), Sizes.release()));
Node = isolateFullPartialTiles(Node, VectorWidth);
Node = Node.child(0);
// Make sure the "trivially vectorizable loop" is not unrolled. Otherwise,
// we will have troubles to match it in the backend.
Node = Node.as<isl::schedule_node_band>().set_ast_build_options(
isl::union_set(Node.ctx(), "{ unroll[x]: 1 = 0 }"));
// Sink the inner loop into the smallest possible statements to make them
// represent a single vector instruction if possible.
Node = isl::manage(isl_schedule_node_band_sink(Node.release()));
// Add SIMD markers to those vector statements.
InsertSimdMarkers SimdMarkerInserter;
Node = SimdMarkerInserter.visit(Node);
PrevectOpts++;
return Node.parent();
}
static bool isSimpleInnermostBand(const isl::schedule_node &Node) {
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
assert(isl_schedule_node_n_children(Node.get()) == 1);
auto ChildType = isl_schedule_node_get_type(Node.child(0).get());
if (ChildType == isl_schedule_node_leaf)
return true;
if (ChildType != isl_schedule_node_sequence)
return false;
auto Sequence = Node.child(0);
for (int c = 0, nc = isl_schedule_node_n_children(Sequence.get()); c < nc;
++c) {
auto Child = Sequence.child(c);
if (isl_schedule_node_get_type(Child.get()) != isl_schedule_node_filter)
return false;
if (isl_schedule_node_get_type(Child.child(0).get()) !=
isl_schedule_node_leaf)
return false;
}
return true;
}
/// Check if this node is a band node, which has only one child.
///
/// @param Node The node to check.
static bool isOneTimeParentBandNode(isl::schedule_node Node) {
if (isl_schedule_node_get_type(Node.get()) != isl_schedule_node_band)
return false;
if (isl_schedule_node_n_children(Node.get()) != 1)
return false;
return true;
}
bool ScheduleTreeOptimizer::isTileableBandNode(isl::schedule_node Node) {
if (!isOneTimeParentBandNode(Node))
return false;
if (!isl_schedule_node_band_get_permutable(Node.get()))
return false;
auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
if (unsignedFromIslSize(Space.dim(isl::dim::set)) <= 1u)
return false;
return isSimpleInnermostBand(Node);
}
bool ScheduleTreeOptimizer::isPMOptimizableBandNode(isl::schedule_node Node) {
if (!isOneTimeParentBandNode(Node))
return false;
return Node.child(0).isa<isl::schedule_node_leaf>();
}
__isl_give isl::schedule_node
ScheduleTreeOptimizer::applyTileBandOpt(isl::schedule_node Node) {
if (FirstLevelTiling) {
Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes,
FirstLevelDefaultTileSize);
FirstLevelTileOpts++;
}
if (SecondLevelTiling) {
Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes,
SecondLevelDefaultTileSize);
SecondLevelTileOpts++;
}
if (RegisterTiling) {
Node =
applyRegisterTiling(Node, RegisterTileSizes, RegisterDefaultTileSize);
RegisterTileOpts++;
}
return Node;
}
isl::schedule_node
ScheduleTreeOptimizer::applyPrevectBandOpt(isl::schedule_node Node) {
auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
int Dims = unsignedFromIslSize(Space.dim(isl::dim::set));
for (int i = Dims - 1; i >= 0; i--)
if (Node.as<isl::schedule_node_band>().member_get_coincident(i)) {
Node = prevectSchedBand(Node, i, PrevectorWidth);
break;
}
return Node;
}
__isl_give isl_schedule_node *
ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *NodeArg,
void *User) {
const OptimizerAdditionalInfoTy *OAI =
static_cast<const OptimizerAdditionalInfoTy *>(User);
assert(OAI && "Expecting optimization options");
isl::schedule_node Node = isl::manage(NodeArg);
if (OAI->PatternOpts && isPMOptimizableBandNode(Node)) {
isl::schedule_node PatternOptimizedSchedule =
tryOptimizeMatMulPattern(Node, OAI->TTI, OAI->D);
if (!PatternOptimizedSchedule.is_null()) {
MatMulOpts++;
OAI->DepsChanged = true;
return PatternOptimizedSchedule.release();
}
}
if (!isTileableBandNode(Node))
return Node.release();
if (OAI->Postopts)
Node = applyTileBandOpt(Node);
if (OAI->Prevect) {
// FIXME: Prevectorization requirements are different from those checked by
// isTileableBandNode.
Node = applyPrevectBandOpt(Node);
}
return Node.release();
}
isl::schedule
ScheduleTreeOptimizer::optimizeSchedule(isl::schedule Schedule,
const OptimizerAdditionalInfoTy *OAI) {
auto Root = Schedule.get_root();
Root = optimizeScheduleNode(Root, OAI);
return Root.get_schedule();
}
isl::schedule_node ScheduleTreeOptimizer::optimizeScheduleNode(
isl::schedule_node Node, const OptimizerAdditionalInfoTy *OAI) {
Node = isl::manage(isl_schedule_node_map_descendant_bottom_up(
Node.release(), optimizeBand,
const_cast<void *>(static_cast<const void *>(OAI))));
return Node;
}
bool ScheduleTreeOptimizer::isProfitableSchedule(Scop &S,
isl::schedule NewSchedule) {
// To understand if the schedule has been optimized we check if the schedule
// has changed at all.
// TODO: We can improve this by tracking if any necessarily beneficial
// transformations have been performed. This can e.g. be tiling, loop
// interchange, or ...) We can track this either at the place where the
// transformation has been performed or, in case of automatic ILP based
// optimizations, by comparing (yet to be defined) performance metrics
// before/after the scheduling optimizer
// (e.g., #stride-one accesses)
// FIXME: A schedule tree whose union_map-conversion is identical to the
// original schedule map may still allow for parallelization, i.e. can still
// be profitable.
auto NewScheduleMap = NewSchedule.get_map();
auto OldSchedule = S.getSchedule();
assert(!OldSchedule.is_null() &&
"Only IslScheduleOptimizer can insert extension nodes "
"that make Scop::getSchedule() return nullptr.");
bool changed = !OldSchedule.is_equal(NewScheduleMap);
return changed;
}
class IslScheduleOptimizerWrapperPass final : public ScopPass {
public:
static char ID;
explicit IslScheduleOptimizerWrapperPass() : ScopPass(ID) {}
/// Optimize the schedule of the SCoP @p S.
bool runOnScop(Scop &S) override;
/// Print the new schedule for the SCoP @p S.
void printScop(raw_ostream &OS, Scop &S) const override;
/// Register all analyses and transformation required.
void getAnalysisUsage(AnalysisUsage &AU) const override;
/// Release the internal memory.
void releaseMemory() override {
LastSchedule = {};
IslCtx.reset();
}
private:
std::shared_ptr<isl_ctx> IslCtx;
isl::schedule LastSchedule;
};
char IslScheduleOptimizerWrapperPass::ID = 0;
#ifndef NDEBUG
static void printSchedule(llvm::raw_ostream &OS, const isl::schedule &Schedule,
StringRef Desc) {
isl::ctx Ctx = Schedule.ctx();
isl_printer *P = isl_printer_to_str(Ctx.get());
P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
P = isl_printer_print_schedule(P, Schedule.get());
char *Str = isl_printer_get_str(P);
OS << Desc << ": \n" << Str << "\n";
free(Str);
isl_printer_free(P);
}
#endif
/// Collect statistics for the schedule tree.
///
/// @param Schedule The schedule tree to analyze. If not a schedule tree it is
/// ignored.
/// @param Version The version of the schedule tree that is analyzed.
/// 0 for the original schedule tree before any transformation.
/// 1 for the schedule tree after isl's rescheduling.
/// 2 for the schedule tree after optimizations are applied
/// (tiling, pattern matching)
static void walkScheduleTreeForStatistics(isl::schedule Schedule, int Version) {
auto Root = Schedule.get_root();
if (Root.is_null())
return;
isl_schedule_node_foreach_descendant_top_down(
Root.get(),
[](__isl_keep isl_schedule_node *nodeptr, void *user) -> isl_bool {
isl::schedule_node Node = isl::manage_copy(nodeptr);
int Version = *static_cast<int *>(user);
switch (isl_schedule_node_get_type(Node.get())) {
case isl_schedule_node_band: {
NumBands[Version]++;
if (isl_schedule_node_band_get_permutable(Node.get()) ==
isl_bool_true)
NumPermutable[Version]++;
int CountMembers = isl_schedule_node_band_n_member(Node.get());
NumBandMembers[Version] += CountMembers;
for (int i = 0; i < CountMembers; i += 1) {
if (Node.as<isl::schedule_node_band>().member_get_coincident(i))
NumCoincident[Version]++;
}
break;
}
case isl_schedule_node_filter:
NumFilters[Version]++;
break;
case isl_schedule_node_extension:
NumExtension[Version]++;
break;
default:
break;
}
return isl_bool_true;
},
&Version);
}
static void runIslScheduleOptimizer(
Scop &S,
function_ref<const Dependences &(Dependences::AnalysisLevel)> GetDeps,
TargetTransformInfo *TTI, OptimizationRemarkEmitter *ORE,
isl::schedule &LastSchedule, bool &DepsChanged) {
// Skip empty SCoPs but still allow code generation as it will delete the
// loops present but not needed.
if (S.getSize() == 0) {
S.markAsOptimized();
return;
}
ScopsProcessed++;
// Schedule without optimizations.
isl::schedule Schedule = S.getScheduleTree();
walkScheduleTreeForStatistics(S.getScheduleTree(), 0);
LLVM_DEBUG(printSchedule(dbgs(), Schedule, "Original schedule tree"));
bool HasUserTransformation = false;
if (PragmaBasedOpts) {
isl::schedule ManuallyTransformed = applyManualTransformations(
&S, Schedule, GetDeps(Dependences::AL_Statement), ORE);
if (ManuallyTransformed.is_null()) {
LLVM_DEBUG(dbgs() << "Error during manual optimization\n");
return;
}
if (ManuallyTransformed.get() != Schedule.get()) {
// User transformations have precedence over other transformations.
HasUserTransformation = true;
Schedule = std::move(ManuallyTransformed);
LLVM_DEBUG(
printSchedule(dbgs(), Schedule, "After manual transformations"));
}
}
// Only continue if either manual transformations have been applied or we are
// allowed to apply heuristics.
// TODO: Detect disabled heuristics and no user-directed transformation
// metadata earlier in ScopDetection.
if (!HasUserTransformation && S.hasDisableHeuristicsHint()) {
LLVM_DEBUG(dbgs() << "Heuristic optimizations disabled by metadata\n");
return;
}
// Get dependency analysis.
const Dependences &D = GetDeps(Dependences::AL_Statement);
if (D.getSharedIslCtx() != S.getSharedIslCtx()) {
LLVM_DEBUG(dbgs() << "DependenceInfo for another SCoP/isl_ctx\n");
return;
}
if (!D.hasValidDependences()) {
LLVM_DEBUG(dbgs() << "Dependency information not available\n");
return;
}
// Apply ISL's algorithm only if not overriden by the user. Note that
// post-rescheduling optimizations (tiling, pattern-based, prevectorization)
// rely on the coincidence/permutable annotations on schedule tree bands that
// are added by the rescheduling analyzer. Therefore, disabling the
// rescheduler implicitly also disables these optimizations.
if (!EnableReschedule) {
LLVM_DEBUG(dbgs() << "Skipping rescheduling due to command line option\n");
} else if (HasUserTransformation) {
LLVM_DEBUG(
dbgs() << "Skipping rescheduling due to manual transformation\n");
} else {
// Build input data.
int ValidityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
int ProximityKinds;
if (OptimizeDeps == "all")
ProximityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
else if (OptimizeDeps == "raw")
ProximityKinds = Dependences::TYPE_RAW;
else {
errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
<< " Falling back to optimizing all dependences.\n";
ProximityKinds =
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
}
isl::union_set Domain = S.getDomains();
if (Domain.is_null())
return;
isl::union_map Validity = D.getDependences(ValidityKinds);
isl::union_map Proximity = D.getDependences(ProximityKinds);
// Simplify the dependences by removing the constraints introduced by the
// domains. This can speed up the scheduling time significantly, as large
// constant coefficients will be removed from the dependences. The
// introduction of some additional dependences reduces the possible
// transformations, but in most cases, such transformation do not seem to be
// interesting anyway. In some cases this option may stop the scheduler to
// find any schedule.
if (SimplifyDeps == "yes") {
Validity = Validity.gist_domain(Domain);
Validity = Validity.gist_range(Domain);
Proximity = Proximity.gist_domain(Domain);
Proximity = Proximity.gist_range(Domain);
} else if (SimplifyDeps != "no") {
errs()
<< "warning: Option -polly-opt-simplify-deps should either be 'yes' "
"or 'no'. Falling back to default: 'yes'\n";
}
LLVM_DEBUG(dbgs() << "\n\nCompute schedule from: ");
LLVM_DEBUG(dbgs() << "Domain := " << Domain << ";\n");
LLVM_DEBUG(dbgs() << "Proximity := " << Proximity << ";\n");
LLVM_DEBUG(dbgs() << "Validity := " << Validity << ";\n");
int IslMaximizeBands;
if (MaximizeBandDepth == "yes") {
IslMaximizeBands = 1;
} else if (MaximizeBandDepth == "no") {
IslMaximizeBands = 0;
} else {
errs()
<< "warning: Option -polly-opt-maximize-bands should either be 'yes'"
" or 'no'. Falling back to default: 'yes'\n";
IslMaximizeBands = 1;
}
int IslOuterCoincidence;
if (OuterCoincidence == "yes") {
IslOuterCoincidence = 1;
} else if (OuterCoincidence == "no") {
IslOuterCoincidence = 0;
} else {
errs() << "warning: Option -polly-opt-outer-coincidence should either be "
"'yes' or 'no'. Falling back to default: 'no'\n";
IslOuterCoincidence = 0;
}
isl_ctx *Ctx = S.getIslCtx().get();
isl_options_set_schedule_outer_coincidence(Ctx, IslOuterCoincidence);
isl_options_set_schedule_maximize_band_depth(Ctx, IslMaximizeBands);
isl_options_set_schedule_max_constant_term(Ctx, MaxConstantTerm);
isl_options_set_schedule_max_coefficient(Ctx, MaxCoefficient);
isl_options_set_tile_scale_tile_loops(Ctx, 0);
auto OnErrorStatus = isl_options_get_on_error(Ctx);
isl_options_set_on_error(Ctx, ISL_ON_ERROR_CONTINUE);
auto SC = isl::schedule_constraints::on_domain(Domain);
SC = SC.set_proximity(Proximity);
SC = SC.set_validity(Validity);
SC = SC.set_coincidence(Validity);
Schedule = SC.compute_schedule();
isl_options_set_on_error(Ctx, OnErrorStatus);
ScopsRescheduled++;
LLVM_DEBUG(printSchedule(dbgs(), Schedule, "After rescheduling"));
}
walkScheduleTreeForStatistics(Schedule, 1);
// In cases the scheduler is not able to optimize the code, we just do not
// touch the schedule.
if (Schedule.is_null())
return;
if (GreedyFusion) {
isl::union_map Validity = D.getDependences(
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW);
Schedule = applyGreedyFusion(Schedule, Validity);
assert(!Schedule.is_null());
}
// Apply post-rescheduling optimizations (if enabled) and/or prevectorization.
const OptimizerAdditionalInfoTy OAI = {
TTI,
const_cast<Dependences *>(&D),
/*PatternOpts=*/!HasUserTransformation && PMBasedOpts,
/*Postopts=*/!HasUserTransformation && EnablePostopts,
/*Prevect=*/PollyVectorizerChoice != VECTORIZER_NONE,
DepsChanged};
if (OAI.PatternOpts || OAI.Postopts || OAI.Prevect) {
Schedule = ScheduleTreeOptimizer::optimizeSchedule(Schedule, &OAI);
Schedule = hoistExtensionNodes(Schedule);
LLVM_DEBUG(printSchedule(dbgs(), Schedule, "After post-optimizations"));
walkScheduleTreeForStatistics(Schedule, 2);
}
// Skip profitability check if user transformation(s) have been applied.
if (!HasUserTransformation &&
!ScheduleTreeOptimizer::isProfitableSchedule(S, Schedule))
return;
auto ScopStats = S.getStatistics();
ScopsOptimized++;
NumAffineLoopsOptimized += ScopStats.NumAffineLoops;
NumBoxedLoopsOptimized += ScopStats.NumBoxedLoops;
LastSchedule = Schedule;
S.setScheduleTree(Schedule);
S.markAsOptimized();
if (OptimizedScops)
errs() << S;
}
bool IslScheduleOptimizerWrapperPass::runOnScop(Scop &S) {
releaseMemory();
Function &F = S.getFunction();
IslCtx = S.getSharedIslCtx();
auto getDependences =
[this](Dependences::AnalysisLevel) -> const Dependences & {
return getAnalysis<DependenceInfo>().getDependences(
Dependences::AL_Statement);
};
OptimizationRemarkEmitter &ORE =
getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
TargetTransformInfo *TTI =
&getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
bool DepsChanged = false;
runIslScheduleOptimizer(S, getDependences, TTI, &ORE, LastSchedule,
DepsChanged);
if (DepsChanged)
getAnalysis<DependenceInfo>().abandonDependences();
return false;
}
static void runScheduleOptimizerPrinter(raw_ostream &OS,
isl::schedule LastSchedule) {
isl_printer *p;
char *ScheduleStr;
OS << "Calculated schedule:\n";
if (LastSchedule.is_null()) {
OS << "n/a\n";
return;
}
p = isl_printer_to_str(LastSchedule.ctx().get());
p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_BLOCK);
p = isl_printer_print_schedule(p, LastSchedule.get());
ScheduleStr = isl_printer_get_str(p);
isl_printer_free(p);
OS << ScheduleStr << "\n";
free(ScheduleStr);
}
void IslScheduleOptimizerWrapperPass::printScop(raw_ostream &OS, Scop &) const {
runScheduleOptimizerPrinter(OS, LastSchedule);
}
void IslScheduleOptimizerWrapperPass::getAnalysisUsage(
AnalysisUsage &AU) const {
ScopPass::getAnalysisUsage(AU);
AU.addRequired<DependenceInfo>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
AU.addPreserved<DependenceInfo>();
AU.addPreserved<OptimizationRemarkEmitterWrapperPass>();
}
} // namespace
Pass *polly::createIslScheduleOptimizerWrapperPass() {
return new IslScheduleOptimizerWrapperPass();
}
INITIALIZE_PASS_BEGIN(IslScheduleOptimizerWrapperPass, "polly-opt-isl",
"Polly - Optimize schedule of SCoP", false, false);
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass);
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass);
INITIALIZE_PASS_END(IslScheduleOptimizerWrapperPass, "polly-opt-isl",
"Polly - Optimize schedule of SCoP", false, false)
static llvm::PreservedAnalyses
runIslScheduleOptimizerUsingNPM(Scop &S, ScopAnalysisManager &SAM,
ScopStandardAnalysisResults &SAR, SPMUpdater &U,
raw_ostream *OS) {
DependenceAnalysis::Result &Deps = SAM.getResult<DependenceAnalysis>(S, SAR);
auto GetDeps = [&Deps](Dependences::AnalysisLevel) -> const Dependences & {
return Deps.getDependences(Dependences::AL_Statement);
};
OptimizationRemarkEmitter ORE(&S.getFunction());
TargetTransformInfo *TTI = &SAR.TTI;
isl::schedule LastSchedule;
bool DepsChanged = false;
runIslScheduleOptimizer(S, GetDeps, TTI, &ORE, LastSchedule, DepsChanged);
if (DepsChanged)
Deps.abandonDependences();
if (OS) {
*OS << "Printing analysis 'Polly - Optimize schedule of SCoP' for region: '"
<< S.getName() << "' in function '" << S.getFunction().getName()
<< "':\n";
runScheduleOptimizerPrinter(*OS, LastSchedule);
}
return PreservedAnalyses::all();
}
llvm::PreservedAnalyses
IslScheduleOptimizerPass::run(Scop &S, ScopAnalysisManager &SAM,
ScopStandardAnalysisResults &SAR, SPMUpdater &U) {
return runIslScheduleOptimizerUsingNPM(S, SAM, SAR, U, nullptr);
}
llvm::PreservedAnalyses
IslScheduleOptimizerPrinterPass::run(Scop &S, ScopAnalysisManager &SAM,
ScopStandardAnalysisResults &SAR,
SPMUpdater &U) {
return runIslScheduleOptimizerUsingNPM(S, SAM, SAR, U, &OS);
}
//===----------------------------------------------------------------------===//
namespace {
/// Print result from IslScheduleOptimizerWrapperPass.
class IslScheduleOptimizerPrinterLegacyPass final : public ScopPass {
public:
static char ID;
IslScheduleOptimizerPrinterLegacyPass()
: IslScheduleOptimizerPrinterLegacyPass(outs()) {}
explicit IslScheduleOptimizerPrinterLegacyPass(llvm::raw_ostream &OS)
: ScopPass(ID), OS(OS) {}
bool runOnScop(Scop &S) override {
IslScheduleOptimizerWrapperPass &P =
getAnalysis<IslScheduleOptimizerWrapperPass>();
OS << "Printing analysis '" << P.getPassName() << "' for region: '"
<< S.getRegion().getNameStr() << "' in function '"
<< S.getFunction().getName() << "':\n";
P.printScop(OS, S);
return false;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
ScopPass::getAnalysisUsage(AU);
AU.addRequired<IslScheduleOptimizerWrapperPass>();
AU.setPreservesAll();
}
private:
llvm::raw_ostream &OS;
};
char IslScheduleOptimizerPrinterLegacyPass::ID = 0;
} // namespace
Pass *polly::createIslScheduleOptimizerPrinterLegacyPass(raw_ostream &OS) {
return new IslScheduleOptimizerPrinterLegacyPass(OS);
}
INITIALIZE_PASS_BEGIN(IslScheduleOptimizerPrinterLegacyPass,
"polly-print-opt-isl",
"Polly - Print optimizer schedule of SCoP", false, false);
INITIALIZE_PASS_DEPENDENCY(IslScheduleOptimizerWrapperPass)
INITIALIZE_PASS_END(IslScheduleOptimizerPrinterLegacyPass,
"polly-print-opt-isl",
"Polly - Print optimizer schedule of SCoP", false, false)
|