1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftASN1 open source project
//
// Copyright (c) 2019-2020 Apple Inc. and the SwiftASN1 project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.txt for the list of SwiftASN1 project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//
/// A protocol that represents any internal object that can present itself as an INTEGER, or be parsed from
/// an INTEGER.
///
/// This protocol exists to allow users to handle the possibility of decoding integers that cannot fit into
/// UInt64 or Int64. While both of those types conform by default, users can conform their preferred
/// arbitrary-width integer type as well, or use `ArraySlice<UInt8>` to store the raw bytes of the
/// integer directly.
public protocol ASN1IntegerRepresentable: DERImplicitlyTaggable {
associatedtype IntegerBytes: RandomAccessCollection where IntegerBytes.Element == UInt8
/// Whether this type can represent signed integers.
///
/// If this is set to false, the serializer and parser will automatically handle padding
/// with leading zero bytes as needed.
static var isSigned: Bool { get }
/// Construct the integer value from the integer bytes. These will be big-endian, and encoded
/// according to DER requirements.
init(derIntegerBytes: ArraySlice<UInt8>) throws
/// Provide the big-endian bytes corresponding to this integer.
func withBigEndianIntegerBytes<ReturnType>(_ body: (IntegerBytes) throws -> ReturnType) rethrows -> ReturnType
}
extension ASN1IntegerRepresentable {
@inlinable
public static var defaultIdentifier: ASN1Identifier {
.integer
}
@inlinable
public init(derEncoded node: ASN1Node, withIdentifier identifier: ASN1Identifier) throws {
guard node.identifier == identifier else {
throw ASN1Error.unexpectedFieldType(node.identifier)
}
guard case .primitive(var dataBytes) = node.content else {
preconditionFailure("ASN.1 parser generated primitive node with constructed content")
}
// Zero bytes of integer is not an acceptable encoding.
guard dataBytes.count > 0 else {
throw ASN1Error.invalidASN1IntegerEncoding(reason: "INTEGER encoded with zero bytes")
}
// 8.3.2 If the contents octets of an integer value encoding consist of more than one octet, then the bits of the first octet and bit 8 of the second octet:
//
// a) shall not all be ones; and
// b) shall not all be zero.
//
// NOTE – These rules ensure that an integer value is always encoded in the smallest possible number of octets.
if let first = dataBytes.first, let second = dataBytes.dropFirst().first {
if (first == 0xFF) && second._topBitSet || (first == 0x00) && !second._topBitSet {
throw ASN1Error.invalidASN1IntegerEncoding(reason: "INTEGER not encoded in fewest number of octets")
}
}
// If the type we're trying to decode is unsigned, and the top byte is zero, we should strip it.
// If the top bit is set, however, this is an invalid conversion: the number needs to be positive!
if !Self.isSigned, let first = dataBytes.first {
if first == 0x00 {
dataBytes = dataBytes.dropFirst()
} else if first & 0x80 == 0x80 {
throw ASN1Error.invalidASN1IntegerEncoding(reason: "INTEGER encoded with top bit set!")
}
}
self = try Self(derIntegerBytes: dataBytes)
}
@inlinable
public func serialize(into coder: inout DER.Serializer, withIdentifier identifier: ASN1Identifier) throws {
coder.appendPrimitiveNode(identifier: identifier) { bytes in
self.withBigEndianIntegerBytes { integerBytes in
// If the number of bytes is 0, we're encoding a zero. That actually _does_ require one byte.
if integerBytes.count == 0 {
bytes.append(0)
return
}
// If self is unsigned and the first byte has the top bit set, we need to prepend a 0 byte.
if !Self.isSigned, let topByte = integerBytes.first, topByte._topBitSet {
bytes.append(0)
bytes.append(contentsOf: integerBytes)
} else {
// Either self is signed, or the top bit isn't set. Either way, trim to make sure the representation is minimal.
bytes.append(contentsOf: integerBytes._trimLeadingExcessBytes())
}
}
}
}
}
// MARK: - Auto-conformance for FixedWidthInteger with fixed width magnitude.
extension ASN1IntegerRepresentable where Self: FixedWidthInteger {
@inlinable
public init(derIntegerBytes bytes: ArraySlice<UInt8>) throws {
// Defer to the FixedWidthInteger constructor.
// There's a wrinkle here: if this is a signed integer, and the top bit of the data bytes was set,
// then we need to 1-extend the bytes. This is because ASN.1 tries to delete redundant bytes that
// are all 1.
self = try Self(bigEndianBytes: bytes)
if Self.isSigned, let first = bytes.first, first._topBitSet {
for shift in stride(from: self.bitWidth - self.leadingZeroBitCount, to: self.bitWidth, by: 8) {
self |= 0xFF << shift
}
}
}
@inlinable
public func withBigEndianIntegerBytes<ReturnType>(
_ body: (IntegerBytesCollection<Self>) throws -> ReturnType
) rethrows -> ReturnType {
return try body(IntegerBytesCollection(self))
}
}
/// A big-endian `Collection` of bytes representing a fixed width integer.
public struct IntegerBytesCollection<Integer: FixedWidthInteger> {
@usableFromInline var integer: Integer
/// Construct an ``IntegerBytesCollection`` representing the bytes of this integer.
@inlinable
public init(_ integer: Integer) {
self.integer = integer
}
}
extension IntegerBytesCollection: Hashable {}
extension IntegerBytesCollection: Sendable where Integer: Sendable {}
extension IntegerBytesCollection: RandomAccessCollection {
public struct Index {
@usableFromInline
var _byteNumber: Int
@inlinable
init(byteNumber: Int) {
self._byteNumber = byteNumber
}
@inlinable
var _shift: Integer {
// As byte number 0 is the end index, the byte number is one byte too large for the shift.
return Integer((self._byteNumber - 1) * 8)
}
}
@inlinable
public var startIndex: Index {
return Index(byteNumber: Int(self.integer.neededBytes))
}
@inlinable
public var endIndex: Index {
return Index(byteNumber: 0)
}
@inlinable
public var count: Int {
return Int(self.integer.neededBytes)
}
@inlinable
public subscript(index: Index) -> UInt8 {
// We perform the bitwise operations in magnitude space.
let shifted = Integer.Magnitude(truncatingIfNeeded: self.integer) >> index._shift
let masked = shifted & 0xFF
return UInt8(masked)
}
}
extension IntegerBytesCollection.Index: Hashable {}
extension IntegerBytesCollection.Index: Sendable {}
extension IntegerBytesCollection.Index: Comparable {
// Comparable here is backwards to the original ordering.
@inlinable
public static func < (lhs: Self, rhs: Self) -> Bool {
return lhs._byteNumber > rhs._byteNumber
}
@inlinable
public static func > (lhs: Self, rhs: Self) -> Bool {
return lhs._byteNumber < rhs._byteNumber
}
@inlinable
public static func <= (lhs: Self, rhs: Self) -> Bool {
return lhs._byteNumber >= rhs._byteNumber
}
@inlinable
public static func >= (lhs: Self, rhs: Self) -> Bool {
return lhs._byteNumber <= rhs._byteNumber
}
}
extension IntegerBytesCollection.Index: Strideable {
@inlinable
public func advanced(by n: Int) -> IntegerBytesCollection<Integer>.Index {
return IntegerBytesCollection.Index(byteNumber: self._byteNumber - n)
}
@inlinable
public func distance(to other: IntegerBytesCollection<Integer>.Index) -> Int {
// Remember that early indices have high byte numbers and later indices have low ones.
return self._byteNumber - other._byteNumber
}
}
extension Int8: ASN1IntegerRepresentable {}
extension UInt8: ASN1IntegerRepresentable {}
extension Int16: ASN1IntegerRepresentable {}
extension UInt16: ASN1IntegerRepresentable {}
extension Int32: ASN1IntegerRepresentable {}
extension UInt32: ASN1IntegerRepresentable {}
extension Int64: ASN1IntegerRepresentable {}
extension UInt64: ASN1IntegerRepresentable {}
extension Int: ASN1IntegerRepresentable {}
extension UInt: ASN1IntegerRepresentable {}
extension RandomAccessCollection where Element == UInt8 {
@inlinable
func _trimLeadingExcessBytes() -> SubSequence {
var slice = self[...]
guard let first = slice.first else {
// Easy case, empty.
return slice
}
let wholeByte: UInt8
switch first {
case 0:
wholeByte = 0
case 0xFF:
wholeByte = 0xFF
default:
// We're already fine, this is maximally compact. We need the whole thing.
return slice
}
// We never trim this to less than one byte, as that's always the smallest representation.
while slice.count > 1 {
// If the first byte is equal to our original first byte, and the top bit
// of the next byte is also equal to that, then we need to drop the byte and
// go again.
if slice.first != wholeByte {
break
}
guard let second = slice.dropFirst().first else {
preconditionFailure("Loop condition violated: must be at least two bytes left")
}
if second & 0x80 != wholeByte & 0x80 {
// Different top bit, we need the leading byte.
break
}
// Both the first byte and the top bit of the next are all zero or all 1, drop the leading
// byte.
slice = slice.dropFirst()
}
return slice
}
}
extension UInt8 {
@inlinable
var _topBitSet: Bool {
return (self & 0x80) != 0
}
}
|