1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftASN1 open source project
//
// Copyright (c) 2019-2020 Apple Inc. and the SwiftASN1 project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.txt for the list of SwiftASN1 project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//
/// An Object Identifier is a representation of some kind of object.
///
/// It represents a node in an OID hierarchy, and is usually represented as an ordered sequence of numbers. Object identifiers
/// form a nested tree of namespaces.
///
/// The most common way to construct an OID is to create one using an array literal. For example, the OID 2.5.4.41 can be created
/// as:
///
/// ```swift
/// let name: ASN1ObjectIdentifier = [2, 5, 4, 41]
/// ```
///
/// This object also has a number of pre-existing values defined in namespaces. Users are encouraged to create their own namespaces to
/// make it easier to use OIDs in their own serialization code.
public struct ASN1ObjectIdentifier: DERImplicitlyTaggable {
@inlinable
public static var defaultIdentifier: ASN1Identifier {
.objectIdentifier
}
@usableFromInline
var bytes: ArraySlice<UInt8>
@inlinable
public init(derEncoded node: ASN1Node, withIdentifier identifier: ASN1Identifier) throws {
guard node.identifier == identifier else {
throw ASN1Error.unexpectedFieldType(node.identifier)
}
guard case .primitive(let content) = node.content else {
preconditionFailure("ASN.1 parser generated primitive node with constructed content")
}
try Self.validateObjectIdentifierInEncodedForm(content)
self.bytes = content
}
@inlinable
static func validateObjectIdentifierInEncodedForm(_ content: ArraySlice<UInt8>) throws {
var content = content
guard content.count >= 1 else {
throw ASN1Error.invalidASN1Object(reason: "Zero components in OID")
}
while content.count > 0 {
_ = try content.readUIntUsing8BitBytesASN1Discipline()
}
}
@inlinable
var oidComponents: [UInt] {
var content = bytes
// We have to parse the content. From the spec:
//
// > Each subidentifier is represented as a series of (one or more) octets. Bit 8 of each octet indicates whether it
// > is the last in the series: bit 8 of the last octet is zero, bit 8 of each preceding octet is one. Bits 7 to 1 of
// > the octets in the series collectively encode the subidentifier. Conceptually, these groups of bits are concatenated
// > to form an unsigned binary number whose most significant bit is bit 7 of the first octet and whose least significant
// > bit is bit 1 of the last octet. The subidentifier shall be encoded in the fewest possible octets[...].
// >
// > The number of subidentifiers (N) shall be one less than the number of object identifier components in the object identifier
// > value being encoded.
// >
// > The numerical value of the first subidentifier is derived from the values of the first _two_ object identifier components
// > in the object identifier value being encoded, using the formula:
// >
// > (X*40) + Y
// >
// > where X is the value of the first object identifier component and Y is the value of the second object identifier component.
//
// Yeah, this is a bit bananas, but basically there are only 3 first OID components (0, 1, 2) and there are no more than 39 children
// of nodes 0 or 1. In my view this is too clever by half, but the ITU.T didn't ask for my opinion when they were coming up with this
// scheme, likely because I was in middle school at the time.
var subcomponents = [UInt]()
while content.count > 0 {
do {
subcomponents.append(try content.readUIntUsing8BitBytesASN1Discipline())
} catch {
preconditionFailure(
"""
Error while trying to read UInt using 8 bit ASN.1 Discipline: \(error). \
ASN1ObjectIdentifier validates the encoded format during initialisation and this should be impossible.
"""
)
}
}
// Now we need to expand the subcomponents out. This means we need to undo the step above. We can do this by
// taking the quotient and remainder when dividing by 40.
var oidComponents = [UInt]()
oidComponents.reserveCapacity(subcomponents.count + 1)
// We'd like to work on the slice here.
var subcomponentSlice = subcomponents[...]
guard let firstEncodedSubcomponent = subcomponentSlice.popFirst() else {
preconditionFailure(
"Zero components in OID. ASN1ObjectIdentifier validates the encoded format during initialisation and this should be impossible."
)
}
let (firstSubcomponent, secondSubcomponent) = firstEncodedSubcomponent.quotientAndRemainder(dividingBy: 40)
oidComponents.append(firstSubcomponent)
oidComponents.append(secondSubcomponent)
oidComponents.append(contentsOf: subcomponentSlice)
return oidComponents
}
@inlinable
public func serialize(into coder: inout DER.Serializer, withIdentifier identifier: ASN1Identifier) throws {
coder.appendPrimitiveNode(identifier: identifier) { bytes in
bytes.append(contentsOf: self.bytes)
}
}
@inlinable
static func _writeOIDSubidentifier(_ identifier: UInt, into array: inout [UInt8]) {
array.writeUsing7BitBytesASN1Discipline(unsignedInteger: identifier)
}
}
extension ASN1ObjectIdentifier: Hashable {}
extension ASN1ObjectIdentifier: Sendable {}
extension ASN1ObjectIdentifier: ExpressibleByArrayLiteral {
@inlinable
public init(arrayLiteral elements: UInt...) {
var bytes = [UInt8]()
var components = elements[...]
guard let firstComponent = components.popFirst(), let secondComponent = components.popFirst() else {
preconditionFailure("Invalid number of OID components: must be at least two!")
}
let serializedFirstComponent = (firstComponent * 40) + secondComponent
ASN1ObjectIdentifier._writeOIDSubidentifier(serializedFirstComponent, into: &bytes)
while let component = components.popFirst() {
ASN1ObjectIdentifier._writeOIDSubidentifier(component, into: &bytes)
}
self.bytes = bytes[...]
}
}
extension ASN1ObjectIdentifier: CustomStringConvertible {
@inlinable
public var description: String {
self.oidComponents.map { String($0) }.joined(separator: ".")
}
}
extension ASN1ObjectIdentifier {
/// Represents a namespace for OIDs that identify named Elliptic Curves.
///
/// These OIDs are defined in RFC 5480.
public enum NamedCurves {
/// Represents the NIST P256 curve. Also called `prime256v1`.
public static let secp256r1: ASN1ObjectIdentifier = [1, 2, 840, 10_045, 3, 1, 7]
/// Represents the NIST P384 curve.
public static let secp384r1: ASN1ObjectIdentifier = [1, 3, 132, 0, 34]
/// Represents the NIST P521 curve.
public static let secp521r1: ASN1ObjectIdentifier = [1, 3, 132, 0, 35]
}
/// Represents a namespace for OIDs that identify an algorithm within an
/// `AlgorithmIdentifier` object.
public enum AlgorithmIdentifier {
/// Identifies an elliptic curve public key.
///
/// This identifier is defined in RFC 5480. `AlgorithmIdentifier` objects with this key have a parameters
/// value defined in that RFC.
public static let idEcPublicKey: ASN1ObjectIdentifier = [1, 2, 840, 10_045, 2, 1]
/// Identifies a PKCS#1v1.5 RSA signature using SHA256 as the hash algorithm.
///
/// This identifier is defined in RFC 4055. When used, the parameters MUST be NULL.
public static let sha256WithRSAEncryption: ASN1ObjectIdentifier = [1, 2, 840, 11_3549, 1, 1, 11]
/// Identifies a PKCS#1v1.5 RSA signature using SHA384 as the hash algorithm.
///
/// This identifier is defined in RFC 4055. When used, the parameters MUST be NULL.
public static let sha384WithRSAEncryption: ASN1ObjectIdentifier = [1, 2, 840, 11_3549, 1, 1, 12]
/// Identifies a PKCS#1v1.5 RSA signature using SHA512 as the hash algorithm.
///
/// This identifier is defined in RFC 4055. When used, the parameters MUST be NULL.
public static let sha512WithRSAEncryption: ASN1ObjectIdentifier = [1, 2, 840, 11_3549, 1, 1, 13]
/// Identifies an RSA PSS signature.
///
/// This identifier is defined in RFC 4055. When used, the parameters will be `RSASSA-PSS-params` as
/// defined in that RFC.
public static let rsaPSS: ASN1ObjectIdentifier = [1, 2, 840, 11_3549, 1, 1, 10]
/// Identifies an RSA public key.
///
/// This identifier is defined in RFC 4055. When used, the parameters MUST be NULL.
public static let rsaEncryption: ASN1ObjectIdentifier = [1, 2, 840, 11_3549, 1, 1, 1]
}
/// Represents a namespace for OIDs that identify Relative Distinguished Name components.
///
/// An enormous number of these identifiers exist. A non-exhaustive list of them is available in
/// RFC 4519.
public enum NameAttributes {
/// The 'name' attribute type is the attribute supertype from which user
/// attribute types with the name syntax inherit. Such attribute types
/// are typically used for naming. The attribute type is multi-valued.
public static let name: ASN1ObjectIdentifier = [2, 5, 4, 41]
/// The 'sn' ('surname' in X.500) attribute type contains name strings
/// for the family names of a person.
public static let surname: ASN1ObjectIdentifier = [2, 5, 4, 4]
/// The 'givenName' attribute type contains name strings that are the
/// part of a person's name that is not their surname.
public static let givenName: ASN1ObjectIdentifier = [2, 5, 4, 42]
/// The 'initials' attribute type contains strings of initials of some or
/// all of an individual's names, except the surname(s).
public static let initials: ASN1ObjectIdentifier = [2, 5, 4, 43]
/// The 'generationQualifier' attribute type contains name strings that
/// are typically the suffix part of a person's name.
public static let generationQualifier: ASN1ObjectIdentifier = [2, 5, 4, 44]
/// The 'cn' ('commonName' in X.500) attribute type contains names of an
/// object. If the object corresponds to a person, it is typically the person's full
/// name.
///
/// In modern usage, the common name typically represents a general identifier of an actor.
public static let commonName: ASN1ObjectIdentifier = [2, 5, 4, 3]
/// The 'l' ('localityName' in X.500) attribute type contains names of a
/// locality or place, such as a city, county, or other geographic
/// region.
public static let localityName: ASN1ObjectIdentifier = [2, 5, 4, 7]
/// The 'st' ('stateOrProvinceName' in X.500) attribute type contains the
/// full names of states or provinces.
public static let stateOrProvinceName: ASN1ObjectIdentifier = [2, 5, 4, 8]
/// The 'o' ('organizationName' in X.500) attribute type contains the
/// names of an organization.
public static let organizationName: ASN1ObjectIdentifier = [2, 5, 4, 10]
/// The 'ou' ('organizationalUnitName' in X.500) attribute type contains
/// the names of an organizational unit.
public static let organizationalUnitName: ASN1ObjectIdentifier = [2, 5, 4, 11]
/// The 'title' attribute type contains the title of a person in their
/// organizational context.
public static let title: ASN1ObjectIdentifier = [2, 5, 4, 12]
/// The 'dnQualifier' attribute type contains disambiguating information
/// strings to add to the relative distinguished name of an entry. The
/// information is intended for use when merging data from multiple
/// sources in order to prevent conflicts between entries that would
/// otherwise have the same name.
public static let dnQualifier: ASN1ObjectIdentifier = [2, 5, 4, 46]
/// The 'c' ('countryName' in X.500) attribute type contains a two-letter
/// ISO 3166 [ISO3166] country code.
public static let countryName: ASN1ObjectIdentifier = [2, 5, 4, 6]
/// The 'serialNumber' attribute type contains the serial numbers of
/// devices.
public static let serialNumber: ASN1ObjectIdentifier = [2, 5, 4, 5]
/// The pseudonym attribute type contains a pseudonym of the subject.
public static let pseudonym: ASN1ObjectIdentifier = [2, 5, 4, 65]
/// The 'dc' ('domainComponent' in RFC 1274) attribute type is a string
/// holding one component, a label, of a DNS domain name naming a host.
public static let domainComponent: ASN1ObjectIdentifier = [0, 9, 2342, 19_200_300, 100, 1, 25]
/// The emailAddress attribute type specifies the electronic-mail address
/// or addresses of a subject as an unstructured ASCII string.
public static let emailAddress: ASN1ObjectIdentifier = [1, 2, 840, 113549, 1, 9, 1]
}
/// Represents a namespace for OIDs corresponding to OCSP identifiers.
///
/// The meaning of these OIDs is defined in RFC 6960.
public enum OCSP {
/// Identifies a `BasicOCSPResponse`.
public static let basicResponse: ASN1ObjectIdentifier = [1, 3, 6, 1, 5, 5, 7, 48, 1, 1]
}
}
extension ArraySlice where Element == UInt8 {
@inlinable
mutating func readUIntUsing8BitBytesASN1Discipline() throws -> UInt {
// In principle OID subidentifiers and long tags can be too large to fit into a UInt. We are choosing to not care about that
// because for us it shouldn't matter.
guard let subidentifierEndIndex = self.firstIndex(where: { $0 & 0x80 == 0x00 }) else {
throw ASN1Error.invalidASN1Object(reason: "Invalid encoding for OID subidentifier")
}
let oidSlice = self[self.startIndex...subidentifierEndIndex]
guard let firstByte = oidSlice.first, firstByte != 0x80 else {
// If the first byte is 0x80 then we have a leading 0 byte. All numbers encoded this way
// need to be encoded in the minimal number of bytes, so we need to reject this.
throw ASN1Error.invalidASN1Object(reason: "OID subidentifier encoded with leading 0 byte")
}
self = self[self.index(after: subidentifierEndIndex)...]
// We need to compact the bits. These are 7-bit integers, which is really awkward.
return try UInt(sevenBitBigEndianBytes: oidSlice)
}
}
extension UInt {
@inlinable
init<Bytes: Collection>(sevenBitBigEndianBytes bytes: Bytes) throws where Bytes.Element == UInt8 {
// We need to know how many bytes we _need_ to store this "int". As a base optimization we refuse to parse
// anything larger than 9 bytes wide, even though conceptually we could fit a few more bits.
guard ((bytes.count * 7) + 7) / 8 <= MemoryLayout<UInt>.size else {
throw ASN1Error.invalidASN1Object(reason: "Unable to store OID subidentifier")
}
self = 0
// Unchecked subtraction because bytes.count must be positive, so we can safely subtract 7 after the
// multiply. The same logic applies to the math in the loop. Finally, the multiply can be unchecked because
// we already did it above and we didn't overflow there.
var shift = (bytes.count &* 7) &- 7
var index = bytes.startIndex
while shift >= 0 {
self |= UInt(bytes[index] & 0x7F) << shift
bytes.formIndex(after: &index)
shift &-= 7
}
}
}
extension Array where Element == UInt8 {
@inlinable
mutating func writeUsing7BitBytesASN1Discipline(unsignedInteger identifier: UInt) {
// An OID subidentifier or long-form tag is written as an integer over 7-bit bytes, where the last byte has the top bit unset.
// The first thing we need is to know how many bits we need to write
let bitsToWrite = UInt.bitWidth - identifier.leadingZeroBitCount
let bytesToWrite = (bitsToWrite + 6) / 7
guard bytesToWrite > 0 else {
// Just a zero.
self.append(0)
return
}
for byteNumber in (1..<bytesToWrite).reversed() {
let shift = byteNumber * 7
let byte = UInt8((identifier >> shift) & 0x7f) | 0x80
self.append(byte)
}
// Last byte to append here, we must unset the top bit.
let byte = UInt8((identifier & 0x7F))
self.append(byte)
}
}
|