1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftCertificates open source project
//
// Copyright (c) 2022 Apple Inc. and the SwiftCertificates project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.txt for the list of SwiftCertificates project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//
import Foundation
import SwiftASN1
/// A representation of an X.509 certificate object.
///
/// X.509 certificates are a commonly-used identity format to cryptographically
/// attest to the identity of an actor in a system. They form part of the X.509
/// standard created by the ITU-T for defining a public key infrastructure (PKI).
/// X.509-style PKIs are commonly used in cases where it is necessary to delegate
/// the authority to attest to an actor's identity to a small number of trusted
/// parties (called Certificate Authorities).
///
/// The most common usage of X.509 certificates today is as part of the WebPKI,
/// where they are used to secure TLS connections to websites. X.509 certificates
/// are also used in a wide range of other TLS-based communications, as well as
/// in code signing infrastructure.
///
/// This type is intended to be useful for users both to create new ``Certificate``
/// objects, and to handle existing ones that they have received. In particular,
/// users need to be able to create ``Certificate`` objects directly (in the case
/// of self-signed certificates) and from Certificate Signing Requests, as well
/// as from their serialized DER representation.
///
/// ### Structure
///
/// ``Certificate`` is a representation of an X.509v3 certificate, as defined in
/// [RFC 5280](https://datatracker.ietf.org/doc/html/rfc5280.html). It provides
/// support for the full range of features in RFC 5280.
///
/// The type has two main goals. The first is that it aims to be able to store and
/// represent a parsed X.509 certificate issued by an arbitrary system in full
/// fidelity. As the X.509 standards have evolved over time, a number of certificates
/// exist in circulation that do not meet the current best practice standards. It is
/// important for this type to be able to represent these older certificates.
///
/// The second goal is to make it possible for users to easily construct _new_
/// ``Certificate`` objects from whole cloth. To achieve this there are a number of
/// higher-level APIs that can be used to construct the constituent parts of the
/// certificate. These are discussed at length in their relevant API documentation
/// (e.g. ``Certificate/Extensions-swift.struct`` & ``DistinguishedName``).
///
/// Both of these goals encourage this type to be immutable. A ``Certificate`` represents
/// a specific assertion of identity. Its ``Certificate/signature-swift.property`` is signed
/// across the rest of the data. Allowing users to change this data makes it easy to accidentally modify
/// a ``Certificate`` in one part of your code and not realise that the signature has inevitably
/// been invalidated.
public struct Certificate {
/// The X.509 version of this certificate.
///
/// This should be set to ``Certificate/Version-swift.struct/v3`` in
/// almost all cases.
@inlinable
public var version: Version {
self.tbsCertificate.version
}
/// The serial number of this certificate.
///
/// This should be a unique, large, random number.
@inlinable
public var serialNumber: SerialNumber {
self.tbsCertificate.serialNumber
}
/// The public key associated with this certificate.
///
/// When validating that a certificate belongs to a service, that service should be able to
/// produce cryptographic proof that it holds the private key associated with this public key.
@inlinable
public var publicKey: PublicKey {
self.tbsCertificate.publicKey
}
/// The date before which this certificate is not valid.
@inlinable
public var notValidBefore: Date {
Date(self.tbsCertificate.validity.notBefore)
}
/// The date after which this certificate is not valid.
@inlinable
public var notValidAfter: Date {
Date(self.tbsCertificate.validity.notAfter)
}
/// The ``DistinguishedName`` of the issuer of this certificate.
@inlinable
public var issuer: DistinguishedName {
self.tbsCertificate.issuer
}
/// The ``DistinguishedName`` of the subject of this certificate.
@inlinable
public var subject: DistinguishedName {
self.tbsCertificate.subject
}
/// The extensions on this certificate.
@inlinable
public var extensions: Extensions {
self.tbsCertificate.extensions
}
@usableFromInline
internal let tbsCertificate: TBSCertificate
/// The bytes of the `TBSCertificate` structure.
///
/// The ``signature-swift.property`` is calculated over these bytes.
public let tbsCertificateBytes: ArraySlice<UInt8>
/// The signature attached to this certificate.
///
/// This signature is computed over ``tbsCertificateBytes``.
public let signature: Signature
/// The signature algorithm used to produce ``signature-swift.property``.
public let signatureAlgorithm: SignatureAlgorithm
/// The bytes of the ``Signature``.
///
/// These are preserved to ensure that we reserialize exactly what we deserialized, regardless
/// of any canonicalisation we might do.
@usableFromInline
internal let signatureBytes: ArraySlice<UInt8>
/// The bytes of the ``signatureAlgorithm-swift.property``.
///
/// These are preserved to ensure that we reserialize exactly what we deserialized, regardless of
/// any canonicalisation we might do.
@usableFromInline
internal let signatureAlgorithmBytes: ArraySlice<UInt8>
/// Construct a certificate from constituent parts, signed by an issuer key.
///
/// This API can be used to construct a ``Certificate`` directly, without an intermediary
/// Certificate Signing Request. The ``signature-swift.property`` for this certificate will be produced
/// automatically, using `issuerPrivateKey`.
///
/// This API can be used to construct a self-signed key by passing the private key for `publicKey` as the
/// `issuerPrivateKey` argument.
///
/// - Parameters:
/// - version: The X.509 specification version for this certificate.
/// - serialNumber: The serial number of this certificate.
/// - publicKey: The public key associated with this certificate.
/// - notValidBefore: The date before which this certificate is not valid.
/// - notValidAfter: The date after which this certificate is not valid.
/// - issuer: The ``DistinguishedName`` of the issuer of this certificate.
/// - subject: The ``DistinguishedName`` of the subject of this certificate.
/// - signatureAlgorithm: The signature algorithm that will be used to produce `signature`. Must be compatible with the private key type.
/// - extensions: The extensions on this certificate.
/// - issuerPrivateKey: The private key to use to sign this certificate.
@inlinable
public init(
version: Version,
serialNumber: SerialNumber,
publicKey: PublicKey,
notValidBefore: Date,
notValidAfter: Date,
issuer: DistinguishedName,
subject: DistinguishedName,
signatureAlgorithm: SignatureAlgorithm,
extensions: Extensions,
issuerPrivateKey: PrivateKey
) throws {
self.tbsCertificate = TBSCertificate(
version: version,
serialNumber: serialNumber,
signature: signatureAlgorithm,
issuer: issuer,
validity: try Validity(
notBefore: .makeTime(from: notValidBefore),
notAfter: .makeTime(from: notValidAfter)
),
subject: subject,
publicKey: publicKey,
extensions: extensions
)
self.signatureAlgorithm = signatureAlgorithm
let tbsCertificateBytes = try DER.Serializer.serialized(element: self.tbsCertificate)[...]
self.signature = try issuerPrivateKey.sign(bytes: tbsCertificateBytes, signatureAlgorithm: signatureAlgorithm)
self.tbsCertificateBytes = tbsCertificateBytes
self.signatureAlgorithmBytes = try DER.Serializer.serialized(
element: AlgorithmIdentifier(self.signatureAlgorithm)
)[...]
self.signatureBytes = try DER.Serializer.serialized(element: ASN1BitString(self.signature))[...]
}
@inlinable
init(
tbsCertificate: TBSCertificate,
signatureAlgorithm: AlgorithmIdentifier,
signature: ASN1BitString,
tbsCertificateBytes: ArraySlice<UInt8>,
signatureAlgorithmBytes: ArraySlice<UInt8>,
signatureBytes: ArraySlice<UInt8>
) throws {
self.tbsCertificate = tbsCertificate
self.signatureAlgorithm = SignatureAlgorithm(algorithmIdentifier: signatureAlgorithm)
self.signature = try Signature(signatureAlgorithm: self.signatureAlgorithm, signatureBytes: signature)
self.tbsCertificateBytes = tbsCertificateBytes
self.signatureAlgorithmBytes = signatureAlgorithmBytes
self.signatureBytes = signatureBytes
}
}
extension Certificate: Hashable {}
extension Certificate: Sendable {}
extension Certificate: CustomStringConvertible {
public var description: String {
"""
Certificate(\
version: \(String(reflecting: self.version)), \
serialNumber: \(String(reflecting: self.serialNumber)), \
issuer: \(String(reflecting: self.issuer)), \
subject: \(String(reflecting: self.subject)), \
notValidBefore: \(String(reflecting: self.notValidBefore)), \
notValidAfter: \(String(reflecting: self.notValidAfter)), \
publicKey: \(String(reflecting: self.publicKey)), \
signature: \(String(reflecting: self.signature)), \
extensions: \(String(reflecting: self.extensions))\
)
"""
}
}
extension Certificate: DERImplicitlyTaggable {
@inlinable
public static var defaultIdentifier: ASN1Identifier {
.sequence
}
@inlinable
public init(derEncoded rootNode: ASN1Node, withIdentifier identifier: ASN1Identifier) throws {
self = try DER.sequence(rootNode, identifier: identifier) { nodes in
guard let tbsCertificateNode = nodes.next(),
let signatureAlgorithmNode = nodes.next(),
let signatureNode = nodes.next()
else {
throw ASN1Error.invalidASN1Object(reason: "Invalid certificate object, insufficient ASN.1 nodes")
}
let tbsCertificate = try TBSCertificate(derEncoded: tbsCertificateNode)
let signatureAlgorithm = try AlgorithmIdentifier(derEncoded: signatureAlgorithmNode)
let signature = try ASN1BitString(derEncoded: signatureNode)
return try Certificate(
tbsCertificate: tbsCertificate,
signatureAlgorithm: signatureAlgorithm,
signature: signature,
tbsCertificateBytes: tbsCertificateNode.encodedBytes,
signatureAlgorithmBytes: signatureAlgorithmNode.encodedBytes,
signatureBytes: signatureNode.encodedBytes
)
}
}
@inlinable
public func serialize(into coder: inout DER.Serializer, withIdentifier identifier: ASN1Identifier) throws {
coder.appendConstructedNode(identifier: identifier) { coder in
coder.serializeRawBytes(self.tbsCertificateBytes)
coder.serializeRawBytes(self.signatureAlgorithmBytes)
coder.serializeRawBytes(self.signatureBytes)
}
}
}
extension DER.Serializer {
@inlinable
static func serialized<Element: DERSerializable>(element: Element) throws -> [UInt8] {
var serializer = DER.Serializer()
try serializer.serialize(element)
return serializer.serializedBytes
}
}
extension Certificate: PEMRepresentable {
@inlinable
public static var defaultPEMDiscriminator: String { "CERTIFICATE" }
}
|