File: Verifier.swift

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (287 lines) | stat: -rw-r--r-- 12,414 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftCertificates open source project
//
// Copyright (c) 2022 Apple Inc. and the SwiftCertificates project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.txt for the list of SwiftCertificates project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//
import SwiftASN1

public struct Verifier<Policy: VerifierPolicy> {
    public var rootCertificates: CertificateStore

    public var policy: Policy

    @inlinable
    public init(rootCertificates: CertificateStore, @PolicyBuilder policy: () throws -> Policy) rethrows {
        self.rootCertificates = rootCertificates
        self.policy = try policy()
    }

    public mutating func validate(
        leafCertificate: Certificate,
        intermediates: CertificateStore,
        diagnosticCallback: ((VerificationDiagnostic) -> Void)? = nil
    ) async -> VerificationResult {
        var partialChains: [CandidatePartialChain] = [CandidatePartialChain(leaf: leafCertificate)]

        var policyFailures: [VerificationResult.PolicyFailure] = []

        // First check: does this leaf certificate contain critical extensions that are not satisfied by the PolicySet?
        // If so, reject the chain.
        if leafCertificate.hasUnhandledCriticalExtensions(handledExtensions: self.policy.verifyingCriticalExtensions) {

            diagnosticCallback?(
                .leafCertificateHasUnhandledCriticalExtension(
                    leafCertificate,
                    handledCriticalExtensions: self.policy.verifyingCriticalExtensions
                )
            )
            return .couldNotValidate([])
        }

        // Second check: is this leaf _already in_ the certificate store? If it is, we can just trust it directly.
        //
        // Note that this requires an _exact match_: if there isn't an exact match, we'll fall back to chain building,
        // which may let us chain through another variant of this certificate and build a valid chain. This is a very
        // deliberate choice: certificates that assert the same combination of (subject, public key, SAN) but different
        // extensions or policies should not be tolerated by this check, and will be ignored.
        if self.rootCertificates.contains(leafCertificate) {
            let unverifiedChain = UnverifiedCertificateChain([leafCertificate])

            switch await self.policy.chainMeetsPolicyRequirements(chain: unverifiedChain) {
            case .meetsPolicy:
                // We're good!
                diagnosticCallback?(.foundValidCertificateChain(unverifiedChain.certificates))
                return .validCertificate(unverifiedChain.certificates)

            case .failsToMeetPolicy(reason: let reason):
                diagnosticCallback?(
                    .leafCertificateIsInTheRootStoreButDoesNotMeetPolicy(leafCertificate, reason: reason)
                )
                policyFailures.append(
                    VerificationResult.PolicyFailure(chain: unverifiedChain, policyFailureReason: reason)
                )
            }
        }

        // This is essentially a DFS of the certificate tree. We attempt to iteratively build up possible chains.
        while let nextPartialCandidate = partialChains.popLast() {
            diagnosticCallback?(.searchingForIssuerOfPartialChain(nextPartialCandidate))
            // We want to search for parents. Our preferred parent comes from the root store, as this will potentially
            // produce smaller chains.
            if var rootParents = rootCertificates[nextPartialCandidate.currentTip.issuer] {
                // We then want to sort by suitability.
                rootParents.sortBySuitabilityForIssuing(certificate: nextPartialCandidate.currentTip)
                diagnosticCallback?(
                    .foundCandidateIssuersOfPartialChainInRootStore(nextPartialCandidate, issuers: rootParents)
                )

                // Each of these is now potentially a valid unverified chain.
                for root in rootParents {
                    if self.shouldSkipAddingCertificate(
                        partialChain: nextPartialCandidate,
                        nextCertificate: root,
                        diagnosticCallback: diagnosticCallback
                    ) {
                        continue
                    }

                    let unverifiedChain = UnverifiedCertificateChain(chain: nextPartialCandidate, root: root)

                    switch await self.policy.chainMeetsPolicyRequirements(chain: unverifiedChain) {
                    case .meetsPolicy:
                        // We're good!
                        diagnosticCallback?(.foundValidCertificateChain(unverifiedChain.certificates))
                        return .validCertificate(unverifiedChain.certificates)

                    case .failsToMeetPolicy(reason: let reason):
                        diagnosticCallback?(.chainFailsToMeetPolicy(unverifiedChain, reason: reason))
                        policyFailures.append(
                            VerificationResult.PolicyFailure(chain: unverifiedChain, policyFailureReason: reason)
                        )
                    }
                }
            }

            if var intermediateParents = intermediates[nextPartialCandidate.currentTip.issuer] {
                // We then want to sort by suitability.
                intermediateParents.sortBySuitabilityForIssuing(certificate: nextPartialCandidate.currentTip)
                diagnosticCallback?(
                    .foundCandidateIssuersOfPartialChainInIntermediateStore(
                        nextPartialCandidate,
                        issuers: intermediateParents
                    )
                )

                // we need to reverse the order of the already sorted intermediates because
                // we will push them on to the `partialChains` stack which in turn will
                // consume them in the reverse order that they have been pushed onto the stack
                for parent in intermediateParents.reversed() {
                    if self.shouldSkipAddingCertificate(
                        partialChain: nextPartialCandidate,
                        nextCertificate: parent,
                        diagnosticCallback: diagnosticCallback
                    ) {
                        continue
                    }

                    let nextChain = nextPartialCandidate.appending(parent)
                    partialChains.append(nextChain)
                }
            }
        }

        diagnosticCallback?(.couldNotValidateLeafCertificate(leafCertificate))
        return .couldNotValidate(policyFailures)
    }

    private func shouldSkipAddingCertificate(
        partialChain: CandidatePartialChain,
        nextCertificate: Certificate,
        diagnosticCallback: ((VerificationDiagnostic) -> Void)?
    ) -> Bool {
        // We want to confirm that the certificate has no unhandled critical extensions. If it does, we can't build the chain.
        if nextCertificate.hasUnhandledCriticalExtensions(handledExtensions: self.policy.verifyingCriticalExtensions) {
            diagnosticCallback?(
                .issuerHasUnhandledCriticalExtension(
                    issuer: nextCertificate,
                    chain: partialChain,
                    handledCriticalExtensions: self.policy.verifyingCriticalExtensions
                )
            )
            return true
        }

        // We don't want to re-add the same certificate to the chain: that will always produce a chain that
        // could have been shorter.
        if partialChain.contains(certificate: nextCertificate) {
            diagnosticCallback?(.issuerIsAlreadyInTheChain(partialChain, issuer: nextCertificate))
            return true
        }

        // We check the signature here: if the signature isn't valid, don't try to apply policy.
        guard
            nextCertificate.publicKey.isValidSignature(partialChain.currentTip.signature, for: partialChain.currentTip)
        else {
            diagnosticCallback?(.issuerHasNotSignedCertificate(nextCertificate, chain: partialChain))
            return true
        }

        return false
    }
}

public enum VerificationResult: Hashable, Sendable {
    case validCertificate([Certificate])
    case couldNotValidate([PolicyFailure])
}

extension VerificationResult {
    public struct PolicyFailure: Hashable, Sendable {
        public var chain: UnverifiedCertificateChain
        public var policyFailureReason: PolicyFailureReason

        @inlinable
        public init(chain: UnverifiedCertificateChain, policyFailureReason: PolicyFailureReason) {
            self.chain = chain
            self.policyFailureReason = policyFailureReason
        }
    }
}

struct CandidatePartialChain: Hashable {
    var chain: [Certificate]

    var currentTip: Certificate

    init(leaf: Certificate) {
        self.chain = []
        self.currentTip = leaf
    }

    /// Whether this partial chain already contains this certificate.
    func contains(certificate: Certificate) -> Bool {
        // We don't do direct equality, as RFC 4158 § 2.4.1 notes that even certs that aren't
        // bytewise equal can cause arbitrarily long trust paths and weird loops. In particular, we're
        // worried about mutual cross-signatures, where CA X and CA Y have cross-signed one another. In such
        // a case, we can end up producing inefficient chains that pass through either or both CAs multiple times,
        // when they only needed to do so once.
        //
        // Instead, we consider a path to "contain" a certificate when the following things match:
        //
        // 1. Subject
        // 2. Public Key
        // 3. SAN (including presence or absence)
        //
        // This criteria is motivated by RFC 4158 § 5.2 (loop detection)
        func match(_ left: Certificate, _ right: Certificate) -> Bool {
            (left.subject == right.subject && left.publicKey == right.publicKey
                && left.extensions.subjectAlternativeNameBytes == right.extensions.subjectAlternativeNameBytes)
        }

        return (self.chain.contains(where: { match($0, certificate) }) || match(self.currentTip, certificate))
    }

    func appending(_ newElement: Certificate) -> CandidatePartialChain {
        var newChain = self
        newChain.chain.append(newChain.currentTip)
        newChain.currentTip = newElement
        return newChain
    }
}

extension Array where Element == Certificate {
    fileprivate mutating func sortBySuitabilityForIssuing(certificate: Certificate) {
        // First, an early exit. If the subject doesn't have an AKI extension, we don't need
        // to do anything.
        guard let aki = try? certificate.extensions.authorityKeyIdentifier else {
            return
        }

        self.sort(by: { $0.issuerPreference(subjectAKI: aki) > $1.issuerPreference(subjectAKI: aki) })
    }
}

extension Certificate {
    func issuerPreference(subjectAKI: AuthorityKeyIdentifier) -> Int {
        guard let ski = try? self.extensions.subjectKeyIdentifier else {
            // Medium preference: we have no SKI.
            return 0
        }

        // The SKI is present. If the two match, this is higher preference: if they don't match, it's lower.
        return subjectAKI.keyIdentifier == ski.keyIdentifier ? 1 : -1
    }

    func hasUnhandledCriticalExtensions(handledExtensions: [ASN1ObjectIdentifier]) -> Bool {
        for ext in self.extensions where ext.critical {
            guard handledExtensions.contains(ext.oid) else {
                return true
            }
        }

        return false
    }
}

extension UnverifiedCertificateChain {
    fileprivate init(chain: CandidatePartialChain, root: Certificate) {
        var certificates = chain.chain
        certificates.append(chain.currentTip)
        certificates.append(root)
        self = .init(certificates)
    }
}

extension Certificate.Extensions {
    fileprivate var subjectAlternativeNameBytes: ArraySlice<UInt8>? {
        return self[oid: .X509ExtensionID.subjectAlternativeName].map { $0.value }
    }
}