1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift Collections open source project
//
// Copyright (c) 2021 - 2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
//
//===----------------------------------------------------------------------===//
#if !COLLECTIONS_SINGLE_MODULE
import InternalCollectionsUtilities
#endif
extension Deque: Sequence {
// Implementation note: we could also use the default `IndexingIterator` here.
// This custom implementation performs direct storage access to eliminate any
// and all index validation overhead. It also optimizes away repeated
// conversions from indices to storage slots.
/// An iterator over the members of a deque.
@frozen
public struct Iterator: IteratorProtocol {
@usableFromInline
internal var _storage: Deque._Storage
@usableFromInline
internal var _nextSlot: _Slot
@usableFromInline
internal var _endSlot: _Slot
@inlinable
internal init(_storage: Deque._Storage, start: _Slot, end: _Slot) {
self._storage = _storage
self._nextSlot = start
self._endSlot = end
}
@inlinable
internal init(_base: Deque) {
self = _base._storage.read { handle in
let start = handle.startSlot
let end = Swift.min(start.advanced(by: handle.count), handle.limSlot)
return Self(_storage: _base._storage, start: start, end: end)
}
}
@inlinable
internal init(_base: Deque, from index: Int) {
self = _base._storage.read { handle in
assert(index >= 0 && index <= handle.count)
let start = handle.slot(forOffset: index)
if index == handle.count {
return Self(_storage: _base._storage, start: start, end: start)
}
var end = handle.endSlot
if start >= end { end = handle.limSlot }
return Self(_storage: _base._storage, start: start, end: end)
}
}
@inlinable
@inline(never)
internal mutating func _swapSegment() -> Bool {
assert(_nextSlot == _endSlot)
return _storage.read { handle in
let end = handle.endSlot
if end == .zero || end == _nextSlot {
return false
}
_endSlot = end
_nextSlot = .zero
return true
}
}
/// Advances to the next element and returns it, or `nil` if no next element
/// exists.
///
/// Once `nil` has been returned, all subsequent calls return `nil`.
@inlinable
public mutating func next() -> Element? {
if _nextSlot == _endSlot {
guard _swapSegment() else { return nil }
}
assert(_nextSlot < _endSlot)
let slot = _nextSlot
_nextSlot = _nextSlot.advanced(by: 1)
return _storage.read { handle in
return handle.ptr(at: slot).pointee
}
}
}
/// Returns an iterator over the elements of the deque.
///
/// - Complexity: O(1)
@inlinable
public func makeIterator() -> Iterator {
Iterator(_base: self)
}
@inlinable
public __consuming func _copyToContiguousArray() -> ContiguousArray<Element> {
ContiguousArray(unsafeUninitializedCapacity: _storage.count) { target, count in
_storage.read { source in
let segments = source.segments()
let c = segments.first.count
target[..<c].initializeAll(fromContentsOf: segments.first)
count += segments.first.count
if let second = segments.second {
target[c ..< c + second.count].initializeAll(fromContentsOf: second)
count += second.count
}
assert(count == source.count)
}
}
}
@inlinable
public __consuming func _copyContents(
initializing target: UnsafeMutableBufferPointer<Element>
) -> (Iterator, UnsafeMutableBufferPointer<Element>.Index) {
_storage.read { source in
let segments = source.segments()
let c1 = Swift.min(segments.first.count, target.count)
target[..<c1].initializeAll(fromContentsOf: segments.first.prefix(c1))
guard target.count > c1, let second = segments.second else {
return (Iterator(_base: self, from: c1), c1)
}
let c2 = Swift.min(second.count, target.count - c1)
target[c1 ..< c1 + c2].initializeAll(fromContentsOf: second.prefix(c2))
return (Iterator(_base: self, from: c1 + c2), c1 + c2)
}
}
/// Call `body(b)`, where `b` is an unsafe buffer pointer to the deque's
/// contiguous storage, if available. If the deque's contents aren't stored
/// contiguously, `body` is not called and `nil` is returned. The supplied
/// buffer pointer is only valid for the duration of the call.
///
/// Often, the optimizer can eliminate bounds- and uniqueness-checks within an
/// algorithm, but when that fails, invoking the same algorithm on the unsafe
/// buffer supplied to `body` lets you trade safety for speed.
///
/// - Parameters:
/// - body: The function to invoke.
///
/// - Returns: The value returned by `body`, or `nil` if `body` wasn't called.
///
/// - Complexity: O(1) when this instance has a unique reference to its
/// underlying storage; O(`count`) otherwise.
@inlinable
public func withContiguousStorageIfAvailable<R>(
_ body: (UnsafeBufferPointer<Element>) throws -> R
) rethrows -> R? {
return try _storage.read { handle in
let endSlot = handle.startSlot.advanced(by: handle.count)
guard endSlot.position <= handle.capacity else { return nil }
return try body(handle.buffer(for: handle.startSlot ..< endSlot))
}
}
}
extension Deque.Iterator: Sendable where Element: Sendable {}
extension Deque: RandomAccessCollection {
public typealias Index = Int
public typealias SubSequence = Slice<Self>
public typealias Indices = Range<Int>
/// The number of elements in the deque.
///
/// - Complexity: O(1)
@inlinable
@inline(__always)
public var count: Int { _storage.count }
/// The position of the first element in a nonempty deque.
///
/// For an instance of `Deque`, `startIndex` is always zero. If the deque is
/// empty, `startIndex` is equal to `endIndex`.
///
/// - Complexity: O(1)
@inlinable
@inline(__always)
public var startIndex: Int { 0 }
/// The deque’s “past the end” position—that is, the position one greater than
/// the last valid subscript argument.
///
/// For an instance of `Deque`, `endIndex` is always equal to its `count`. If
/// the deque is empty, `endIndex` is equal to `startIndex`.
///
/// - Complexity: O(1)
@inlinable
@inline(__always)
public var endIndex: Int { count }
/// The indices that are valid for subscripting this deque, in ascending order.
///
/// - Complexity: O(1)
@inlinable
@inline(__always)
public var indices: Range<Int> { 0 ..< count }
/// Returns the position immediately after the given index.
///
/// - Parameter `i`: A valid index of the deque. `i` must be less than
/// `endIndex`.
///
/// - Returns: The next valid index immediately after `i`.
///
/// - Complexity: O(1)
@inlinable
@inline(__always)
public func index(after i: Int) -> Int {
// Note: Like `Array`, index manipulation methods on deques don't trap on
// invalid indices. (Indices are still validated on element access.)
return i + 1
}
/// Replaces the given index with its successor.
///
/// - Parameter `i`: A valid index of the deque. `i` must be less than
/// `endIndex`.
///
/// - Complexity: O(1)
@inlinable
@inline(__always)
public func formIndex(after i: inout Int) {
// Note: Like `Array`, index manipulation methods on deques
// don't trap on invalid indices.
// (Indices are still validated on element access.)
i += 1
}
/// Returns the position immediately before the given index.
///
/// - Parameter `i`: A valid index of the deque. `i` must be greater than
/// `startIndex`.
///
/// - Returns: The preceding valid index immediately before `i`.
///
/// - Complexity: O(1)
@inlinable
@inline(__always)
public func index(before i: Int) -> Int {
// Note: Like `Array`, index manipulation methods on deques don't trap on
// invalid indices. (Indices are still validated on element access.)
return i - 1
}
/// Replaces the given index with its predecessor.
///
/// - Parameter `i`: A valid index of the deque. `i` must be greater than `startIndex`.
///
/// - Complexity: O(1)
@inlinable
@inline(__always)
public func formIndex(before i: inout Int) {
// Note: Like `Array`, index manipulation methods on deques don't trap on
// invalid indices. (Indices are still validated on element access.)
i -= 1
}
/// Returns an index that is the specified distance from the given index.
///
/// The value passed as `distance` must not offset `i` beyond the bounds of
/// the collection.
///
/// - Parameters:
/// - i: A valid index of the deque.
/// - `distance`: The distance by which to offset `i`.
///
/// - Returns: An index offset by `distance` from the index `i`. If `distance`
/// is positive, this is the same value as the result of `distance` calls
/// to `index(after:)`. If `distance` is negative, this is the same value
/// as the result of `abs(distance)` calls to `index(before:)`.
///
/// - Complexity: O(1)
@inlinable
@inline(__always)
public func index(_ i: Int, offsetBy distance: Int) -> Int {
// Note: Like `Array`, index manipulation methods on deques don't trap on
// invalid indices. (Indices are still validated on element access.)
return i + distance
}
/// Returns an index that is the specified distance from the given index,
/// unless that distance is beyond a given limiting index.
///
/// - Parameters:
/// - i: A valid index of the array.
/// - distance: The distance to offset `i`.
/// - limit: A valid index of the deque to use as a limit.
/// If `distance > 0`, then `limit` has no effect it is less than `i`.
/// Likewise, if `distance < 0`, then `limit` has no effect if it is
/// greater than `i`.
///
/// - Returns: An index offset by `distance` from the index `i`, unless that
/// index would be beyond `limit` in the direction of movement. In that
/// case, the method returns `nil`.
///
/// - Complexity: O(1)
@inlinable
public func index(
_ i: Int,
offsetBy distance: Int,
limitedBy limit: Int
) -> Int? {
// Note: Like `Array`, index manipulation methods on deques
// don't trap on invalid indices.
// (Indices are still validated on element access.)
let l = limit - i
if distance > 0 ? l >= 0 && l < distance : l <= 0 && distance < l {
return nil
}
return i + distance
}
/// Returns the distance between two indices.
///
/// - Parameters:
/// - start: A valid index of the collection.
/// - end: Another valid index of the collection.
///
/// - Returns: The distance between `start` and `end`. If `end` is equal to
/// `start`, the result is zero. Otherwise the result is positive if `end`
/// is greater than `start`.
///
/// - Complexity: O(1)
@inlinable
@inline(__always)
public func distance(from start: Int, to end: Int) -> Int {
// Note: Like `Array`, index manipulation method on deques
// don't trap on invalid indices.
// (Indices are still validated on element access.)
return end - start
}
/// Accesses the element at the specified position.
///
/// - Parameters:
/// - index: The position of the element to access. `index` must be greater
/// than or equal to `startIndex` and less than `endIndex`.
///
/// - Complexity: Reading an element from a deque is O(1). Writing is O(1)
/// unless the deque’s storage is shared with another deque, in which case
/// writing is O(`count`).
@inlinable
public subscript(index: Int) -> Element {
get {
precondition(index >= 0 && index < count, "Index out of bounds")
return _storage.read { $0.ptr(at: $0.slot(forOffset: index)).pointee }
}
set {
precondition(index >= 0 && index < count, "Index out of bounds")
_storage.ensureUnique()
_storage.update { handle in
let slot = handle.slot(forOffset: index)
handle.ptr(at: slot).pointee = newValue
}
}
@inline(__always) // https://github.com/apple/swift-collections/issues/164
_modify {
precondition(index >= 0 && index < count, "Index out of bounds")
var (slot, value) = _prepareForModify(at: index)
defer {
_finalizeModify(slot, value)
}
yield &value
}
}
@inlinable
internal mutating func _prepareForModify(at index: Int) -> (_Slot, Element) {
_storage.ensureUnique()
// We technically aren't supposed to escape storage pointers out of a
// managed buffer, so we escape a `(slot, value)` pair instead, leaving
// the corresponding slot temporarily uninitialized.
return _storage.update { handle in
let slot = handle.slot(forOffset: index)
return (slot, handle.ptr(at: slot).move())
}
}
@inlinable
internal mutating func _finalizeModify(_ slot: _Slot, _ value: Element) {
_storage.update { handle in
handle.ptr(at: slot).initialize(to: value)
}
}
/// Accesses a contiguous subrange of the deque's elements.
///
/// - Parameters:
/// - bounds: A range of the deque's indices. The bounds of the range must
/// be valid indices of the deque (including the `endIndex`).
///
/// The accessed slice uses the same indices for the same elements as the
/// original collection.
@inlinable
public subscript(bounds: Range<Int>) -> Slice<Self> {
get {
precondition(bounds.lowerBound >= 0 && bounds.upperBound <= count,
"Invalid bounds")
return Slice(base: self, bounds: bounds)
}
set(source) {
precondition(bounds.lowerBound >= 0 && bounds.upperBound <= count,
"Invalid bounds")
self.replaceSubrange(bounds, with: source)
}
}
}
extension Deque: MutableCollection {
/// Exchanges the values at the specified indices of the collection.
///
/// Both parameters must be valid indices of the collection and not equal to
/// `endIndex`. Passing the same index as both `i` and `j` has no effect.
///
/// - Parameters:
/// - i: The index of the first value to swap.
/// - j: The index of the second value to swap.
///
/// - Complexity: O(1) when this instance has a unique reference to its
/// underlying storage; O(`count`) otherwise.
@inlinable
public mutating func swapAt(_ i: Int, _ j: Int) {
precondition(i >= 0 && i < count, "Index out of bounds")
precondition(j >= 0 && j < count, "Index out of bounds")
_storage.ensureUnique()
_storage.update { handle in
let slot1 = handle.slot(forOffset: i)
let slot2 = handle.slot(forOffset: j)
handle.mutableBuffer.swapAt(slot1.position, slot2.position)
}
}
// FIXME: Implement `partition(by:)` by making storage contiguous,
// and partitioning that.
/// Call `body(b)`, where `b` is an unsafe buffer pointer to the deque's
/// mutable contiguous storage. If the deque's contents aren't stored
/// contiguously, `body` is not called and `nil` is returned. The supplied
/// buffer pointer is only valid for the duration of the call.
///
/// Often, the optimizer can eliminate bounds- and uniqueness-checks within an
/// algorithm, but when that fails, invoking the same algorithm on the unsafe
/// buffer supplied to `body` lets you trade safety for speed.
///
/// - Parameters:
/// - body: The function to invoke.
///
/// - Returns: The value returned by `body`, or `nil` if `body` wasn't called.
///
/// - Complexity: O(1) when this instance has a unique reference to its
/// underlying storage; O(`count`) otherwise. (Not counting the call to
/// `body`.)
@inlinable
public mutating func withContiguousMutableStorageIfAvailable<R>(
_ body: (inout UnsafeMutableBufferPointer<Element>) throws -> R
) rethrows -> R? {
_storage.ensureUnique()
return try _storage.update { handle in
let endSlot = handle.startSlot.advanced(by: handle.count)
guard endSlot.position <= handle.capacity else {
// FIXME: Rotate storage such that it becomes contiguous.
return nil
}
let original = handle.mutableBuffer(for: handle.startSlot ..< endSlot)
var extract = original
defer {
precondition(extract.baseAddress == original.baseAddress && extract.count == original.count,
"Closure must not replace the provided buffer")
}
return try body(&extract)
}
}
@inlinable
public mutating func _withUnsafeMutableBufferPointerIfSupported<R>(
_ body: (inout UnsafeMutableBufferPointer<Element>) throws -> R
) rethrows -> R? {
return try withContiguousMutableStorageIfAvailable(body)
}
}
extension Deque: RangeReplaceableCollection {
/// Creates a new, empty deque.
///
/// This is equivalent to initializing with an empty array literal.
/// For example:
///
/// let deque1 = Deque<Int>()
/// print(deque1.isEmpty) // true
///
/// let deque2: Deque<Int> = []
/// print(deque2.isEmpty) // true
///
/// - Complexity: O(1)
@inlinable
public init() {
_storage = _Storage()
}
/// Reserves enough space to store the specified number of elements.
///
/// If you are adding a known number of elements to a deque, use this method
/// to avoid multiple reallocations. It ensures that the deque has unique
/// storage, with space allocated for at least the requested number of
/// elements.
///
/// - Parameters:
/// - minimumCapacity: The requested number of elements to store.
///
/// - Complexity: O(`count`)
@inlinable
public mutating func reserveCapacity(_ minimumCapacity: Int) {
_storage.ensureUnique(minimumCapacity: minimumCapacity, linearGrowth: true)
}
/// Replaces a range of elements with the elements in the specified
/// collection.
///
/// This method has the effect of removing the specified range of elements
/// from the deque and inserting the new elements at the same location. The
/// number of new elements need not match the number of elements being
/// removed.
///
/// - Parameters:
/// - subrange: The subrange of the deque to replace. The bounds of the
/// subrange must be valid indices of the deque (including the
/// `endIndex`).
/// - newElements: The new elements to add to the deque.
///
/// - Complexity: O(`self.count + newElements.count`). If the operation needs
/// to change the size of the deque, it minimizes the number of existing
/// items that need to be moved by shifting elements either before or after
/// `subrange`.
@inlinable
public mutating func replaceSubrange(
_ subrange: Range<Int>,
with newElements: __owned some Collection<Element>
) {
precondition(subrange.lowerBound >= 0 && subrange.upperBound <= count, "Index range out of bounds")
let removalCount = subrange.count
let insertionCount = newElements.count
let deltaCount = insertionCount - removalCount
_storage.ensureUnique(minimumCapacity: count + deltaCount)
let replacementCount = Swift.min(removalCount, insertionCount)
let targetCut = subrange.lowerBound + replacementCount
let sourceCut = newElements.index(newElements.startIndex, offsetBy: replacementCount)
_storage.update { target in
target.uncheckedReplaceInPlace(
inOffsets: subrange.lowerBound ..< targetCut,
with: newElements[..<sourceCut])
if deltaCount < 0 {
let r = targetCut ..< subrange.upperBound
assert(replacementCount + r.count == removalCount)
target.uncheckedRemove(offsets: r)
} else if deltaCount > 0 {
target.uncheckedInsert(
contentsOf: newElements[sourceCut...],
count: deltaCount,
atOffset: targetCut)
}
}
}
/// Creates a new deque containing the specified number of a single, repeated
/// value.
///
/// - Parameters:
/// - repeatedValue: The element to repeat.
/// - count: The number of times to repeat the element. `count` must be zero
/// or greater.
///
/// - Complexity: O(`count`)
@inlinable
public init(repeating repeatedValue: Element, count: Int) {
precondition(count >= 0)
self.init(minimumCapacity: count)
_storage.update { handle in
assert(handle.startSlot == .zero)
if count > 0 {
handle.ptr(at: .zero).initialize(repeating: repeatedValue, count: count)
}
handle.count = count
}
}
/// Creates a deque containing the elements of a sequence.
///
/// - Parameters:
/// - elements: The sequence of elements to turn into a deque.
///
/// - Complexity: O(*n*), where *n* is the number of elements in the sequence.
@inlinable
public init(_ elements: some Sequence<Element>) {
self.init()
self.append(contentsOf: elements)
}
/// Creates a deque containing the elements of a collection.
///
/// - Parameters:
/// - elements: The collection of elements to turn into a deque.
///
/// - Complexity: O(`elements.count`)
@inlinable
public init(_ elements: some Collection<Element>) {
let c = elements.count
guard c > 0 else { _storage = _Storage(); return }
self._storage = _Storage(minimumCapacity: c)
_storage.update { handle in
assert(handle.startSlot == .zero)
let target = handle.mutableBuffer(for: .zero ..< _Slot(at: c))
let done: Void? = elements.withContiguousStorageIfAvailable { source in
target.initializeAll(fromContentsOf: source)
}
if done == nil {
target.initializeAll(fromContentsOf: elements)
}
handle.count = c
}
}
/// Adds a new element at the end of the deque.
///
/// Use this method to append a single element to the end of a deque.
///
/// var numbers: Deque = [1, 2, 3, 4, 5]
/// numbers.append(100)
/// print(numbers)
/// // Prints "[1, 2, 3, 4, 5, 100]"
///
/// Because deques increase their allocated capacity using an exponential
/// strategy, appending a single element to a deque is an O(1) operation when
/// averaged over many calls to the `append(_:)` method. When a deque has
/// additional capacity and is not sharing its storage with another instance,
/// appending an element is O(1). When a deque needs to reallocate storage
/// before prepending or its storage is shared with another copy, appending is
/// O(`count`).
///
/// - Parameters:
/// - newElement: The element to append to the deque.
///
/// - Complexity: Amortized O(1)
///
/// - SeeAlso: `prepend(_:)`
@inlinable
public mutating func append(_ newElement: Element) {
_storage.ensureUnique(minimumCapacity: count + 1)
_storage.update {
$0.uncheckedAppend(newElement)
}
}
/// Adds the elements of a sequence to the end of the deque.
///
/// Use this method to append the elements of a sequence to the front of this
/// deque. This example appends the elements of a `Range<Int>` instance to a
/// deque of integers.
///
/// var numbers: Deque = [1, 2, 3, 4, 5]
/// numbers.append(contentsOf: 10...15)
/// print(numbers)
/// // Prints "[1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15]"
///
/// - Parameter newElements: The elements to append to the deque.
///
/// - Complexity: Amortized O(`newElements.count`).
@inlinable
public mutating func append(contentsOf newElements: some Sequence<Element>) {
let done: Void? = newElements.withContiguousStorageIfAvailable { source in
_storage.ensureUnique(minimumCapacity: count + source.count)
_storage.update { $0.uncheckedAppend(contentsOf: source) }
}
if done != nil {
return
}
let underestimatedCount = newElements.underestimatedCount
_storage.ensureUnique(minimumCapacity: count + underestimatedCount)
var it = _storage.update { target in
let gaps = target.availableSegments()
let (it, copied) = gaps.initialize(fromSequencePrefix: newElements)
target.count += copied
return it
}
while let next = it.next() {
_storage.ensureUnique(minimumCapacity: count + 1)
_storage.update { target in
target.uncheckedAppend(next)
let gaps = target.availableSegments()
target.count += gaps.initialize(fromPrefixOf: &it)
}
}
}
/// Adds the elements of a collection to the end of the deque.
///
/// Use this method to append the elements of a collection to the front of
/// this deque. This example appends the elements of a `Range<Int>` instance
/// to a deque of integers.
///
/// var numbers: Deque = [1, 2, 3, 4, 5]
/// numbers.append(contentsOf: 10...15)
/// print(numbers)
/// // Prints "[1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15]"
///
/// - Parameter newElements: The elements to append to the deque.
///
/// - Complexity: Amortized O(`newElements.count`).
@inlinable
public mutating func append(
contentsOf newElements: some Collection<Element>
) {
let done: Void? = newElements.withContiguousStorageIfAvailable { source in
_storage.ensureUnique(minimumCapacity: count + source.count)
_storage.update { $0.uncheckedAppend(contentsOf: source) }
}
guard done == nil else { return }
let c = newElements.count
guard c > 0 else { return }
_storage.ensureUnique(minimumCapacity: count + c)
_storage.update { target in
let gaps = target.availableSegments().prefix(c)
gaps.initialize(from: newElements)
target.count += c
}
}
/// Inserts a new element at the specified position.
///
/// The new element is inserted before the element currently at the specified
/// index. If you pass the deque’s `endIndex` as the `index` parameter, the
/// new element is appended to the deque.
///
/// - Parameters:
/// - newElement: The new element to insert into the deque.
/// - index: The position at which to insert the new element. `index` must
/// be a valid index of the deque (including `endIndex`).
///
/// - Complexity: O(`count`). The operation shifts existing elements either
/// towards the beginning or the end of the deque to minimize the number of
/// elements that need to be moved. When inserting at the start or the end,
/// this reduces the complexity to amortized O(1).
@inlinable
public mutating func insert(_ newElement: Element, at index: Int) {
precondition(index >= 0 && index <= count,
"Can't insert element at invalid index")
_storage.ensureUnique(minimumCapacity: count + 1)
_storage.update { target in
if index == 0 {
target.uncheckedPrepend(newElement)
return
}
if index == count {
target.uncheckedAppend(newElement)
return
}
let gap = target.openGap(ofSize: 1, atOffset: index)
assert(gap.first.count == 1)
gap.first.baseAddress!.initialize(to: newElement)
}
}
/// Inserts the elements of a collection into the deque at the specified
/// position.
///
/// The new elements are inserted before the element currently at the
/// specified index. If you pass the deque's `endIndex` property as the
/// `index` parameter, the new elements are appended to the deque.
///
/// - Parameters:
/// - newElements: The new elements to insert into the deque.
/// - index: The position at which to insert the new elements. `index` must
/// be a valid index of the deque (including `endIndex`).
///
/// - Complexity: O(`count + newElements.count`). The operation shifts
/// existing elements either towards the beginning or the end of the deque
/// to minimize the number of elements that need to be moved. When
/// inserting at the start or the end, this reduces the complexity to
/// amortized O(1).
@inlinable
public mutating func insert(
contentsOf newElements: __owned some Collection<Element>,
at index: Int
) {
precondition(index >= 0 && index <= count,
"Can't insert elements at an invalid index")
let newCount = newElements.count
_storage.ensureUnique(minimumCapacity: count + newCount)
_storage.update { target in
target.uncheckedInsert(contentsOf: newElements, count: newCount, atOffset: index)
}
}
/// Removes and returns the element at the specified position.
///
/// To close the resulting gap, all elements following the specified position
/// are (logically) moved up by one index position. (Internally, the deque may
/// actually decide to shift previous elements forward instead to minimize the
/// number of elements that need to be moved.)
///
/// - Parameters:
/// - index: The position of the element to remove. `index` must be a valid
/// index of the array.
///
/// - Returns: The element originally at the specified index.
///
/// - Complexity: O(`count`). Removing elements from the start or end of the
/// deque costs O(1) if the deque's storage isn't shared.
@inlinable
@discardableResult
public mutating func remove(at index: Int) -> Element {
precondition(index >= 0 && index < self.count, "Index out of bounds")
// FIXME: Implement storage shrinking
_storage.ensureUnique()
return _storage.update { target in
// FIXME: Add direct implementation & see if it makes a difference
let result = self[index]
target.uncheckedRemove(offsets: index ..< index + 1)
return result
}
}
/// Removes the elements in the specified subrange from the deque.
/// All elements following the specified range are (logically) moved up to
/// close the resulting gap. (Internally, the deque may actually decide to
/// shift previous elements forward instead to minimize the number of elements
/// that need to be moved.)
///
/// - Parameters:
/// - bounds: The range of the collection to be removed. The bounds of the
/// range must be valid indices of the collection.
///
/// - Complexity: O(`count`). Removing elements from the start or end of the
/// deque costs O(`bounds.count`) if the deque's storage isn't shared.
@inlinable
public mutating func removeSubrange(_ bounds: Range<Int>) {
precondition(bounds.lowerBound >= 0 && bounds.upperBound <= self.count,
"Index range out of bounds")
_storage.ensureUnique()
_storage.update { $0.uncheckedRemove(offsets: bounds) }
}
@inlinable
public mutating func _customRemoveLast() -> Element? {
precondition(!isEmpty, "Cannot remove last element of an empty Deque")
_storage.ensureUnique()
return _storage.update { $0.uncheckedRemoveLast() }
}
@inlinable
public mutating func _customRemoveLast(_ n: Int) -> Bool {
precondition(n >= 0, "Can't remove a negative number of elements")
precondition(n <= count, "Can't remove more elements than there are in the Collection")
_storage.ensureUnique()
_storage.update { $0.uncheckedRemoveLast(n) }
return true
}
/// Removes and returns the first element of the deque.
///
/// The collection must not be empty.
///
/// - Returns: The removed element.
///
/// - Complexity: O(1) if the underlying storage isn't shared; otherwise
/// O(`count`).
@inlinable
@discardableResult
public mutating func removeFirst() -> Element {
precondition(!isEmpty, "Cannot remove first element of an empty Deque")
_storage.ensureUnique()
return _storage.update { $0.uncheckedRemoveFirst() }
}
/// Removes the specified number of elements from the beginning of the deque.
///
/// - Parameter n: The number of elements to remove from the deque. `n` must
/// be greater than or equal to zero and must not exceed the number of
/// elements in the deque.
///
/// - Complexity: O(`n`) if the underlying storage isn't shared; otherwise
/// O(`count`).
@inlinable
public mutating func removeFirst(_ n: Int) {
precondition(n >= 0, "Can't remove a negative number of elements")
precondition(n <= count, "Can't remove more elements than there are in the Collection")
_storage.ensureUnique()
return _storage.update { $0.uncheckedRemoveFirst(n) }
}
/// Removes all elements from the deque.
///
/// - Parameter keepCapacity: Pass true to keep the existing storage capacity
/// of the deque after removing its elements. The default value is false.
///
/// - Complexity: O(`count`)
@inlinable
public mutating func removeAll(keepingCapacity keepCapacity: Bool = false) {
if keepCapacity {
_storage.ensureUnique()
_storage.update { $0.uncheckedRemoveAll() }
} else {
self = Deque()
}
}
}
|