1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift Collections open source project
//
// Copyright (c) 2022 - 2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
//
//===----------------------------------------------------------------------===//
// MARK: Node-level lookup operations
extension _HashNode {
@inlinable
internal func find(
_ level: _HashLevel, _ key: Key, _ hash: _Hash
) -> (descend: Bool, slot: _HashSlot)? {
read { $0.find(level, key, hash) }
}
}
extension _HashNode.UnsafeHandle {
@inlinable
internal func find(
_ level: _HashLevel, _ key: Key, _ hash: _Hash
) -> (descend: Bool, slot: _HashSlot)? {
guard !isCollisionNode else {
let r = _findInCollision(level, key, hash)
guard r.code == 0 else { return nil }
return (false, r.slot)
}
let bucket = hash[level]
if itemMap.contains(bucket) {
let slot = itemMap.slot(of: bucket)
guard self[item: slot].key == key else { return nil }
return (false, slot)
}
if childMap.contains(bucket) {
let slot = childMap.slot(of: bucket)
return (true, slot)
}
return nil
}
@inlinable @inline(never)
internal func _findInCollision(
_ level: _HashLevel, _ key: Key, _ hash: _Hash
) -> (code: Int, slot: _HashSlot) {
assert(isCollisionNode)
if !level.isAtBottom {
if hash != self.collisionHash { return (2, .zero) }
}
// Note: this searches the items in reverse insertion order.
guard let slot = reverseItems.firstIndex(where: { $0.key == key })
else { return (1, self.itemsEndSlot) }
return (0, _HashSlot(itemCount &- 1 &- slot))
}
}
/// Represents the results of a lookup operation within a single node of a hash
/// tree. This enumeration captures all of the different cases that need to be
/// covered if we wanted to insert a new item into the tree.
///
/// For simple read-only lookup operations (and removals) some of the cases are
/// equivalent: `.notFound`, .newCollision` and `expansion` all represent the
/// same logical outcome: the key we're looking for is not present in this
/// subtree.
@usableFromInline
@frozen
internal enum _FindResult {
/// The item we're looking for is stored directly in this node, at the
/// bucket / item slot identified in the payload.
///
/// If the current node is a collision node, then the bucket value is
/// set to `_Bucket.invalid`.
case found(_Bucket, _HashSlot)
/// The item we're looking for is not currently inside the subtree rooted at
/// this node.
///
/// If we wanted to insert it, then its correct slot is within this node
/// at the specified bucket / item slot. (Which is currently empty.)
///
/// When the node is a collision node, the `insertCollision` case is returned
/// instead of this one.
case insert(_Bucket, _HashSlot)
/// The item we're looking for is not currently inside the subtree rooted at
/// this collision node.
///
/// If we wanted to insert it, then it needs to be appended to the items
/// buffer.
case appendCollision
/// The item we're looking for is not currently inside the subtree rooted at
/// this node.
///
/// If we wanted to insert it, then it would need to be stored in this node
/// at the specified bucket / item slot. However, that bucket is already
/// occupied by another item, so the insertion would need to involve replacing
/// it with a new child node.
///
/// (This case is never returned if the current node is a collision node.)
case spawnChild(_Bucket, _HashSlot)
/// The item we're looking for is not in this subtree.
///
/// However, the item doesn't belong in this subtree at all. This is an
/// irregular case that can only happen with (compressed) hash collision nodes
/// whose (otherwise empty) ancestors got eliminated, so they appear further
/// up in the tree than what their (logical) level would indicate.
///
/// If we wanted to insert a new item with this key, then we'd need to create
/// (one or more) new parent nodes above this node, pushing this collision
/// node further down the tree. (This undoes the compression by expanding
/// the collision node's path, hence the name of the enum case.)
///
/// (This case is never returned if the current node is a regular node.)
case expansion
/// The item we're looking for is not directly stored in this node, but it
/// might be somewhere in the subtree rooted at the child at the given
/// bucket & slot.
///
/// (This case is never returned if the current node is a collision node.)
case descend(_Bucket, _HashSlot)
}
extension _HashNode {
@inlinable
internal func findForInsertion(
_ level: _HashLevel, _ key: Key, _ hash: _Hash
) -> _FindResult {
read { $0.findForInsertion(level, key, hash) }
}
}
extension _HashNode.UnsafeHandle {
@inlinable
internal func findForInsertion(
_ level: _HashLevel, _ key: Key, _ hash: _Hash
) -> _FindResult {
guard !isCollisionNode else {
let r = _findInCollision(level, key, hash)
if r.code == 0 {
return .found(.invalid, r.slot)
}
if r.code == 1 {
return .appendCollision
}
assert(r.code == 2)
return .expansion
}
let bucket = hash[level]
if itemMap.contains(bucket) {
let slot = itemMap.slot(of: bucket)
if self[item: slot].key == key {
return .found(bucket, slot)
}
return .spawnChild(bucket, slot)
}
if childMap.contains(bucket) {
let slot = childMap.slot(of: bucket)
return .descend(bucket, slot)
}
let slot = itemMap.slot(of: bucket)
return .insert(bucket, slot)
}
}
// MARK: Subtree-level lookup operations
extension _HashNode {
@inlinable
internal func get(_ level: _HashLevel, _ key: Key, _ hash: _Hash) -> Value? {
var node = unmanaged
var level = level
while true {
let r = UnsafeHandle.read(node) { $0.find(level, key, hash) }
guard let r = r else {
return nil
}
guard r.descend else {
return UnsafeHandle.read(node) { $0[item: r.slot].value }
}
node = node.unmanagedChild(at: r.slot)
level = level.descend()
}
}
}
extension _HashNode {
@inlinable
internal func containsKey(
_ level: _HashLevel, _ key: Key, _ hash: _Hash
) -> Bool {
var node = unmanaged
var level = level
while true {
let r = UnsafeHandle.read(node) { $0.find(level, key, hash) }
guard let r = r else { return false }
guard r.descend else { return true }
node = node.unmanagedChild(at: r.slot)
level = level.descend()
}
}
}
extension _HashNode {
@inlinable
internal func lookup(
_ level: _HashLevel, _ key: Key, _ hash: _Hash
) -> (node: _UnmanagedHashNode, slot: _HashSlot)? {
var node = unmanaged
var level = level
while true {
let r = UnsafeHandle.read(node) { $0.find(level, key, hash) }
guard let r = r else {
return nil
}
guard r.descend else {
return (node, r.slot)
}
node = node.unmanagedChild(at: r.slot)
level = level.descend()
}
}
}
extension _HashNode {
@inlinable
internal func position(
forKey key: Key, _ level: _HashLevel, _ hash: _Hash
) -> Int? {
guard let r = find(level, key, hash) else { return nil }
guard r.descend else { return r.slot.value }
return read { h in
let children = h.children
let p = children[r.slot.value]
.position(forKey: key, level.descend(), hash)
guard let p = p else { return nil }
let c = h.itemCount &+ p
return children[..<r.slot.value].reduce(into: c) { $0 &+= $1.count }
}
}
@inlinable
internal func item(position: Int) -> Element {
assert(position >= 0 && position < self.count)
return read {
var itemsToSkip = position
let itemCount = $0.itemCount
if itemsToSkip < itemCount {
return $0[item: _HashSlot(itemsToSkip)]
}
itemsToSkip -= itemCount
let children = $0.children
for i in children.indices {
if itemsToSkip < children[i].count {
return children[i].item(position: itemsToSkip)
}
itemsToSkip -= children[i].count
}
fatalError("Inconsistent tree")
}
}
}
|