1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift Collections open source project
//
// Copyright (c) 2022 - 2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
//
//===----------------------------------------------------------------------===//
/// A non-owning, mutable construct representing a path to an item or child node
/// within a hash tree (or the virtual slot addressing the end of the
/// items or children region within a node).
///
/// Path values provide mutating methods to freely navigate around in the tree,
/// including basics such as descending into a child node, ascending to a
/// parent or selecting a particular item within the current node; as well as
/// more complicated methods such as finding the next/previous item in a
/// preorder walk of the tree.
///
/// Paths are, for the most part, represented by a series of slot values
/// identifying a particular branch within each level in the tree up to and
/// including the final node on the path.
///
/// However, to speed up common operations, path values also include a single
/// `_UnmanagedHashNode` reference to their final node. This reference does not
/// keep the targeted node alive -- it is the use site's responsibility to
/// ensure that the path is still valid before calling most of its operations.
///
/// Note: paths only have a direct reference to their final node. This means
/// that ascending to the parent node requires following the path from the root
/// node down. (Paths could also store references to every node alongside them
/// in a fixed-size array; this would speed up walking over the tree, but it
/// would considerably embiggen the size of the path construct.)
@usableFromInline
@frozen
internal struct _UnsafePath {
@usableFromInline
internal var ancestors: _AncestorHashSlots
@usableFromInline
internal var node: _UnmanagedHashNode
@usableFromInline
internal var nodeSlot: _HashSlot
@usableFromInline
internal var level: _HashLevel
@usableFromInline
internal var _isItem: Bool
@inlinable
internal init(root: __shared _RawHashNode) {
self.level = .top
self.ancestors = .empty
self.node = root.unmanaged
self.nodeSlot = .zero
self._isItem = root.storage.header.hasItems
}
}
extension _UnsafePath {
internal init(
_ level: _HashLevel,
_ ancestors: _AncestorHashSlots,
_ node: _UnmanagedHashNode,
childSlot: _HashSlot
) {
assert(childSlot < node.childrenEndSlot)
self.level = level
self.ancestors = ancestors
self.node = node
self.nodeSlot = childSlot
self._isItem = false
}
@inlinable
internal init(
_ level: _HashLevel,
_ ancestors: _AncestorHashSlots,
_ node: _UnmanagedHashNode,
itemSlot: _HashSlot
) {
assert(itemSlot < node.itemsEndSlot)
self.level = level
self.ancestors = ancestors
self.node = node
self.nodeSlot = itemSlot
self._isItem = true
}
}
extension _UnsafePath: Equatable {
@usableFromInline
@_effects(releasenone)
internal static func ==(left: Self, right: Self) -> Bool {
// Note: we don't compare nodes (node equality should follow from the rest)
left.level == right.level
&& left.ancestors == right.ancestors
&& left.nodeSlot == right.nodeSlot
&& left._isItem == right._isItem
}
}
extension _UnsafePath: Hashable {
@usableFromInline
@_effects(releasenone)
internal func hash(into hasher: inout Hasher) {
// Note: we don't hash nodes, as they aren't compared by ==, either.
hasher.combine(ancestors.path)
hasher.combine(nodeSlot)
hasher.combine(level._shift)
hasher.combine(_isItem)
}
}
extension _UnsafePath: Comparable {
@usableFromInline
@_effects(releasenone)
internal static func <(left: Self, right: Self) -> Bool {
// This implements a total ordering across paths based on the slot
// sequences they contain, corresponding to a preorder walk of the tree.
//
// Paths addressing items within a node are ordered before paths addressing
// a child node within the same node.
var level: _HashLevel = .top
while level < left.level, level < right.level {
let l = left.ancestors[level]
let r = right.ancestors[level]
guard l == r else { return l < r }
level = level.descend()
}
assert(level < left.level || !left.ancestors.hasDataBelow(level))
assert(level < right.level || !right.ancestors.hasDataBelow(level))
if level < right.level {
guard !left._isItem else { return true }
let l = left.nodeSlot
let r = right.ancestors[level]
return l < r
}
if level < left.level {
guard !right._isItem else { return false }
let l = left.ancestors[level]
let r = right.nodeSlot
return l < r
}
guard left._isItem == right._isItem else { return left._isItem }
return left.nodeSlot < right.nodeSlot
}
}
extension _UnsafePath: CustomStringConvertible {
@usableFromInline
internal var description: String {
var d = "@"
var l: _HashLevel = .top
while l < self.level {
d += ".\(self.ancestors[l])"
l = l.descend()
}
if isPlaceholder {
d += ".end[\(self.nodeSlot)]"
} else if isOnItem {
d += "[\(self.nodeSlot)]"
} else if isOnChild {
d += ".\(self.nodeSlot)"
} else if isOnNodeEnd {
d += ".end(\(self.nodeSlot))"
}
return d
}
}
extension _UnsafePath {
/// Returns true if this path addresses an item in the tree; otherwise returns
/// false.
///
/// - Note: It is undefined behavior to call this on a path that is no longer
/// valid.
@inlinable @inline(__always)
internal var isOnItem: Bool {
// Note: this may be true even if nodeSlot == itemCount (insertion paths).
_isItem
}
/// Returns true if this path addresses the position following a node's last
/// valid item. Such paths can represent the place of an item that might be
/// inserted later; they do not occur while simply iterating over existing
/// items.
///
/// - Note: It is undefined behavior to call this on a path that is no longer
/// valid.
@inlinable
internal var isPlaceholder: Bool {
_isItem && nodeSlot.value == node.itemCount
}
/// Returns true if this path addresses a node in the tree; otherwise returns
/// false.
///
/// - Note: It is undefined behavior to call this on a path that is no longer
/// valid.
@inlinable
internal var isOnChild: Bool {
!_isItem && nodeSlot.value < node.childCount
}
/// Returns true if this path addresses an empty slot within a node in a tree;
/// otherwise returns false.
///
/// - Note: It is undefined behavior to call this on a path that is no longer
/// valid.
@inlinable
internal var isOnNodeEnd: Bool {
!_isItem && nodeSlot.value == node.childCount
}
}
extension _UnsafePath {
/// Returns an unmanaged reference to the child node this path is currently
/// addressing.
///
/// - Note: It is undefined behavior to call this on a path that is no longer
/// valid.
@inlinable
internal var currentChild: _UnmanagedHashNode {
assert(isOnChild)
return node.unmanagedChild(at: nodeSlot)
}
/// Returns the chid slot in this path corresponding to the specified level.
///
/// - Note: It is undefined behavior to call this on a path that is no longer
/// valid.
@inlinable
internal func childSlot(at level: _HashLevel) -> _HashSlot {
assert(level < self.level)
return ancestors[level]
}
/// Returns the slot of the currently addressed item.
///
/// - Note: It is undefined behavior to call this on a path that is no longer
/// valid.
@inlinable @inline(__always)
internal var currentItemSlot: _HashSlot {
assert(isOnItem)
return nodeSlot
}
}
extension _UnsafePath {
/// Positions this path on the item with the specified slot within its
/// current node.
///
/// - Note: It is undefined behavior to call this on a path that is no longer
/// valid.
@inlinable
internal mutating func selectItem(at slot: _HashSlot) {
// As a special exception, this allows slot to equal the item count.
// This can happen for paths that address the position a new item might be
// inserted later.
assert(slot <= node.itemsEndSlot)
nodeSlot = slot
_isItem = true
}
/// Positions this path on the child with the specified slot within its
/// current node, without descending into it.
///
/// - Note: It is undefined behavior to call this on a path that is no longer
/// valid.
@inlinable
internal mutating func selectChild(at slot: _HashSlot) {
// As a special exception, this allows slot to equal the child count.
// This is equivalent to a call to `selectEnd()`.
assert(slot <= node.childrenEndSlot)
nodeSlot = slot
_isItem = false
}
/// Positions this path on the empty slot at the end of its current node.
///
/// - Note: It is undefined behavior to call this on a path that is no longer
/// valid.
@usableFromInline
@_effects(releasenone)
internal mutating func selectEnd() {
nodeSlot = node.childrenEndSlot
_isItem = false
}
/// Descend onto the first path within the currently selected child.
/// (Either the first item if it exists, or the first child. If the child
/// is an empty node (which should not happen in a valid hash tree), then this
/// selects the empty slot at the end of it.
///
/// - Note: It is undefined behavior to call this on a path that is no longer
/// valid.
@inlinable
internal mutating func descend() {
self.node = currentChild
self.ancestors[level] = nodeSlot
self.nodeSlot = .zero
self._isItem = node.hasItems
self.level = level.descend()
}
/// Descend onto the first path within the currently selected child.
/// (Either the first item if it exists, or the first child. If the child
/// is an empty node (which should not happen in a valid hash tree), then this
/// selects the empty slot at the end of it.
///
/// - Note: It is undefined behavior to call this on a path that is no longer
/// valid.
@inlinable
internal mutating func descendToChild(
_ child: _UnmanagedHashNode, at slot: _HashSlot
) {
assert(slot < node.childrenEndSlot)
assert(child == node.unmanagedChild(at: slot))
self.node = child
self.ancestors[level] = slot
self.nodeSlot = .zero
self._isItem = node.hasItems
self.level = level.descend()
}
internal mutating func ascend(
to ancestor: _UnmanagedHashNode, at level: _HashLevel
) {
guard level != self.level else { return }
assert(level < self.level)
self.level = level
self.node = ancestor
self.nodeSlot = ancestors[level]
self.ancestors.clear(atOrBelow: level)
self._isItem = false
}
/// Ascend to the nearest ancestor for which the `test` predicate returns
/// true. Because paths do not contain references to every node on them,
/// you need to manually supply a valid reference to the root node. This
/// method visits every node between the root and the current final node on
/// the path.
///
/// - Note: It is undefined behavior to call this on a path that is no longer
/// valid.
internal mutating func ascendToNearestAncestor(
under root: _RawHashNode,
where test: (_UnmanagedHashNode, _HashSlot) -> Bool
) -> Bool {
if self.level.isAtRoot { return false }
var best: _UnsafePath? = nil
var n = root.unmanaged
var l: _HashLevel = .top
while l < self.level {
let slot = self.ancestors[l]
if test(n, slot) {
best = _UnsafePath(
l, self.ancestors.truncating(to: l), n, childSlot: slot)
}
n = n.unmanagedChild(at: slot)
l = l.descend()
}
guard let best = best else { return false }
self = best
return true
}
}
extension _UnsafePath {
/// Given a path that is on an item, advance it to the next item within its
/// current node, and return true. If there is no next item, position the path
/// on the first child, and return false. If there is no children, position
/// the path on the node's end position, and return false.
///
/// - Note: It is undefined behavior to call this on a path that is no longer
/// valid.
mutating func selectNextItem() -> Bool {
assert(isOnItem)
nodeSlot = nodeSlot.next()
if nodeSlot < node.itemsEndSlot { return true }
nodeSlot = .zero
_isItem = false
return false
}
/// Given a path that is on a child node, advance it to the next child within
/// its current node, and return true. If there is no next child, position
/// the path on the node's end position, and return false.
///
/// - Note: It is undefined behavior to call this on a path that is no longer
/// valid.
mutating func selectNextChild() -> Bool {
assert(!isOnItem)
let childrenEndSlot = node.childrenEndSlot
guard nodeSlot < childrenEndSlot else { return false }
nodeSlot = nodeSlot.next()
return nodeSlot < childrenEndSlot
}
}
extension _UnsafePath {
/// If this path addresses a child node, descend into the leftmost item
/// within the subtree under it (i.e., the first item that would be visited
/// by a preorder walk within that subtree). Do nothing if the path addresses
/// an item or the end position.
///
/// - Note: It is undefined behavior to call this on a path that is no longer
/// valid.
@usableFromInline
@_effects(releasenone)
internal mutating func descendToLeftMostItem() {
while isOnChild {
descend()
}
}
/// Given a path addressing a child node, descend into the rightmost item
/// within the subtree under it (i.e., the last item that would be visited
/// by a preorder walk within that subtree). Do nothing if the path addresses
/// an item or the end position.
///
/// - Note: It is undefined behavior to call this on a path that is no longer
/// valid.
internal mutating func descendToRightMostItem() {
assert(isOnChild)
while true {
descend()
let childrenEndSlot = node.childrenEndSlot
guard childrenEndSlot > .zero else { break }
selectChild(at: childrenEndSlot.previous())
}
let itemsEndSlot = node.itemsEndSlot
assert(itemsEndSlot > .zero)
selectItem(at: itemsEndSlot.previous())
}
/// Find the next item in a preorder walk in the tree following the currently
/// addressed item, and return true. Return false and do nothing if the
/// path does not currently address an item.
@usableFromInline
@_effects(releasenone)
internal mutating func findSuccessorItem(under root: _RawHashNode) -> Bool {
guard isOnItem else { return false }
if selectNextItem() { return true }
if node.hasChildren {
descendToLeftMostItem()
assert(isOnItem)
return true
}
if ascendToNearestAncestor(
under: root, where: { $1.next() < $0.childrenEndSlot }
) {
let r = selectNextChild()
assert(r)
descendToLeftMostItem()
assert(isOnItem)
return true
}
self = _UnsafePath(root: root)
self.selectEnd()
return true
}
/// Find the previous item in a preorder walk in the tree preceding the
/// currently addressed position, and return true.
/// Return false if there is no previous item.
@usableFromInline
@_effects(releasenone)
internal mutating func findPredecessorItem(under root: _RawHashNode) -> Bool {
switch (isOnItem, nodeSlot > .zero) {
case (true, true):
selectItem(at: nodeSlot.previous())
return true
case (false, true):
selectChild(at: nodeSlot.previous())
descendToRightMostItem()
return true
case (false, false):
if node.hasItems {
selectItem(at: node.itemsEndSlot.previous())
return true
}
case (true, false):
break
}
guard
ascendToNearestAncestor(
under: root,
where: { $0.hasItems || $1 > .zero })
else { return false }
if nodeSlot > .zero {
selectChild(at: nodeSlot.previous())
descendToRightMostItem()
return true
}
if node.hasItems {
selectItem(at: node.itemsEndSlot.previous())
return true
}
return false
}
}
extension _RawHashNode {
/// Return the integer position of the item addressed by the given path
/// within a preorder walk of the tree. If the path addresses the end
/// position, then return the number of items in the tree.
///
/// This method must only be called on the root node.
internal func preorderPosition(
_ level: _HashLevel, of path: _UnsafePath
) -> Int {
if path.isOnNodeEnd { return count }
assert(path.isOnItem)
if level < path.level {
let childSlot = path.childSlot(at: level)
return read {
let prefix = $0.children[..<childSlot.value]
.reduce($0.itemCount) { $0 + $1.count }
let positionWithinChild = $0[child: childSlot]
.preorderPosition(level.descend(), of: path)
return prefix + positionWithinChild
}
}
assert(path.level == level)
return path.nodeSlot.value
}
}
extension _UnsafePath {
/// Set the path to the item at the specified position in a preorder walk
/// of the subtree rooted at the current node.
///
/// - Returns: `(found, remaining)`, where found is true if the item was
/// successfully found, and false otherwise. If `found` is false then
/// `remaining` is the number of items that still need to be skipped to
/// find the correct item (outside this subtree).
/// If `found` is true, then `remaining` is zero.
internal mutating func findItemAtPreorderPosition(
_ position: Int
) -> (found: Bool, remaining: Int) {
assert(position >= 0)
let top = node
let topLevel = level
var stop = false
var remaining = position
while !stop {
let itemCount = node.itemCount
if remaining < itemCount {
selectItem(at: _HashSlot(remaining))
return (true, 0)
}
remaining -= itemCount
node.read {
let children = $0.children
for i in children.indices {
let c = children[i].count
if remaining < c {
descendToChild(children[i].unmanaged, at: _HashSlot(i))
return
}
remaining &-= c
}
stop = true
}
}
ascend(to: top, at: topLevel)
selectEnd()
return (false, remaining)
}
}
extension _RawHashNode {
/// Return the number of steps between two paths within a preorder walk of the
/// tree. The two paths must not address a child node.
///
/// This method must only be called on the root node.
@usableFromInline
@_effects(releasenone)
internal func distance(
_ level: _HashLevel, from start: _UnsafePath, to end: _UnsafePath
) -> Int {
assert(level.isAtRoot)
if start.isOnNodeEnd {
// Shortcut: distance from end.
return preorderPosition(level, of: end) - count
}
if end.isOnNodeEnd {
// Shortcut: distance to end.
return count - preorderPosition(level, of: start)
}
assert(start.isOnItem)
assert(end.isOnItem)
if start.level == end.level, start.ancestors == end.ancestors {
// Shortcut: the paths are under the same node.
precondition(start.node == end.node, "Internal index validation error")
return start.currentItemSlot.distance(to: end.currentItemSlot)
}
if
start.level < end.level,
start.ancestors.isEqual(to: end.ancestors, upTo: start.level)
{
// Shortcut: start's node is an ancestor of end's position.
return start.node._distance(
start.level, fromItemAt: start.currentItemSlot, to: end)
}
if start.ancestors.isEqual(to: end.ancestors, upTo: end.level) {
// Shortcut: end's node is an ancestor of start's position.
return -end.node._distance(
end.level, fromItemAt: end.currentItemSlot, to: start)
}
// No shortcuts -- the two paths are in different subtrees.
// Start descending from the root to look for the closest common
// ancestor.
if start < end {
return _distance(level, from: start, to: end)
}
return -_distance(level, from: end, to: start)
}
internal func _distance(
_ level: _HashLevel, from start: _UnsafePath, to end: _UnsafePath
) -> Int {
assert(start < end)
assert(level < start.level)
assert(level < end.level)
let slot1 = start.childSlot(at: level)
let slot2 = end.childSlot(at: level)
if slot1 == slot2 {
return read {
$0[child: slot1]._distance(level.descend(), from: start, to: end)
}
}
return read {
let children = $0.children
let d1 = children[slot1.value]
.preorderPosition(level.descend(), of: start)
let d2 = children[slot1.value &+ 1 ..< slot2.value]
.reduce(0) { $0 + $1.count }
let d3 = children[slot2.value]
.preorderPosition(level.descend(), of: end)
return (children[slot1.value].count - d1) + d2 + d3
}
}
}
extension _UnmanagedHashNode {
internal func _distance(
_ level: _HashLevel, fromItemAt start: _HashSlot, to end: _UnsafePath
) -> Int {
read {
assert(start < $0.itemsEndSlot)
assert(level < end.level)
let childSlot = end.childSlot(at: level)
let children = $0.children
let prefix = children[..<childSlot.value]
.reduce($0.itemCount - start.value) { $0 + $1.count }
let positionWithinChild = children[childSlot.value]
.preorderPosition(level.descend(), of: end)
return prefix + positionWithinChild
}
}
}
extension _HashNode {
/// Return the path to the given key in this tree if it exists; otherwise
/// return nil.
@inlinable
internal func path(
to key: Key, _ hash: _Hash
) -> _UnsafePath? {
var node = unmanaged
var level: _HashLevel = .top
var ancestors: _AncestorHashSlots = .empty
while true {
let r = UnsafeHandle.read(node) { $0.find(level, key, hash) }
guard let r = r else { break }
guard r.descend else {
return _UnsafePath(level, ancestors, node, itemSlot: r.slot)
}
node = node.unmanagedChild(at: r.slot)
ancestors[level] = r.slot
level = level.descend()
}
return nil
}
}
extension _RawHashNode {
@usableFromInline
@_effects(releasenone)
internal func seek(
_ level: _HashLevel,
_ path: inout _UnsafePath,
offsetBy distance: Int,
limitedBy limit: _UnsafePath
) -> (found: Bool, limited: Bool) {
assert(level.isAtRoot)
if (distance > 0 && limit < path) || (distance < 0 && limit > path) {
return (seek(level, &path, offsetBy: distance), false)
}
var d = distance
guard self._seek(level, &path, offsetBy: &d) else {
path = limit
return (distance >= 0 && d == 0 && limit.isOnNodeEnd, true)
}
let found = (
distance == 0
|| (distance > 0 && path <= limit)
|| (distance < 0 && path >= limit))
return (found, true)
}
@usableFromInline
@_effects(releasenone)
internal func seek(
_ level: _HashLevel,
_ path: inout _UnsafePath,
offsetBy distance: Int
) -> Bool {
var d = distance
if self._seek(level, &path, offsetBy: &d) {
return true
}
if distance > 0, d == 0 { // endIndex
return true
}
return false
}
internal func _seek(
_ level: _HashLevel,
_ path: inout _UnsafePath,
offsetBy distance: inout Int
) -> Bool {
// This is a bit complicated, because we only have a direct reference to the
// final node on the path, and we want to avoid having to descend
// from the root down if the target item stays within the original node's
// subtree. So we first figure out the subtree situation, and only start the
// recursion if the target is outside of it.
assert(level.isAtRoot)
assert(path.isOnItem || path.isOnNodeEnd)
guard distance != 0 else { return true }
if distance > 0 {
if !path.isOnItem { return false }
// Try a local search within the subtree starting at the current node.
let slot = path.currentItemSlot
let r = path.findItemAtPreorderPosition(distance &+ slot.value)
if r.found {
assert(r.remaining == 0)
return true
}
assert(r.remaining >= 0 && r.remaining <= distance)
distance = r.remaining
// Fall back to recursively descending from the root.
return _seekForward(level, by: &distance, fromSubtree: &path)
}
// distance < 0
if !path.isOnNodeEnd {
// Shortcut: see if the destination item is within the same node.
// (Doing this here allows us to avoid having to descend from the root
// down only to figure this out.)
let slot = path.nodeSlot
distance &+= slot.value
if distance >= 0 {
path.selectItem(at: _HashSlot(distance))
distance = 0
return true
}
}
// Otherwise we need to visit ancestor nodes to find the item at the right
// position. We also do this when we start from the end index -- there
// will be no recursion in that case anyway.
return _seekBackward(level, by: &distance, fromSubtree: &path)
}
/// Find the item at the given positive distance from the last item within the
/// subtree rooted at the current node in `path`.
internal func _seekForward(
_ level: _HashLevel,
by distance: inout Int,
fromSubtree path: inout _UnsafePath
) -> Bool {
assert(distance >= 0)
assert(level <= path.level)
guard level < path.level else {
path.selectEnd()
return false
}
return read {
let children = $0.children
var i = path.childSlot(at: level).value
if children[i]._seekForward(
level.descend(), by: &distance, fromSubtree: &path
) {
assert(distance == 0)
return true
}
path.ascend(to: unmanaged, at: level)
i &+= 1
while i < children.endIndex {
let c = children[i].count
if distance < c {
path.descendToChild(children[i].unmanaged, at: _HashSlot(i))
let r = path.findItemAtPreorderPosition(distance)
precondition(r.found, "Internal inconsistency: invalid node counts")
assert(r.remaining == 0)
distance = 0
return true
}
distance &-= c
i &+= 1
}
path.selectEnd()
return false
}
}
/// Find the item at the given negative distance from the first item within the
/// subtree rooted at the current node in `path`.
internal func _seekBackward(
_ level: _HashLevel,
by distance: inout Int,
fromSubtree path: inout _UnsafePath
) -> Bool {
assert(distance < 0)
assert(level <= path.level)
return read {
let children = $0.children
var slot: _HashSlot
if level < path.level {
// We need to descend to the end of the path before we can start the
// search for real.
slot = path.childSlot(at: level)
if children[slot.value]._seekBackward(
level.descend(), by: &distance, fromSubtree: &path
) {
// A deeper level has found the target item.
assert(distance == 0)
return true
}
// No luck yet -- ascend to this node and look through preceding data.
path.ascend(to: unmanaged, at: level)
} else if path.isOnNodeEnd {
// When we start from the root's end (the end index), we don't need
// to descend before starting to look at previous children.
assert(level.isAtRoot && path.node == self.unmanaged)
slot = path.node.childrenEndSlot
} else { // level == path.level
// The outermost caller has already gone as far back as possible
// within the original subtree. Return a level higher to actually
// start the rest of the search.
return false
}
// Look through all preceding children for the target item.
while slot > .zero {
slot = slot.previous()
let c = children[slot.value].count
if c + distance >= 0 {
path.descendToChild(children[slot.value].unmanaged, at: slot)
let r = path.findItemAtPreorderPosition(c + distance)
precondition(r.found, "Internal inconsistency: invalid node counts")
distance = 0
return true
}
distance += c
}
// See if the target is hiding somewhere in our immediate items.
distance &+= $0.itemCount
if distance >= 0 {
path.selectItem(at: _HashSlot(distance))
distance = 0
return true
}
// No joy -- we need to continue searching a level higher.
assert(distance < 0)
return false
}
}
}
|