1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift Collections open source project
//
// Copyright (c) 2021 - 2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
//
//===----------------------------------------------------------------------===//
extension Heap {
@usableFromInline @frozen
struct _UnsafeHandle {
@usableFromInline
var buffer: UnsafeMutableBufferPointer<Element>
@inlinable @inline(__always)
init(_ buffer: UnsafeMutableBufferPointer<Element>) {
self.buffer = buffer
}
}
@inlinable @inline(__always)
mutating func _update<R>(_ body: (_UnsafeHandle) -> R) -> R {
_storage.withUnsafeMutableBufferPointer { buffer in
body(_UnsafeHandle(buffer))
}
}
}
extension Heap._UnsafeHandle {
@inlinable @inline(__always)
internal var count: Int {
buffer.count
}
@inlinable
subscript(node: _HeapNode) -> Element {
@inline(__always)
get {
buffer[node.offset]
}
@inline(__always)
nonmutating _modify {
yield &buffer[node.offset]
}
}
@inlinable @inline(__always)
internal func ptr(to node: _HeapNode) -> UnsafeMutablePointer<Element> {
assert(node.offset < count)
return buffer.baseAddress! + node.offset
}
/// Move the value at the specified node out of the buffer, leaving it
/// uninitialized.
@inlinable @inline(__always)
internal func extract(_ node: _HeapNode) -> Element {
ptr(to: node).move()
}
@inlinable @inline(__always)
internal func initialize(_ node: _HeapNode, to value: __owned Element) {
ptr(to: node).initialize(to: value)
}
/// Swaps the elements in the heap at the given indices.
@inlinable @inline(__always)
internal func swapAt(_ i: _HeapNode, _ j: _HeapNode) {
buffer.swapAt(i.offset, j.offset)
}
/// Swaps the element at the given node with the supplied value.
@inlinable @inline(__always)
internal func swapAt(_ i: _HeapNode, with value: inout Element) {
let p = buffer.baseAddress.unsafelyUnwrapped + i.offset
swap(&p.pointee, &value)
}
@inlinable @inline(__always)
internal func minValue(_ a: _HeapNode, _ b: _HeapNode) -> _HeapNode {
self[a] < self[b] ? a : b
}
@inlinable @inline(__always)
internal func maxValue(_ a: _HeapNode, _ b: _HeapNode) -> _HeapNode {
self[a] < self[b] ? b : a
}
}
extension Heap._UnsafeHandle {
@inlinable
internal func bubbleUp(_ node: _HeapNode) {
guard !node.isRoot else { return }
let parent = node.parent()
var node = node
if (node.isMinLevel && self[node] > self[parent])
|| (!node.isMinLevel && self[node] < self[parent]){
swapAt(node, parent)
node = parent
}
if node.isMinLevel {
while let grandparent = node.grandParent(),
self[node] < self[grandparent] {
swapAt(node, grandparent)
node = grandparent
}
} else {
while let grandparent = node.grandParent(),
self[node] > self[grandparent] {
swapAt(node, grandparent)
node = grandparent
}
}
}
}
extension Heap._UnsafeHandle {
/// Sink the item at `node` to its correct position in the heap.
/// The given node must be minimum-ordered.
@inlinable
internal func trickleDownMin(_ node: _HeapNode) {
assert(node.isMinLevel)
var node = node
var value = extract(node)
_trickleDownMin(node: &node, value: &value)
initialize(node, to: value)
}
@inlinable @inline(__always)
internal func _trickleDownMin(node: inout _HeapNode, value: inout Element) {
// Note: `_HeapNode` is quite the useless abstraction here, as we don't need
// to look at its `level` property, and we need to move sideways amongst
// siblings/cousins in the tree, for which we don't have direct operations.
// Luckily, all the `_HeapNode` business gets optimized away, so this only
// affects the readability of the code, not its performance.
// The alternative would be to reintroduce offset-based parent/child
// navigation methods, which seems less palatable.
var gc0 = node.firstGrandchild()
while gc0.offset &+ 3 < count {
// Invariant: buffer slot at `node` is uninitialized
// We have four grandchildren, so we don't need to compare children.
let gc1 = _HeapNode(offset: gc0.offset &+ 1, level: gc0.level)
let minA = minValue(gc0, gc1)
let gc2 = _HeapNode(offset: gc0.offset &+ 2, level: gc0.level)
let gc3 = _HeapNode(offset: gc0.offset &+ 3, level: gc0.level)
let minB = minValue(gc2, gc3)
let min = minValue(minA, minB)
guard self[min] < value else {
return // We're done -- `node` is a good place for `value`.
}
initialize(node, to: extract(min))
node = min
gc0 = node.firstGrandchild()
let parent = min.parent()
if self[parent] < value {
swapAt(parent, with: &value)
}
}
// At this point, we don't have a full complement of grandchildren, but
// we haven't finished sinking the item.
let c0 = node.leftChild()
if c0.offset >= count {
return // No more descendants to consider.
}
let min = _minDescendant(c0: c0, gc0: gc0)
guard self[min] < value else {
return // We're done.
}
initialize(node, to: extract(min))
node = min
if min < gc0 { return }
// If `min` was a grandchild, check the parent.
let parent = min.parent()
if self[parent] < value {
initialize(node, to: extract(parent))
node = parent
}
}
/// Returns the node holding the minimal item amongst the children &
/// grandchildren of a node in the tree. The parent node is not specified;
/// instead, this function takes the nodes corresponding to its first child
/// (`c0`) and first grandchild (`gc0`).
///
/// There must be at least one child, but there must not be a full complement
/// of 4 grandchildren. (Other cases are handled directly above.)
///
/// This method is an implementation detail of `trickleDownMin`. Do not call
/// it directly.
@inlinable
internal func _minDescendant(c0: _HeapNode, gc0: _HeapNode) -> _HeapNode {
assert(c0.offset < count)
assert(gc0.offset + 3 >= count)
if gc0.offset < count {
if gc0.offset &+ 2 < count {
// We have three grandchildren. We don't need to compare direct children.
let gc1 = _HeapNode(offset: gc0.offset &+ 1, level: gc0.level)
let gc2 = _HeapNode(offset: gc0.offset &+ 2, level: gc0.level)
return minValue(minValue(gc0, gc1), gc2)
}
let c1 = _HeapNode(offset: c0.offset &+ 1, level: c0.level)
let m = minValue(c1, gc0)
if gc0.offset &+ 1 < count {
// Two grandchildren.
let gc1 = _HeapNode(offset: gc0.offset &+ 1, level: gc0.level)
return minValue(m, gc1)
}
// One grandchild.
return m
}
let c1 = _HeapNode(offset: c0.offset &+ 1, level: c0.level)
if c1.offset < count {
return minValue(c0, c1)
}
return c0
}
/// Sink the item at `node` to its correct position in the heap.
/// The given node must be maximum-ordered.
@inlinable
internal func trickleDownMax(_ node: _HeapNode) {
assert(!node.isMinLevel)
var node = node
var value = extract(node)
_trickleDownMax(node: &node, value: &value)
initialize(node, to: value)
}
@inlinable @inline(__always)
internal func _trickleDownMax(node: inout _HeapNode, value: inout Element) {
// See note on `_HeapNode` in `_trickleDownMin` above.
var gc0 = node.firstGrandchild()
while gc0.offset &+ 3 < count {
// Invariant: buffer slot at `node` is uninitialized
// We have four grandchildren, so we don't need to compare children.
let gc1 = _HeapNode(offset: gc0.offset &+ 1, level: gc0.level)
let maxA = maxValue(gc0, gc1)
let gc2 = _HeapNode(offset: gc0.offset &+ 2, level: gc0.level)
let gc3 = _HeapNode(offset: gc0.offset &+ 3, level: gc0.level)
let maxB = maxValue(gc2, gc3)
let max = maxValue(maxA, maxB)
guard value < self[max] else {
return // We're done -- `node` is a good place for `value`.
}
initialize(node, to: extract(max))
node = max
gc0 = node.firstGrandchild()
let parent = max.parent()
if value < self[parent] {
swapAt(parent, with: &value)
}
}
// At this point, we don't have a full complement of grandchildren, but
// we haven't finished sinking the item.
let c0 = node.leftChild()
if c0.offset >= count {
return // No more descendants to consider.
}
let max = _maxDescendant(c0: c0, gc0: gc0)
guard value < self[max] else {
return // We're done.
}
initialize(node, to: extract(max))
node = max
if max < gc0 { return }
// If `max` was a grandchild, check the parent.
let parent = max.parent()
if value < self[parent] {
initialize(node, to: extract(parent))
node = parent
}
}
/// Returns the node holding the maximal item amongst the children &
/// grandchildren of a node in the tree. The parent node is not specified;
/// instead, this function takes the nodes corresponding to its first child
/// (`c0`) and first grandchild (`gc0`).
///
/// There must be at least one child, but there must not be a full complement
/// of 4 grandchildren. (Other cases are handled directly above.)
///
/// This method is an implementation detail of `trickleDownMax`. Do not call
/// it directly.
@inlinable
internal func _maxDescendant(c0: _HeapNode, gc0: _HeapNode) -> _HeapNode {
assert(c0.offset < count)
assert(gc0.offset + 3 >= count)
if gc0.offset < count {
if gc0.offset &+ 2 < count {
// We have three grandchildren. We don't need to compare direct children.
let gc1 = _HeapNode(offset: gc0.offset &+ 1, level: gc0.level)
let gc2 = _HeapNode(offset: gc0.offset &+ 2, level: gc0.level)
return maxValue(maxValue(gc0, gc1), gc2)
}
let c1 = _HeapNode(offset: c0.offset &+ 1, level: c0.level)
let m = maxValue(c1, gc0)
if gc0.offset &+ 1 < count {
// Two grandchildren.
let gc1 = _HeapNode(offset: gc0.offset &+ 1, level: gc0.level)
return maxValue(m, gc1)
}
// One grandchild.
return m
}
let c1 = _HeapNode(offset: c0.offset &+ 1, level: c0.level)
if c1.offset < count {
return maxValue(c0, c1)
}
return c0
}
}
extension Heap._UnsafeHandle {
@inlinable
internal func heapify() {
// This is Floyd's linear-time heap construction algorithm.
// (https://en.wikipedia.org/wiki/Heapsort#Floyd's_heap_construction).
//
// FIXME: See if a more cache friendly algorithm would be faster.
let limit = count / 2 // The first offset without a left child
var level = _HeapNode.level(forOffset: limit &- 1)
while level >= 0 {
let nodes = _HeapNode.allNodes(onLevel: level, limit: limit)
_heapify(level, nodes)
level &-= 1
}
}
@inlinable
internal func _heapify(_ level: Int, _ nodes: ClosedRange<_HeapNode>?) {
guard let nodes = nodes else { return }
if _HeapNode.isMinLevel(level) {
nodes._forEach { node in
trickleDownMin(node)
}
} else {
nodes._forEach { node in
trickleDownMax(node)
}
}
}
}
|