1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift Collections open source project
//
// Copyright (c) 2021 - 2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
//
//===----------------------------------------------------------------------===//
// The parts of MutableCollection that OrderedSet is able to implement.
#if !COLLECTIONS_SINGLE_MODULE
import InternalCollectionsUtilities
#endif
extension OrderedSet {
/// Exchanges the values at the specified indices of the set.
///
/// Both parameters must be valid indices below `endIndex`. Passing the same
/// index as both `i` and `j` has no effect.
///
/// - Parameters:
/// - i: The index of the first value to swap.
/// - j: The index of the second value to swap.
///
/// - Complexity: O(1) when the set's storage isn't shared with another
/// value; O(`count`) otherwise.
@inlinable
public mutating func swapAt(_ i: Int, _ j: Int) {
guard i != j else { return }
_elements.swapAt(i, j)
guard _table != nil else { return }
_ensureUnique()
_table!.update { hashTable in
hashTable.swapBucketValues(for: _elements[i], withCurrentValue: j,
and: _elements[j], withCurrentValue: i)
}
_checkInvariants()
}
/// Reorders the elements of the set such that all the elements that match the
/// given predicate are after all the elements that don't match.
///
/// After partitioning a collection, there is a pivot index `p` where
/// no element before `p` satisfies the `belongsInSecondPartition`
/// predicate and every element at or after `p` satisfies
/// `belongsInSecondPartition`.
///
/// In the following example, an ordered set of numbers is partitioned by a
/// predicate that matches elements greater than 30.
///
/// var numbers: OrderedSet = [30, 40, 20, 30, 30, 60, 10]
/// let p = numbers.partition(by: { $0 > 30 })
/// // p == 5
/// // numbers == [30, 10, 20, 30, 30, 60, 40]
///
/// The `numbers` set is now arranged in two partitions. The first partition,
/// `numbers[..<p]`, is made up of the elements that are not greater than 30.
/// The second partition, `numbers[p...]`, is made up of the elements that
/// *are* greater than 30.
///
/// let first = numbers[..<p]
/// // first == [30, 10, 20, 30, 30]
/// let second = numbers[p...]
/// // second == [60, 40]
///
/// - Parameter belongsInSecondPartition: A predicate used to partition
/// the collection. All elements satisfying this predicate are ordered
/// after all elements not satisfying it.
/// - Returns: The index of the first element in the reordered collection
/// that matches `belongsInSecondPartition`. If no elements in the
/// collection match `belongsInSecondPartition`, the returned index is
/// equal to the collection's `endIndex`.
///
/// - Complexity: O(`count`)
@inlinable
public mutating func partition(
by belongsInSecondPartition: (Element) throws -> Bool
) rethrows -> Int {
try _partition(by: belongsInSecondPartition, callback: { a, b in })
}
}
extension OrderedSet {
@inlinable
public mutating func _partition(
by belongsInSecondPartition: (Element) throws -> Bool,
callback: (Int, Int) -> Void
) rethrows -> Int {
guard _table != nil else {
return try _elements.partition(by: belongsInSecondPartition)
}
_ensureUnique()
let result: Int = try _table!.update { hashTable in
let maybeOffset: Int? = try _elements.withContiguousMutableStorageIfAvailable { buffer in
let pivot = try buffer._partition(
with: hashTable,
by: belongsInSecondPartition,
callback: callback)
return pivot - buffer.startIndex
}
if let offset = maybeOffset {
return _elements.index(startIndex, offsetBy: offset)
}
return try _elements._partition(
with: hashTable,
by: belongsInSecondPartition,
callback: callback)
}
_checkInvariants()
return result
}
}
extension MutableCollection where Self: RandomAccessCollection, Element: Hashable {
@inlinable
internal mutating func _partition(
with hashTable: _UnsafeHashTable,
by belongsInSecondPartition: (Element) throws -> Bool,
callback: (Int, Int) -> Void
) rethrows -> Index {
var low = startIndex
var high = endIndex
while true {
// Invariants at this point:
// - low <= high
// - all elements in `startIndex ..< low` belong in the first partition
// - all elements in `high ..< endIndex` belong in the second partition
// Find next element from `lo` that may not be in the right place.
while true {
if low == high { return low }
if try belongsInSecondPartition(self[low]) { break }
formIndex(after: &low)
}
// Find next element down from `hi` that we can swap `lo` with.
while true {
formIndex(before: &high)
if low == high { return low }
if try !belongsInSecondPartition(self[high]) { break }
}
// Swap the two elements as well as their associated hash table buckets.
swapAt(low, high)
let offsetLow = _offset(of: low)
let offsetHigh = _offset(of: high)
hashTable.swapBucketValues(for: self[low], withCurrentValue: offsetHigh,
and: self[high], withCurrentValue: offsetLow)
callback(offsetLow, offsetHigh)
formIndex(after: &low)
}
}
}
extension _UnsafeHashTable {
@inlinable
@inline(__always)
func swapBucketValues<Element: Hashable>(
for left: Element, withCurrentValue leftValue: Int,
and right: Element, withCurrentValue rightValue: Int
) {
let left = idealBucket(for: left)
let right = idealBucket(for: right)
swapBucketValues(for: left, withCurrentValue: leftValue,
and: right, withCurrentValue: rightValue)
}
@usableFromInline
@_effects(releasenone)
func swapBucketValues(
for left: Bucket, withCurrentValue leftValue: Int,
and right: Bucket, withCurrentValue rightValue: Int
) {
var it = bucketIterator(startingAt: left)
it.advance(until: leftValue)
assert(it.isOccupied)
it.currentValue = rightValue
it = bucketIterator(startingAt: right)
it.advance(until: rightValue)
assert(it.isOccupied)
// Note: this second update may mistake the bucket for `right` with the
// bucket for `left` whose value we just updated. The second update will
// restore the original hash table contents in this case. This is okay!
// When this happens, the lookup chains for both elements include each
// other, so leaving the hash table unchanged still leaves us with a
// working hash table.
it.currentValue = leftValue
}
}
extension OrderedSet {
/// Sorts the collection in place, using the given predicate as the
/// comparison between elements.
///
/// When you want to sort a collection of elements that don't conform to
/// the `Comparable` protocol, pass a closure to this method that returns
/// `true` when the first element should be ordered before the second.
///
/// Alternatively, use this method to sort a collection of elements that do
/// conform to `Comparable` when you want the sort to be descending instead
/// of ascending. Pass the greater-than operator (`>`) operator as the
/// predicate.
///
/// `areInIncreasingOrder` must be a *strict weak ordering* over the
/// elements. That is, for any elements `a`, `b`, and `c`, the following
/// conditions must hold:
///
/// - `areInIncreasingOrder(a, a)` is always `false`. (Irreflexivity)
/// - If `areInIncreasingOrder(a, b)` and `areInIncreasingOrder(b, c)` are
/// both `true`, then `areInIncreasingOrder(a, c)` is also `true`.
/// (Transitive comparability)
/// - Two elements are *incomparable* if neither is ordered before the other
/// according to the predicate. If `a` and `b` are incomparable, and `b`
/// and `c` are incomparable, then `a` and `c` are also incomparable.
/// (Transitive incomparability)
///
/// The sorting algorithm is guaranteed to be stable. A stable sort
/// preserves the relative order of elements for which
/// `areInIncreasingOrder` does not establish an order.
///
/// - Parameter areInIncreasingOrder: A predicate that returns `true` if its
/// first argument should be ordered before its second argument;
/// otherwise, `false`. If `areInIncreasingOrder` throws an error during
/// the sort, the elements may be in a different order, but none will be
/// lost.
///
/// - Complexity: O(*n* log *n*), where *n* is the length of the collection.
@inlinable
public mutating func sort(
by areInIncreasingOrder: (Element, Element) throws -> Bool
) rethrows {
defer {
// Note: This assumes that `sort(by:)` won't leave duplicate/missing
// elements in the table when the closure throws. This matches the
// stdlib's behavior in Swift 5.3, and it seems like a reasonable
// long-term assumption.
_regenerateExistingHashTable()
_checkInvariants()
}
try _elements.sort(by: areInIncreasingOrder)
}
}
extension OrderedSet where Element: Comparable {
/// Sorts the set in place.
///
/// You can sort an ordered set of elements that conform to the
/// `Comparable` protocol by calling this method. Elements are sorted in
/// ascending order.
///
/// Here's an example of sorting a list of students' names. Strings in Swift
/// conform to the `Comparable` protocol, so the names are sorted in
/// ascending order according to the less-than operator (`<`).
///
/// var students: OrderedSet = ["Kofi", "Abena", "Peter", "Kweku", "Akosua"]
/// students.sort()
/// print(students)
/// // Prints "["Abena", "Akosua", "Kofi", "Kweku", "Peter"]"
///
/// To sort the elements of your collection in descending order, pass the
/// greater-than operator (`>`) to the `sort(by:)` method.
///
/// students.sort(by: >)
/// print(students)
/// // Prints "["Peter", "Kweku", "Kofi", "Akosua", "Abena"]"
///
/// The sorting algorithm is guaranteed to be stable. A stable sort
/// preserves the relative order of elements that compare as equal.
///
/// - Complexity: O(*n* log *n*), where *n* is the length of the collection.
@inlinable
public mutating func sort() {
defer {
// Note: This assumes that `sort(by:)` won't leave duplicate/missing
// elements in the table when the closure throws. This matches the
// stdlib's behavior in Swift 5.3, and it seems like a reasonable
// long-term assumption.
_regenerateExistingHashTable()
_checkInvariants()
}
_elements.sort()
}
}
extension OrderedSet {
/// Shuffles the collection in place.
///
/// Use the `shuffle()` method to randomly reorder the elements of an ordered
/// set.
///
/// var names: OrderedSet
/// = ["Alejandro", "Camila", "Diego", "Luciana", "Luis", "Sofía"]
/// names.shuffle()
/// // names == ["Luis", "Camila", "Luciana", "Sofía", "Alejandro", "Diego"]
///
/// This method is equivalent to calling `shuffle(using:)`, passing in the
/// system's default random generator.
///
/// - Complexity: O(*n*), where *n* is the length of the collection.
@inlinable
public mutating func shuffle() {
var generator = SystemRandomNumberGenerator()
shuffle(using: &generator)
}
/// Shuffles the collection in place, using the given generator as a source
/// for randomness.
///
/// You use this method to randomize the elements of a collection when you
/// are using a custom random number generator. For example, you can use the
/// `shuffle(using:)` method to randomly reorder the elements of an array.
///
/// var names: OrderedSet
/// = ["Alejandro", "Camila", "Diego", "Luciana", "Luis", "Sofía"]
/// names.shuffle(using: &myGenerator)
/// // names == ["Sofía", "Alejandro", "Camila", "Luis", "Diego", "Luciana"]
///
/// - Parameter generator: The random number generator to use when shuffling
/// the collection.
///
/// - Complexity: O(*n*), where *n* is the length of the collection.
///
/// - Note: The algorithm used to shuffle a collection may change in a future
/// version of Swift. If you're passing a generator that results in the
/// same shuffled order each time you run your program, that sequence may
/// change when your program is compiled using a different version of
/// Swift.
@inlinable
public mutating func shuffle(
using generator: inout some RandomNumberGenerator
) {
_elements.shuffle(using: &generator)
_regenerateExistingHashTable()
_checkInvariants()
}
}
extension OrderedSet {
/// Reverses the elements of the ordered set in place.
///
/// - Complexity: O(`count`)
@inlinable
public mutating func reverse() {
_elements.reverse()
// FIXME: Update hash table contents in place.
_regenerateHashTable()
_checkInvariants()
}
}
extension OrderedSet {
/// Moves all elements satisfying `belongsInSecondPartition` into a suffix
/// of the collection, returning the start position of the resulting suffix.
/// On return, the items before this pivot index remain in the order they
/// originally appeared in the collection.
///
/// - Complexity: O(*n*) where n is the length of the collection.
@inlinable
internal mutating func _halfStablePartition<Value>(
values: UnsafeMutableBufferPointer<Value>,
by belongsInSecondPartition: ((key: Element, value: Value)) throws -> Bool
) rethrows -> Int {
precondition(self.count == values.count)
var i = 0
try _elements.withUnsafeMutableBufferPointer { keys in
while i < keys.count, try !belongsInSecondPartition((keys[i], values[i])) {
i += 1
}
}
guard i < self.count else { return self.count }
self._ensureUnique()
let table = _table
self._table = nil
defer { self._table = table }
return try _elements.withUnsafeMutableBufferPointer { keys in
for j in i + 1 ..< keys.count {
guard try !belongsInSecondPartition((keys[j], values[j])) else {
continue
}
keys.swapAt(i, j)
values.swapAt(i, j)
table?.update { hashTable in
hashTable.swapBucketValues(for: keys[i], withCurrentValue: j,
and: keys[j], withCurrentValue: i)
}
i += 1
}
return i
}
}
@inlinable
internal mutating func _partition<Value>(
values: UnsafeMutableBufferPointer<Value>,
by belongsInSecondPartition: ((key: Element, value: Value)) throws -> Bool
) rethrows -> Int {
self._ensureUnique()
let table = self._table
self._table = nil
defer { self._table = table }
return try _elements.withUnsafeMutableBufferPointer { keys in
assert(keys.count == values.count)
var low = keys.startIndex
var high = keys.endIndex
while true {
// Invariants at this point:
// - low <= high
// - all elements in `startIndex ..< low` belong in the first partition
// - all elements in `high ..< endIndex` belong in the second partition
// Find next element from `lo` that may not be in the right place.
while true {
if low == high { return low }
if try belongsInSecondPartition((keys[low], values[low])) { break }
low += 1
}
// Find next element down from `hi` that we can swap `lo` with.
while true {
high -= 1
if low == high { return low }
if try !belongsInSecondPartition((keys[high], values[high])) { break }
}
// Swap the two elements as well as their associated hash table buckets.
keys.swapAt(low, high)
values.swapAt(low, high)
table?.update { hashTable in
hashTable.swapBucketValues(for: keys[low], withCurrentValue: high,
and: keys[high], withCurrentValue: low)
}
low += 1
}
}
}
}
|