File: CFBinaryPList.c

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (1815 lines) | stat: -rw-r--r-- 81,719 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
/*	CFBinaryPList.c
	Copyright (c) 2000-2019, Apple Inc. and the Swift project authors
 
	Portions Copyright (c) 2014-2019, Apple Inc. and the Swift project authors
	Licensed under Apache License v2.0 with Runtime Library Exception
	See http://swift.org/LICENSE.txt for license information
	See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
	Responsibility: Tony Parker
*/


#include "CFBase.h"
#include "CFString.h"
#include "CFNumber.h"
#include "CFDate.h"
#include "CFData.h"
#include "CFError.h"
#include "CFArray.h"
#include "CFDictionary.h"
#include "CFSet.h"
#include "CFPropertyList.h"
#include "CFByteOrder.h"
#include "CFRuntime.h"
#include "CFUUID.h"
#include "CFNumber_Private.h"
#include "CFBasicHash.h"
#include <stdio.h>
#include <limits.h>
#include <string.h>
#include "CFInternal.h"
#include "CFRuntime_Internal.h"
#include "CFPropertyList_Internal.h"

#include "CFStream.h"

enum {
	CF_NO_ERROR = 0,
	CF_OVERFLOW_ERROR = (1 << 0),
};

CF_INLINE uint64_t __check_uint64_add_unsigned_unsigned(uint64_t x, uint64_t y, int32_t* err) {
   if((ULLONG_MAX - y) < x)
        *err = *err | CF_OVERFLOW_ERROR;
   return x + y;
};

CF_INLINE uint64_t __check_uint64_mul_unsigned_unsigned(uint64_t x, uint64_t y, int32_t* err) {
  if(x == 0) return 0;
  if(ULLONG_MAX/x < y)
     *err = *err | CF_OVERFLOW_ERROR;
  return x * y;
};

#if TARGET_RT_64_BIT
#define check_ptr_add(p, a, err)	(const uint8_t *)__check_uint64_add_unsigned_unsigned((uintptr_t)p, (uintptr_t)a, err)
#define check_size_t_mul(b, a, err)	(size_t)__check_uint64_mul_unsigned_unsigned((size_t)b, (size_t)a, err)
#else

CF_INLINE uint32_t __check_uint32_add_unsigned_unsigned(uint32_t x, uint32_t y, int32_t* err) {
    if((UINT_MAX - y) < x)
    *err = *err | CF_OVERFLOW_ERROR;
    return x + y;
};

CF_INLINE uint32_t __check_uint32_mul_unsigned_unsigned(uint32_t x, uint32_t y, int32_t* err) {
    uint64_t tmp = (uint64_t) x * (uint64_t) y;
    /* If any of the upper 32 bits touched, overflow */
    if(tmp & 0xffffffff00000000ULL)
    *err = *err | CF_OVERFLOW_ERROR;
    return (uint32_t) tmp;
};

#define check_ptr_add(p, a, err)	(const uint8_t *)__check_uint32_add_unsigned_unsigned((uintptr_t)p, (uintptr_t)a, err)
#define check_size_t_mul(b, a, err)	(size_t)__check_uint32_mul_unsigned_unsigned((size_t)b, (size_t)a, err)
#endif

CF_INLINE uint64_t _CFBinaryPlistTrailer_objectsRangeEnd(const CFBinaryPlistTrailer *trailer) {
    return trailer->_offsetTableOffset - 1;
}

#pragma mark -
#pragma mark Keyed Archiver UID

struct __CFKeyedArchiverUID {
    CFRuntimeBase _base;
    uint32_t _value;
};

static CFStringRef __CFKeyedArchiverUIDCopyDescription(CFTypeRef cf) {
    CFKeyedArchiverUIDRef uid = (CFKeyedArchiverUIDRef)cf;
    return CFStringCreateWithFormat(kCFAllocatorSystemDefault, NULL, CFSTR("<CFKeyedArchiverUID %p [%p]>{value = %u}"), cf, CFGetAllocator(cf), uid->_value);
}

static CFStringRef __CFKeyedArchiverUIDCopyFormattingDescription(CFTypeRef cf, CFDictionaryRef formatOptions) {
    CFKeyedArchiverUIDRef uid = (CFKeyedArchiverUIDRef)cf;
    return CFStringCreateWithFormat(kCFAllocatorSystemDefault, NULL, CFSTR("@%u@"), uid->_value);
}

const CFRuntimeClass __CFKeyedArchiverUIDClass = {
    0,
    "CFKeyedArchiverUID",
    NULL,	// init
    NULL,	// copy
    NULL,	// finalize
    NULL,	// equal -- pointer equality only
    NULL,	// hash -- pointer hashing only
    __CFKeyedArchiverUIDCopyFormattingDescription,
    __CFKeyedArchiverUIDCopyDescription
};

CFTypeID _CFKeyedArchiverUIDGetTypeID(void) {
    return _kCFRuntimeIDCFKeyedArchiverUID;
}

CFKeyedArchiverUIDRef _CFKeyedArchiverUIDCreate(CFAllocatorRef allocator, uint32_t value) {
    CFKeyedArchiverUIDRef uid;
    uid = (CFKeyedArchiverUIDRef)_CFRuntimeCreateInstance(allocator, _CFKeyedArchiverUIDGetTypeID(), sizeof(struct __CFKeyedArchiverUID) - sizeof(CFRuntimeBase), NULL);
    if (NULL == uid) {
	return NULL;
    }
    ((struct __CFKeyedArchiverUID *)uid)->_value = value;
    return uid;
}


uint32_t _CFKeyedArchiverUIDGetValue(CFKeyedArchiverUIDRef uid) {
    CF_ASSERT_TYPE(_kCFRuntimeIDCFKeyedArchiverUID, uid);
    return uid->_value;
}

#pragma mark -
#pragma mark Writing

CF_PRIVATE CFErrorRef __CFPropertyListCreateError(CFIndex code, CFStringRef debugString, ...);

typedef struct {
    CFTypeRef stream;
    void *databytes;
    uint64_t datalen;
    CFErrorRef error;
    uint64_t written;
    int32_t used;
    bool streamIsData;
    uint8_t buffer[8192 - 32];
} __CFBinaryPlistWriteBuffer;

static void writeBytes(__CFBinaryPlistWriteBuffer *buf, const UInt8 *bytes, CFIndex length, Boolean dryRun) {
    if (length <= 0) return;
    if (buf->error) return;
    if (buf->databytes) {
        int32_t err = CF_NO_ERROR;
        uint64_t tmpSum = __check_uint64_add_unsigned_unsigned(buf->written, (uint64_t)length, &err);
        if ((CF_NO_ERROR != err) || buf->datalen < tmpSum) {
            buf->error = __CFPropertyListCreateError(kCFPropertyListWriteStreamError, CFSTR("Binary property list writing could not be completed because databytes is full."));
            return;
        }
        if (!dryRun) memmove((char *)buf->databytes + buf->written, bytes, length);
    }
    if (buf->streamIsData) {
        if (buf->stream && !dryRun) CFDataAppendBytes((CFMutableDataRef)buf->stream, bytes, length);
        buf->written += length;
    } else {
	while (0 < length) {
	    CFIndex ret = (buf->stream && !dryRun) ? CFWriteStreamWrite((CFWriteStreamRef)buf->stream, bytes, length) : length;
            if (ret == 0) {
		buf->error = __CFPropertyListCreateError(kCFPropertyListWriteStreamError, CFSTR("Binary property list writing could not be completed because stream is full."));
                return;
            }
            if (ret < 0) {
                CFErrorRef err = buf->stream ? CFWriteStreamCopyError((CFWriteStreamRef)buf->stream) : NULL;
                buf->error = err ? err : __CFPropertyListCreateError(kCFPropertyListWriteStreamError, CFSTR("Binary property list writing could not be completed because the stream had an unknown error."));
                return;
            }
	    buf->written += ret;
	    length -= ret;
	    bytes += ret;
	}
    }
}

static void bufferFlush(__CFBinaryPlistWriteBuffer *buf, Boolean dryRun) {
    writeBytes(buf, buf->buffer, buf->used, dryRun);
    buf->used = 0;
}

static void bufferWrite(__CFBinaryPlistWriteBuffer *buf, const uint8_t *buffer, CFIndex count, Boolean dryRun) {
    if (0 == count) return;
    if ((CFIndex)sizeof(buf->buffer) <= count) {
	bufferFlush(buf, dryRun);
	writeBytes(buf, buffer, count, dryRun);
	return;
    }
    CFIndex copyLen = __CFMin(count, (CFIndex)sizeof(buf->buffer) - buf->used);
    if (!dryRun && (buf->stream || buf->databytes)) {
        switch (copyLen) {
        case 4: buf->buffer[buf->used + 3] = buffer[3]; /* FALLTHROUGH */
        case 3: buf->buffer[buf->used + 2] = buffer[2]; /* FALLTHROUGH */
        case 2: buf->buffer[buf->used + 1] = buffer[1]; /* FALLTHROUGH */
        case 1: buf->buffer[buf->used] = buffer[0]; break;
        default: memmove(buf->buffer + buf->used, buffer, copyLen);
        }
    }
    buf->used += copyLen;
    if (sizeof(buf->buffer) == buf->used) {
	writeBytes(buf, buf->buffer, sizeof(buf->buffer), dryRun);
        if (!dryRun && (buf->stream || buf->databytes)) {
            memmove(buf->buffer, buffer + copyLen, count - copyLen);
        }
	buf->used = count - copyLen;
    }
}

/*
HEADER
	magic number ("bplist")
	file format version (currently "0?")

OBJECT TABLE
	variable-sized objects

	Object Formats (marker byte followed by additional info in some cases)
	null	0000 0000			// null object [v"1?"+ only]
	bool	0000 1000			// false
	bool	0000 1001			// true
	url	0000 1100	string		// URL with no base URL, recursive encoding of URL string [v"1?"+ only]
	url	0000 1101	base string	// URL with base URL, recursive encoding of base URL, then recursive encoding of URL string [v"1?"+ only]
	uuid	0000 1110			// 16-byte UUID [v"1?"+ only]
	fill	0000 1111			// fill byte
	int	0001 0nnn	...		// # of bytes is 2^nnn, big-endian bytes
	real	0010 0nnn	...		// # of bytes is 2^nnn, big-endian bytes
	date	0011 0011	...		// 8 byte float follows, big-endian bytes
	data	0100 nnnn	[int]	...	// nnnn is number of bytes unless 1111 then int count follows, followed by bytes
	string	0101 nnnn	[int]	...	// ASCII string, nnnn is # of chars, else 1111 then int count, then bytes
	string	0110 nnnn	[int]	...	// Unicode string, nnnn is # of chars, else 1111 then int count, then big-endian 2-byte uint16_t
	string	0111 nnnn	[int]	...	// UTF8 string, nnnn is # of chars, else 1111 then int count, then bytes [v"1?"+ only]
	uid	1000 nnnn	...		// nnnn+1 is # of bytes
		1001 xxxx			// unused
	array	1010 nnnn	[int]	objref*	// nnnn is count, unless '1111', then int count follows
	ordset	1011 nnnn	[int]	objref* // nnnn is count, unless '1111', then int count follows [v"1?"+ only]
	set	1100 nnnn	[int]	objref* // nnnn is count, unless '1111', then int count follows [v"1?"+ only]
	dict	1101 nnnn	[int]	keyref* objref*	// nnnn is count, unless '1111', then int count follows
		1110 xxxx			// unused
		1111 xxxx			// unused

OFFSET TABLE
	list of ints, byte size of which is given in trailer
	-- these are the byte offsets into the file
	-- number of these is in the trailer

TRAILER
	byte size of offset ints in offset table
	byte size of object refs in arrays and dicts
	number of offsets in offset table (also is number of objects)
	element # in offset table which is top level object
	offset table offset

*/


static void _appendInt(__CFBinaryPlistWriteBuffer *buf, uint64_t bigint, Boolean dryRun) {
    uint8_t marker;
    uint8_t *bytes;
    CFIndex nbytes;
    if (bigint <= (uint64_t)0xff) {
	nbytes = 1;
	marker = kCFBinaryPlistMarkerInt | 0;
    } else if (bigint <= (uint64_t)0xffff) {
	nbytes = 2;
	marker = kCFBinaryPlistMarkerInt | 1;
    } else if (bigint <= (uint64_t)0xffffffff) {
	nbytes = 4;
	marker = kCFBinaryPlistMarkerInt | 2;
    } else {
	nbytes = 8;
	marker = kCFBinaryPlistMarkerInt | 3;
    }
    bigint = CFSwapInt64HostToBig(bigint);
    bytes = (uint8_t *)&bigint + sizeof(bigint) - nbytes;
    bufferWrite(buf, &marker, 1, dryRun);
    bufferWrite(buf, bytes, nbytes, dryRun);
}

static void _appendUID(__CFBinaryPlistWriteBuffer *buf, CFKeyedArchiverUIDRef uid, Boolean dryRun) {
    uint8_t marker;
    uint8_t *bytes;
    CFIndex nbytes;
    uint64_t bigint = _CFKeyedArchiverUIDGetValue(uid);
    if (bigint <= (uint64_t)0xff) {
	nbytes = 1;
    } else if (bigint <= (uint64_t)0xffff) {
	nbytes = 2;
    } else if (bigint <= (uint64_t)0xffffffff) {
	nbytes = 4;
    } else {
	nbytes = 8;
    }
    marker = kCFBinaryPlistMarkerUID | (uint8_t)(nbytes - 1);
    bigint = CFSwapInt64HostToBig(bigint);
    bytes = (uint8_t *)&bigint + sizeof(bigint) - nbytes;
    bufferWrite(buf, &marker, 1, dryRun);
    bufferWrite(buf, bytes, nbytes, dryRun);
}

static void _appendString(__CFBinaryPlistWriteBuffer *buf, CFStringRef str, Boolean dryRun) {
    CFIndex ret, count = CFStringGetLength(str);
    CFIndex needed, idx2;
    uint8_t *bytes, buffer[1024];
    bytes = (count <= 1024) ? buffer : (uint8_t *)CFAllocatorAllocate(kCFAllocatorSystemDefault, count, 0);
    // presumption, believed to be true, is that ASCII encoding may need
    // less bytes, but will not need greater, than the # of unichars
    ret = CFStringGetBytes(str, CFRangeMake(0, count), kCFStringEncodingASCII, 0, false, bytes, count, &needed);
    if (ret == count) {
        uint8_t marker = (uint8_t)(kCFBinaryPlistMarkerASCIIString | (needed < 15 ? needed : 0xf));
        bufferWrite(buf, &marker, 1, dryRun);
        if (15 <= needed) {
	    _appendInt(buf, (uint64_t)needed, dryRun);
        }
        bufferWrite(buf, bytes, needed, dryRun);
    } else {
        UniChar *chars;
        uint8_t marker = (uint8_t)(kCFBinaryPlistMarkerUnicode16String | (count < 15 ? count : 0xf));
        bufferWrite(buf, &marker, 1, dryRun);
        if (15 <= count) {
	    _appendInt(buf, (uint64_t)count, dryRun);
        }
        chars = (UniChar *)CFAllocatorAllocate(kCFAllocatorSystemDefault, count * sizeof(UniChar), 0);
        CFStringGetCharacters(str, CFRangeMake(0, count), chars);
        for (idx2 = 0; idx2 < count; idx2++) {
	    chars[idx2] = CFSwapInt16HostToBig(chars[idx2]);
        }
        bufferWrite(buf, (uint8_t *)chars, count * sizeof(UniChar), dryRun);
        CFAllocatorDeallocate(kCFAllocatorSystemDefault, chars);
    }
    if (bytes != buffer) CFAllocatorDeallocate(kCFAllocatorSystemDefault, bytes);
}

static void _appendNumber(__CFBinaryPlistWriteBuffer *buf, CFNumberRef num, Boolean dryRun) {
    uint8_t marker;
    uint64_t bigint;
    uint8_t *bytes;
    CFIndex nbytes;
    if (CFNumberIsFloatType(num)) {
        CFSwappedFloat64 swapped64;
        CFSwappedFloat32 swapped32;
        if (CFNumberGetByteSize(num) <= (CFIndex)sizeof(float)) {
	    float v;
	    CFNumberGetValue(num, kCFNumberFloat32Type, &v);
	    swapped32 = CFConvertFloat32HostToSwapped(v);
	    bytes = (uint8_t *)&swapped32;
	    nbytes = sizeof(float);
	    marker = kCFBinaryPlistMarkerReal | 2;
        } else {
	    double v;
	    CFNumberGetValue(num, kCFNumberFloat64Type, &v);
	    swapped64 = CFConvertFloat64HostToSwapped(v);
	    bytes = (uint8_t *)&swapped64;
	    nbytes = sizeof(double);
	    marker = kCFBinaryPlistMarkerReal | 3;
        }
        bufferWrite(buf, &marker, 1, dryRun);
        bufferWrite(buf, bytes, nbytes, dryRun);
    } else {
        CFNumberType type = _CFNumberGetType2(num);
        if (kCFNumberSInt128Type == type) {
	    CFSInt128Struct s;
	    CFNumberGetValue(num, kCFNumberSInt128Type, &s);
	    struct {
        	int64_t high;
        	uint64_t low;
	    } storage;
	    storage.high = CFSwapInt64HostToBig(s.high);
	    storage.low = CFSwapInt64HostToBig(s.low);
	    uint8_t *bytes = (uint8_t *)&storage;
	    uint8_t marker = kCFBinaryPlistMarkerInt | 4;
	    CFIndex nbytes = 16;
	    bufferWrite(buf, &marker, 1, dryRun);
	    bufferWrite(buf, bytes, nbytes, dryRun);
        } else {
	    CFNumberGetValue(num, kCFNumberSInt64Type, &bigint);
	    _appendInt(buf, bigint, dryRun);
        }
    }
}

static Boolean _appendObject(__CFBinaryPlistWriteBuffer *buf, CFTypeRef obj, CFDictionaryRef objtable, uint32_t objRefSize, Boolean dryRun) {
    uint64_t refnum;
    CFIndex idx2;
    CFTypeID type = CFGetTypeID(obj);
	if (_kCFRuntimeIDCFString == type) {
	    _appendString(buf, (CFStringRef)obj, dryRun);
	} else if (_kCFRuntimeIDCFNumber == type) {
	    _appendNumber(buf, (CFNumberRef)obj, dryRun);
	} else if (_kCFRuntimeIDCFBoolean == type) {
	    uint8_t marker = CFBooleanGetValue((CFBooleanRef)obj) ? kCFBinaryPlistMarkerTrue : kCFBinaryPlistMarkerFalse;
	    bufferWrite(buf, &marker, 1, dryRun);
	} else if (_kCFRuntimeIDCFData == type) {
	    CFIndex count = CFDataGetLength((CFDataRef)obj);
	    uint8_t marker = (uint8_t)(kCFBinaryPlistMarkerData | (count < 15 ? count : 0xf));
	    bufferWrite(buf, &marker, 1, dryRun);
	    if (15 <= count) {
		_appendInt(buf, (uint64_t)count, dryRun);
	    }
	    bufferWrite(buf, CFDataGetBytePtr((CFDataRef)obj), count, dryRun);
	} else if (_kCFRuntimeIDCFDate == type) {
	    CFSwappedFloat64 swapped;
	    uint8_t marker = kCFBinaryPlistMarkerDate;
	    bufferWrite(buf, &marker, 1, dryRun);
	    swapped = CFConvertFloat64HostToSwapped(CFDateGetAbsoluteTime((CFDateRef)obj));
	    bufferWrite(buf, (uint8_t *)&swapped, sizeof(swapped), dryRun);
	} else if (_kCFRuntimeIDCFDictionary == type) {
            CFIndex count = CFDictionaryGetCount((CFDictionaryRef)obj);
            uint8_t marker = (uint8_t)(kCFBinaryPlistMarkerDict | (count < 15 ? count : 0xf));
            bufferWrite(buf, &marker, 1, dryRun);
            if (15 <= count) {
                _appendInt(buf, (uint64_t)count, dryRun);
            }
            CFPropertyListRef *list, buffer[512];
            list = (count <= 256) ? buffer : (CFPropertyListRef *)CFAllocatorAllocate(kCFAllocatorSystemDefault, 2 * count * sizeof(CFTypeRef), 0);
            CFDictionaryGetKeysAndValues((CFDictionaryRef)obj, list, list + count);
            for (idx2 = 0; idx2 < 2 * count; idx2++) {
		CFPropertyListRef value = list[idx2];
		if (objtable) {
		    uint32_t swapped = 0;
		    uint8_t *source = (uint8_t *)&swapped;
		    refnum = (uint32_t)(uintptr_t)CFDictionaryGetValue(objtable, value);
		    swapped = CFSwapInt32HostToBig((uint32_t)refnum);
		    bufferWrite(buf, source + sizeof(swapped) - objRefSize, objRefSize, dryRun);
		} else {
		    Boolean ret = _appendObject(buf, value, objtable, objRefSize, dryRun);
		    if (!ret) {
			if (list != buffer) CFAllocatorDeallocate(kCFAllocatorSystemDefault, list);
			return false;
		    }
		}
            }
            if (list != buffer) CFAllocatorDeallocate(kCFAllocatorSystemDefault, list);
	} else if (_kCFRuntimeIDCFArray == type) {
	    CFIndex count = CFArrayGetCount((CFArrayRef)obj);
	    CFPropertyListRef *list, buffer[256];
	    uint8_t marker = (uint8_t)(kCFBinaryPlistMarkerArray | (count < 15 ? count : 0xf));
	    bufferWrite(buf, &marker, 1, dryRun);
	    if (15 <= count) {
		_appendInt(buf, (uint64_t)count, dryRun);
	    }
	    list = (count <= 256) ? buffer : (CFPropertyListRef *)CFAllocatorAllocate(kCFAllocatorSystemDefault, count * sizeof(CFTypeRef), 0);
	    CFArrayGetValues((CFArrayRef)obj, CFRangeMake(0, count), list);
	    for (idx2 = 0; idx2 < count; idx2++) {
		CFPropertyListRef value = list[idx2];
		if (objtable) {
		    uint32_t swapped = 0;
		    uint8_t *source = (uint8_t *)&swapped;
		    refnum = (uint32_t)(uintptr_t)CFDictionaryGetValue(objtable, value);
		    swapped = CFSwapInt32HostToBig((uint32_t)refnum);
		    bufferWrite(buf, source + sizeof(swapped) - objRefSize, objRefSize, dryRun);
		} else {
		    Boolean ret = _appendObject(buf, value, objtable, objRefSize, dryRun);
		    if (!ret) {
			if (list != buffer) CFAllocatorDeallocate(kCFAllocatorSystemDefault, list);
			return false;
		    }
		}
	    }
	    if (list != buffer) CFAllocatorDeallocate(kCFAllocatorSystemDefault, list);
	} else if (_CFKeyedArchiverUIDGetTypeID() == type) {
	    _appendUID(buf, (CFKeyedArchiverUIDRef)obj, dryRun);
	} else {
	    return false;
	}
    return true;
}

static void _flattenPlist(CFPropertyListRef plist, CFMutableArrayRef objlist, CFMutableDictionaryRef objtable, CFMutableSetRef uniquingset) {
    uint32_t refnum;
    CFTypeID type = CFGetTypeID(plist);

    // Do not unique dictionaries or arrays, because: they
    // are slow to compare, and have poor hash codes.
    // Uniquing bools is unnecessary.
    if (_kCFRuntimeIDCFString == type || _kCFRuntimeIDCFNumber == type || _kCFRuntimeIDCFDate == type || _kCFRuntimeIDCFData == type) {
	CFIndex before = CFSetGetCount(uniquingset);
	CFSetAddValue(uniquingset, plist);
	CFIndex after = CFSetGetCount(uniquingset);
	if (after == before) {	// already in set
	    CFPropertyListRef unique = CFSetGetValue(uniquingset, plist);
	    if (unique != plist) {
		refnum = (uint32_t)(uintptr_t)CFDictionaryGetValue(objtable, unique);
		CFDictionaryAddValue(objtable, plist, (const void *)(uintptr_t)refnum);
	    }
	    return;
	}
    }
    refnum = CFArrayGetCount(objlist);
    CFArrayAppendValue(objlist, plist);
    CFDictionaryAddValue(objtable, plist, (const void *)(uintptr_t)refnum);
    if (_kCFRuntimeIDCFDictionary == type) {
        CFIndex count = CFDictionaryGetCount((CFDictionaryRef)plist);
        STACK_BUFFER_DECL(CFPropertyListRef, buffer, (count > 0 && count <= 128) ? count * 2 : 1);
        CFPropertyListRef *list = (count <= 128) ? buffer : (CFPropertyListRef *)CFAllocatorAllocate(kCFAllocatorSystemDefault, 2 * count * sizeof(CFTypeRef), 0);
        CFDictionaryGetKeysAndValues((CFDictionaryRef)plist, list, list + count);
        for (CFIndex idx = 0; idx < 2 * count; idx++) {
            _flattenPlist(list[idx], objlist, objtable, uniquingset);
        }
        if (list != buffer) CFAllocatorDeallocate(kCFAllocatorSystemDefault, list);
    } else if (_kCFRuntimeIDCFArray == type) {
        CFIndex count = CFArrayGetCount((CFArrayRef)plist);
        STACK_BUFFER_DECL(CFPropertyListRef, buffer, (count > 0 && count <= 256) ? count : 1);
        CFPropertyListRef *list = (count <= 256) ? buffer : (CFPropertyListRef *)CFAllocatorAllocate(kCFAllocatorSystemDefault, count * sizeof(CFTypeRef), 0);
        CFArrayGetValues((CFArrayRef)plist, CFRangeMake(0, count), list);
        for (CFIndex idx = 0; idx < count; idx++) {
            _flattenPlist(list[idx], objlist, objtable, uniquingset);
        }
        if (list != buffer) CFAllocatorDeallocate(kCFAllocatorSystemDefault, list);
    }
}

/* Get the number of bytes required to hold the value in 'count'. Will return a power of 2 value big enough to hold 'count'.
 */
CF_INLINE uint8_t _byteCount(uint64_t count) {
    uint64_t mask = ~(uint64_t)0;
    uint8_t size = 0;

    // Find something big enough to hold 'count'
    while (count & mask) {
        size++;
        mask = mask << 8;
    }

    // Ensure that 'count' is a power of 2
    // For sizes bigger than 8, just use the required count
    while ((size != 1 && size != 2 && size != 4 && size != 8) && size <= 8) {
        size++;
    }

    return size;
}

// stream can be a CFWriteStreamRef (on supported platforms) or a CFMutableDataRef
/* Write a property list to a stream, in binary format. plist is the property list to write (one of the basic property list types), stream is the destination of the property list, and estimate is a best-guess at the total number of objects in the property list. The estimate parameter is for efficiency in pre-allocating memory for the uniquing step. Pass in a 0 if no estimate is available. The options flag specifies sort options. If sizeOnly is true, then no actual buffer allocations will be done, but the necessary buffer size will be calculated and return. If the error parameter is non-NULL and an error occurs, it will be used to return a CFError explaining the problem. It is the callers responsibility to release the error. */
CF_PRIVATE CFIndex __CFBinaryPlistWriteOrPresize(CFPropertyListRef plist, CFTypeRef stream, uint64_t estimate, CFOptionFlags options, Boolean sizeOnly, CFErrorRef *error) {
    CFMutableDictionaryRef objtable = NULL;
    CFMutableArrayRef objlist = NULL;
    CFMutableSetRef uniquingset = NULL;
    CFBinaryPlistTrailer trailer;
    uint64_t *offsets, length_so_far;
    int64_t idx, cnt;
    __CFBinaryPlistWriteBuffer *buf;

    //If we're actually serializing, rather than just pre-sizing, we have to have something to serialize into.
    CFAssert(stream || sizeOnly, __kCFLogAssertion, "Passing NULL for the stream argument to __CFBinaryPlistWriteOrPresize is only valid if sizeOnly is true");

    /*
     This is exactly the same as a CFDictionary with NULL callbacks, except that it has the "aggressive growth" flag set, since we're not keeping it around. Radar 21883482
     */
    CFBasicHashCallbacks callbacks = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
    objtable = 	(CFMutableDictionaryRef)CFBasicHashCreate(kCFAllocatorSystemDefault, kCFBasicHashHasKeys | kCFBasicHashLinearHashing | kCFBasicHashAggressiveGrowth, &callbacks);
    _CFRuntimeSetInstanceTypeIDAndIsa(objtable, _kCFRuntimeIDCFDictionary);
    
    const CFArrayCallBacks arrayCallbacks = {0, __CFTypeCollectionRetain, __CFTypeCollectionRelease, 0, 0};
    objlist = CFArrayCreateMutable(kCFAllocatorSystemDefault, 0, &arrayCallbacks);
    
    const CFSetCallBacks setCallbacks = {0, __CFTypeCollectionRetain, __CFTypeCollectionRelease, 0, 0, 0};
    uniquingset = CFSetCreateMutable(kCFAllocatorSystemDefault, 0, &setCallbacks);

#if TARGET_OS_OSX
    _CFDictionarySetCapacity(objtable, estimate ? estimate : 650);
    _CFArraySetCapacity(objlist, estimate ? estimate : 650);
    _CFSetSetCapacity(uniquingset, estimate ? estimate : 1000);
#endif

    _flattenPlist(plist, objlist, objtable, uniquingset);

    CFRelease(uniquingset);
    
    cnt = CFArrayGetCount(objlist);
    offsets = (uint64_t *)CFAllocatorAllocate(kCFAllocatorSystemDefault, (CFIndex)(cnt * sizeof(*offsets)), 0);

    buf = (__CFBinaryPlistWriteBuffer *)CFAllocatorAllocate(kCFAllocatorSystemDefault, sizeof(__CFBinaryPlistWriteBuffer), 0);
    buf->stream = stream;
    buf->databytes = NULL;
    buf->datalen = 0;
    buf->error = NULL;
    buf->streamIsData = !stream || (CFGetTypeID(stream) == CFDataGetTypeID());
    buf->written = 0;
    buf->used = 0;
    bufferWrite(buf, (uint8_t *)"bplist00", 8, sizeOnly);	// header

    memset(&trailer, 0, sizeof(trailer));
    trailer._numObjects = CFSwapInt64HostToBig(cnt);
    trailer._topObject = 0;	// true for this implementation
    trailer._objectRefSize = _byteCount(cnt);    
    for (idx = 0; idx < cnt; idx++) {
	offsets[idx] = buf->written + buf->used;
	CFPropertyListRef obj = CFArrayGetValueAtIndex(objlist, (CFIndex)idx);
	Boolean success = _appendObject(buf, obj, objtable, trailer._objectRefSize, sizeOnly);
	if (!success) {
	    CFRelease(objtable);
	    CFRelease(objlist);
	    if (error && buf->error) {
		// caller will release error
		*error = buf->error;
	    } else if (buf->error) {
		// caller is not interested in error, release it here
		CFRelease(buf->error);
	    }
	    CFAllocatorDeallocate(kCFAllocatorSystemDefault, buf);
            CFAllocatorDeallocate(kCFAllocatorSystemDefault, offsets);
	    return 0;
	}
    }
    CFRelease(objtable);
    CFRelease(objlist);
    
    length_so_far = buf->written + buf->used;
    trailer._offsetTableOffset = CFSwapInt64HostToBig(length_so_far);
    trailer._offsetIntSize = _byteCount(length_so_far);
    
    for (idx = 0; idx < cnt; idx++) {
	uint64_t swapped = CFSwapInt64HostToBig(offsets[idx]);
	uint8_t *source = (uint8_t *)&swapped;
	bufferWrite(buf, source + sizeof(*offsets) - trailer._offsetIntSize, trailer._offsetIntSize, sizeOnly);
    }
    length_so_far += cnt * trailer._offsetIntSize;
    CFAllocatorDeallocate(kCFAllocatorSystemDefault, offsets);

    bufferWrite(buf, (uint8_t *)&trailer, sizeof(trailer), sizeOnly);
    bufferFlush(buf, sizeOnly);
    length_so_far += sizeof(trailer);
    if (buf->error) {
	if (error) {
	    // caller will release error
	    *error = buf->error;
	} else {
	    CFRelease(buf->error);
	}
        CFAllocatorDeallocate(kCFAllocatorSystemDefault, buf);
	return 0;
    }
    CFAllocatorDeallocate(kCFAllocatorSystemDefault, buf);
    return (CFIndex)length_so_far;
}

CFIndex __CFBinaryPlistWrite(CFPropertyListRef plist, CFTypeRef stream, uint64_t estimate, CFOptionFlags options, CFErrorRef *error) {
    return __CFBinaryPlistWriteOrPresize(plist, stream, estimate, options, false, error);
}

CFIndex __CFBinaryPlistWriteToStream(CFPropertyListRef plist, CFTypeRef stream) {
    return __CFBinaryPlistWriteOrPresize(plist, stream, 0, 0, false, NULL);
}

// to be removed soon
CFIndex __CFBinaryPlistWriteToStreamWithEstimate(CFPropertyListRef plist, CFTypeRef stream, uint64_t estimate) {
    return __CFBinaryPlistWriteOrPresize(plist, stream, estimate, 0, false, NULL);
}

// to be removed soon
CFIndex __CFBinaryPlistWriteToStreamWithOptions(CFPropertyListRef plist, CFTypeRef stream, uint64_t estimate, CFOptionFlags options) {
    return __CFBinaryPlistWriteOrPresize(plist, stream, estimate, options, false, NULL);
}

CF_PRIVATE CFMutableDataRef _CFDataCreateFixedMutableWithBuffer(CFAllocatorRef allocator, CFIndex capacity, const uint8_t *bytes, CFAllocatorRef bytesDeallocator);

CF_PRIVATE CFDataRef __CFBinaryPlistCreateDataUsingExternalBufferAllocator(CFPropertyListRef plist, uint64_t estimate, CFOptionFlags options, CFAllocatorRef (^allocatorCreator)(CFIndex bufferSize), CFErrorRef *error) {
    CFIndex size = __CFBinaryPlistWriteOrPresize(plist, NULL, estimate, options, true, error);
    CFDataRef result = NULL;
    if (size > 0) {
        CFAllocatorRef allocator = allocatorCreator(size);
        if (allocator) {
            void *buffer = CFAllocatorAllocate(allocator, size, 0);
            if (buffer) {
                CFMutableDataRef data = _CFDataCreateFixedMutableWithBuffer(kCFAllocatorSystemDefault, size, buffer, allocator);
                if (data) {
                    CFRelease(allocator);
                    if (size == __CFBinaryPlistWriteOrPresize(plist, data, estimate, options, false, error)) {
                        result = data;
                    } else {
                        CFRelease(data);
                    }
                } else {
                    CFAllocatorDeallocate(allocator, buffer);
                    if (error) {
                        *error = __CFPropertyListCreateError(kCFPropertyListWriteStreamError, CFSTR("Binary property list writing could not be completed because a CFMutableDataRef using the external buffer could not be allocated."));
                    }
                }
            } else {
                CFRelease(allocator);
                if (error) {
                    *error = __CFPropertyListCreateError(kCFPropertyListWriteStreamError, CFSTR("Binary property list writing could not be completed because an external buffer could not be allocated."));
                }
            }
        } else if (error) {
            *error = __CFPropertyListCreateError(kCFPropertyListWriteStreamError, CFSTR("Binary property list writing could not be completed because an allocator could not be created."));
        }
    }
    return result;
}

#pragma mark -
#pragma mark Reading

#define FAIL_FALSE	do { return false; } while (0)
#define FAIL_NULL	do { return NULL; } while (0)

CF_PRIVATE bool __CFBinaryPlistCreateObjectFiltered(const uint8_t *databytes, uint64_t datalen, uint64_t startOffset, const CFBinaryPlistTrailer *trailer, CFAllocatorRef allocator, CFOptionFlags mutabilityOption, CFMutableDictionaryRef objects, CFMutableSetRef set, CFIndex curDepth, CFSetRef keyPaths, CFPropertyListRef *plist, CFTypeID *outPlistTypeID);

/* Grab a valSize-bytes integer out of the buffer pointed at by data and return it.
 */
CF_INLINE uint64_t _getSizedInt(const uint8_t *data, uint8_t valSize) {

    if (valSize == 1) {
        return (uint64_t)*data;
    } else if (valSize == 2) {
        return (uint64_t)_CFUnalignedLoad16BE(data);
    } else if (valSize == 4) {
        return (uint64_t)_CFUnalignedLoad32BE(data);
    } else if (valSize == 8) {
        return _CFUnalignedLoad64BE(data);
    }

    // Compatibility with existing archives, including anything with a non-power-of-2
    // size and 16-byte values
    uint64_t res = 0;
    for (CFIndex idx = 0; idx < valSize; idx++) {
        res = (res << 8) + data[idx];
    }
    return res;
}

bool __CFBinaryPlistGetTopLevelInfo(const uint8_t *databytes, uint64_t datalen, uint8_t *marker, uint64_t *offset, CFBinaryPlistTrailer *trailer) {
    CFBinaryPlistTrailer trail;

    if (!databytes || datalen < sizeof(trail) + 8 + 1) FAIL_FALSE;
    // Tiger and earlier will parse "bplist00"
    // Leopard will parse "bplist00" or "bplist01"
    // SnowLeopard will parse "bplist0?" where ? is any one character
    if (0 != memcmp("bplist0", databytes, 7)) {
	FAIL_FALSE;
    }
    memmove(&trail, databytes + datalen - sizeof(trail), sizeof(trail));
    // In Leopard, the unused bytes in the trailer must be 0 or the parse will fail
    // This check is not present in Tiger and earlier or after Leopard
    trail._numObjects = CFSwapInt64BigToHost(trail._numObjects);
    trail._topObject = CFSwapInt64BigToHost(trail._topObject);
    trail._offsetTableOffset = CFSwapInt64BigToHost(trail._offsetTableOffset);
    
    // Don't overflow on the number of objects or offset of the table
    if (LONG_MAX < trail._numObjects) FAIL_FALSE;
    if (LONG_MAX < trail._offsetTableOffset) FAIL_FALSE;
    
    //  Must be a minimum of 1 object
    if (trail._numObjects < 1) FAIL_FALSE;
    
    // The ref to the top object must be a value in the range of 1 to the total number of objects
    if (trail._numObjects <= trail._topObject) FAIL_FALSE;
    
    // The offset table must be after at least 9 bytes of other data ('bplist??' + 1 byte of object table data).
    if (trail._offsetTableOffset < 9) FAIL_FALSE;
    
    // The trailer must point to a value before itself in the data.
    if (datalen - sizeof(trail) <= trail._offsetTableOffset) FAIL_FALSE;
    
    // Minimum of 1 byte for the size of integers and references in the data
    if (trail._offsetIntSize < 1) FAIL_FALSE;
    if (trail._objectRefSize < 1) FAIL_FALSE;
    
    int32_t err = CF_NO_ERROR;
    
    // The total size of the offset table (number of objects * size of each int in the table) must not overflow
    uint64_t offsetIntSize = trail._offsetIntSize;
    uint64_t offsetTableSize = __check_uint64_mul_unsigned_unsigned(trail._numObjects, offsetIntSize, &err);
    if (CF_NO_ERROR!= err) FAIL_FALSE;
    
    // The offset table must have at least 1 entry
    if (offsetTableSize < 1) FAIL_FALSE;
    
    // Make sure the size of the offset table and data sections do not overflow
    uint64_t objectDataSize = trail._offsetTableOffset - 8;
    uint64_t tmpSum = __check_uint64_add_unsigned_unsigned(8, objectDataSize, &err);
    tmpSum = __check_uint64_add_unsigned_unsigned(tmpSum, offsetTableSize, &err);
    tmpSum = __check_uint64_add_unsigned_unsigned(tmpSum, sizeof(trail), &err);
    if (CF_NO_ERROR != err) FAIL_FALSE;
    
    // The total size of the data should be equal to the sum of offsetTableOffset + sizeof(trailer)
    if (datalen != tmpSum) FAIL_FALSE;
    
    // The object refs must be the right size to point into the offset table. That is, if the count of objects is 260, but only 1 byte is used to store references (max value 255), something is wrong.
    if (trail._objectRefSize < 8 && (1ULL << (8 * trail._objectRefSize)) <= trail._numObjects) FAIL_FALSE;
    
    // The integers used for pointers in the offset table must be able to reach as far as the start of the offset table.
    if (trail._offsetIntSize < 8 && (1ULL << (8 * trail._offsetIntSize)) <= trail._offsetTableOffset) FAIL_FALSE;
    
    
    (void)check_ptr_add(databytes, 8, &err);
    if (CF_NO_ERROR != err) FAIL_FALSE;
    const uint8_t *offsetsFirstByte = check_ptr_add(databytes, trail._offsetTableOffset, &err);
    if (CF_NO_ERROR != err) FAIL_FALSE;
    (void)check_ptr_add(offsetsFirstByte, offsetTableSize - 1, &err);
    if (CF_NO_ERROR != err) FAIL_FALSE;

    const uint8_t *bytesptr = databytes + trail._offsetTableOffset;
    uint64_t maxOffset = trail._offsetTableOffset - 1;
    for (CFIndex idx = 0; idx < trail._numObjects; idx++) {
	uint64_t off = _getSizedInt(bytesptr, trail._offsetIntSize);
	if (maxOffset < off) FAIL_FALSE;
	bytesptr += trail._offsetIntSize;
    }

    bytesptr = databytes + trail._offsetTableOffset + trail._topObject * trail._offsetIntSize;
    uint64_t off = _getSizedInt(bytesptr, trail._offsetIntSize);
    if (off < 8 || trail._offsetTableOffset <= off) FAIL_FALSE;
    if (trailer) *trailer = trail;
    if (offset) *offset = off;
    if (marker) *marker = *(databytes + off);
    return true;
}

CF_INLINE Boolean _typeIsPlistPrimitive(CFTypeID type) {
    if (_kCFRuntimeIDCFDictionary == type || _kCFRuntimeIDCFArray == type || _kCFRuntimeIDCFSet == type || _kCFRuntimeNotATypeID == type) FAIL_FALSE;
    return true;
}

CF_INLINE bool _readInt(const uint8_t *ptr, const uint8_t *end_byte_ptr, uint64_t *bigint, const uint8_t **newptr) {
    if (end_byte_ptr < ptr) FAIL_FALSE;
    uint8_t marker = *ptr++;
    if ((marker & 0xf0) != kCFBinaryPlistMarkerInt) FAIL_FALSE;
    uint64_t cnt = 1 << (marker & 0x0f);
    int32_t err = CF_NO_ERROR;
    const uint8_t *extent = check_ptr_add(ptr, cnt, &err) - 1;
    if (CF_NO_ERROR != err) FAIL_FALSE;
    if (end_byte_ptr < extent) FAIL_FALSE;
    // integers are not required to be in the most compact possible representation, but only the last 64 bits are significant currently
    *bigint = _getSizedInt(ptr, cnt);
    ptr += cnt;
    if (newptr) *newptr = ptr;
    return true;
}

// bytesptr points at a ref
CF_INLINE Boolean _getOffsetOfRefAt(const uint8_t *databytes, const uint8_t *bytesptr, const CFBinaryPlistTrailer *trailer, uint64_t *outOffset) {
    // *trailer contents are trusted, even for overflows -- was checked when the trailer was parsed;
    // this pointer arithmetic and the multiplication was also already done once and checked,
    // and the offsetTable was already validated.
    const uint8_t *objectsFirstByte = databytes + 8;
    const uint8_t *offsetsFirstByte = databytes + trailer->_offsetTableOffset;
    if (bytesptr < objectsFirstByte || offsetsFirstByte - trailer->_objectRefSize < bytesptr) {
        FAIL_FALSE;
    }
    
    const uint64_t ref = _getSizedInt(bytesptr, trailer->_objectRefSize);
    if (trailer->_numObjects <= ref) {
        FAIL_FALSE;
    }
    
    bytesptr = databytes + trailer->_offsetTableOffset + ref * trailer->_offsetIntSize;
    if (outOffset) {
        *outOffset = _getSizedInt(bytesptr, trailer->_offsetIntSize);
    }
    return true;
}

CF_INLINE bool __CFBinaryPlist_beginArrayParse(const uint8_t *databytes, uint64_t datalen, uint64_t startOffset, const CFBinaryPlistTrailer *trailer, const uint8_t **outPtr, uint8_t *outMarker, uint64_t *outObjectsRangeEnd) {
    uint64_t objectsRangeStart = 8;
    const uint64_t objectsRangeEnd = _CFBinaryPlistTrailer_objectsRangeEnd(trailer);
    if (startOffset < objectsRangeStart || objectsRangeEnd < startOffset) FAIL_FALSE;
    const uint8_t *ptr = databytes + startOffset;
    uint8_t marker = *ptr;
    if ((marker & 0xf0) != kCFBinaryPlistMarkerArray) FAIL_FALSE;
    
    if (outPtr) { *outPtr = ptr; }
    if (outMarker) { *outMarker = marker; }
    if (outObjectsRangeEnd) { *outObjectsRangeEnd = objectsRangeEnd; }
    return true;
}

bool __CFBinaryPlistIsArray(const uint8_t *databytes, uint64_t datalen, uint64_t startOffset, const CFBinaryPlistTrailer *trailer) {
    const bool result = __CFBinaryPlist_beginArrayParse(databytes, datalen, startOffset, trailer, NULL, NULL, NULL);
    return result;
}

bool __CFBinaryPlistGetOffsetForValueFromArray2(const uint8_t *databytes, uint64_t datalen, uint64_t startOffset, const CFBinaryPlistTrailer *trailer, CFIndex idx, uint64_t *offset, CFMutableDictionaryRef _Nullable unused) {
    const uint8_t *ptr;
    uint8_t marker;
    uint64_t objectsRangeEnd;
    if (!__CFBinaryPlist_beginArrayParse(databytes, datalen, startOffset, trailer, &ptr, &marker, &objectsRangeEnd)) FAIL_FALSE;

    int32_t err = CF_NO_ERROR;
    ptr = check_ptr_add(ptr, 1, &err);
    if (CF_NO_ERROR != err) FAIL_FALSE;
    uint64_t cnt = (marker & 0x0f);
    if (0xf == cnt) {
	uint64_t bigint;
	if (!_readInt(ptr, databytes + objectsRangeEnd, &bigint, &ptr)) FAIL_FALSE;
	if (LONG_MAX < bigint) FAIL_FALSE;
	cnt = bigint;
    }
    if (cnt <= idx) FAIL_FALSE;
    size_t byte_cnt = check_size_t_mul(cnt, trailer->_objectRefSize, &err);
    if (CF_NO_ERROR != err) FAIL_FALSE;
    const uint8_t *extent = check_ptr_add(ptr, byte_cnt, &err) - 1;
    if (CF_NO_ERROR != err) FAIL_FALSE;
    if (databytes + objectsRangeEnd < extent) FAIL_FALSE;
    if (!_getOffsetOfRefAt(databytes, ptr + idx * trailer->_objectRefSize, trailer, offset)) {
        FAIL_FALSE;
    }
    return true;
}

CF_INLINE bool __CFBinaryPList_beginDictionaryParse(const uint8_t *databytes, uint64_t datalen, uint64_t startOffset, const CFBinaryPlistTrailer *trailer, uint64_t *outEntryCount, const uint8_t **outPtr, uint8_t *outMarker, const uint8_t **outExtent) {
    
    // Require that startOffset is in the range of the object table
    uint64_t objectsRangeStart = 8;
    const uint64_t objectsRangeEnd = _CFBinaryPlistTrailer_objectsRangeEnd(trailer);
    
    if (startOffset < objectsRangeStart || objectsRangeEnd < startOffset) FAIL_FALSE;
    
    // ptr is the start of the dictionary we are reading
    const uint8_t *ptr = databytes + startOffset;
    
    // Check that the data pointer actually points to a dictionary
    uint8_t marker = *ptr;
    if ((marker & 0xf0) != kCFBinaryPlistMarkerDict) FAIL_FALSE;
    
    // Get the number of objects in this dictionary
    int32_t err = CF_NO_ERROR;
    ptr = check_ptr_add(ptr, 1, &err);
    if (CF_NO_ERROR != err) FAIL_FALSE;
    uint64_t cnt = (marker & 0x0f);
    if (0xf == cnt) {
        uint64_t bigint = 0;
        if (!_readInt(ptr, databytes + objectsRangeEnd, &bigint, &ptr)) FAIL_FALSE;
        if (LONG_MAX < bigint) FAIL_FALSE;
        cnt = bigint;
    }
    
    // Total number of objects (keys + values) is cnt * 2
    cnt = check_size_t_mul(cnt, 2, &err);
    if (CF_NO_ERROR != err) FAIL_FALSE;
    size_t byte_cnt = check_size_t_mul(cnt, trailer->_objectRefSize, &err);
    if (CF_NO_ERROR != err) FAIL_FALSE;
    
    // Find the end of the dictionary
    const uint8_t *extent = check_ptr_add(ptr, byte_cnt, &err) - 1;
    if (CF_NO_ERROR != err) FAIL_FALSE;
    
    // Check that we didn't overflow the size of the dictionary
    if (databytes + objectsRangeEnd < extent) FAIL_FALSE;
    
    if (outEntryCount) { *outEntryCount = cnt; }
    if (outPtr) { *outPtr = ptr; }
    if (outMarker) { *outMarker = marker; }
    if (outExtent) { *outExtent = extent; }
    
    return true;
}

CF_PRIVATE bool __CFBinaryPlistIsDictionary(const uint8_t *databytes, uint64_t datalen, uint64_t startOffset, const CFBinaryPlistTrailer *trailer) {
    const bool result = __CFBinaryPList_beginDictionaryParse(databytes, datalen, startOffset, trailer, NULL, NULL, NULL, NULL);
    return result;
}

CFSetRef __CFBinaryPlistCopyTopLevelKeys(CFAllocatorRef allocator, const uint8_t *databytes, uint64_t datalen, uint64_t startOffset, const CFBinaryPlistTrailer *trailer) {
    uint64_t cnt = 0;
    const uint8_t *ptr = NULL;
    uint8_t marker = 0;
    const uint8_t *extent = NULL;
    if (!__CFBinaryPList_beginDictionaryParse(databytes, datalen, startOffset, trailer, &cnt, &ptr, &marker, &extent)) {
        FAIL_NULL;
    }
    

    // Find the object in the dictionary with this key
    cnt = cnt / 2;
    uint64_t off;

   
    // Perform linear accumulation of the keys
    size_t buffer_idx = 0;
    size_t capacity = 16;
    CFStringRef *buffer = malloc(sizeof(CFStringRef) * capacity);
    if (buffer == NULL) {
        FAIL_NULL;
    }
    bool bad = false;
    for (CFIndex idx = 0; !bad && idx < cnt; idx++) {
        if (!_getOffsetOfRefAt(databytes, ptr, trailer, &off)) {
            bad = true;
            break;
        }
        marker = *(databytes + off);

        // Unlike in __CFBinaryPlistGetOffsetForValueFromDictionary3, we're accumulating keys, so we go through the CFObjectRef case always.
        CFPropertyListRef keyInData = NULL;
        CFTypeID typeID = _kCFRuntimeNotATypeID;
        if (!(__CFBinaryPlistCreateObjectFiltered(databytes, datalen, off, trailer, allocator, kCFPropertyListImmutable, NULL, NULL, 0, NULL, &keyInData, &typeID) && typeID == _kCFRuntimeIDCFString)) {
            bad = true;
            if (keyInData) {
                // we're not storing keyInData in the buffer, so we need to free it now; buffered keys are cleaned below
                CFRelease(keyInData);
            }
            break;
        }
        
        buffer[buffer_idx] = keyInData;
        ++buffer_idx;
        if (buffer_idx >= capacity) {
            const size_t newCapacity = capacity * 3 / 2;
            // NOTE: this code doesn't use __CFSafelyReallocate as it handles its own recovery
            CFStringRef *reallocated = realloc(buffer, sizeof(CFStringRef) * newCapacity);
            if (reallocated == NULL) {
                bad = true;
                break;
            } else {
                buffer = reallocated;
                capacity = newCapacity;
            }
        }
        ptr += trailer->_objectRefSize;
    }
    
    CFSetRef result = NULL;
    if (!bad) {
        result = CFSetCreate(allocator, (const void **)buffer, buffer_idx, &kCFTypeSetCallBacks);
    }
    
    // cleanup any keys stored in the local buffer
    for (size_t i = 0; i < buffer_idx; ++i) {
        CFStringRef s = buffer[i];
        if (s) {
            CFRelease(s);
        }
    }
    free(buffer);
    
    return result;
}

/* Get the offset for a value in a dictionary in a binary property list.
 @param databytes A pointer to the start of the binary property list data.
 @param datalen The length of the data.
 @param startOffset The offset at which the dictionary starts.
 @param trailer A pointer to a filled out trailer structure (use __CFBinaryPlistGetTopLevelInfo).
 @param key A string key in the dictionary that should be searched for.
 @param koffset Will be filled out with the offset to the key in the data bytes.
 @param voffset Will be filled out with the offset to the value in the data bytes.
 @param unused Unused parameter.
 @param objects Used for caching objects. Should be a valid CFMutableDictionaryRef.
 @return True if the key was found, false otherwise.
*/
bool __CFBinaryPlistGetOffsetForValueFromDictionary3(const uint8_t *databytes, uint64_t datalen, uint64_t startOffset, const CFBinaryPlistTrailer *trailer, CFTypeRef key, uint64_t *koffset, uint64_t *voffset, Boolean unused, CFMutableDictionaryRef _Nullable unused2) {
    
    // Require a key that is a plist primitive
    CFTypeID const keyTypeID = key ? CFGetTypeID(key) : _kCFRuntimeNotATypeID;
    if (!_typeIsPlistPrimitive(keyTypeID)) FAIL_FALSE;
    
    uint64_t cnt = 0;
    const uint8_t *ptr = NULL;
    uint8_t marker = 0;
    const uint8_t *extent = NULL;
    if (!__CFBinaryPList_beginDictionaryParse(databytes, datalen, startOffset, trailer, &cnt, &ptr, &marker, &extent)) FAIL_NULL;
    
    // For short keys (15 bytes or less) in ASCII form, we can do a quick comparison check
    // We get the pointer or copy the buffer here, outside of the loop
    CFIndex stringKeyLen = -1;
    if (keyTypeID == _kCFRuntimeIDCFString) {
	stringKeyLen = CFStringGetLength((CFStringRef)key);
    }
    
    // Find the object in the dictionary with this key
    cnt = cnt / 2;
    uint64_t totalKeySize = cnt * trailer->_objectRefSize;
    uint64_t off;
    Boolean match = false;
    CFPropertyListRef keyInData = NULL;
    
#define KEY_BUFF_SIZE 16    
    char keyBuffer[KEY_BUFF_SIZE];
    const char *keyBufferPtr = NULL;
    
    // If we have a string for the key, then we will grab the ASCII encoded version of it, if possible, and do a memcmp on it
    if (stringKeyLen != -1) {
	// Since we will only be comparing ASCII strings, we can attempt to get a pointer using MacRoman encoding
	// (this is cheaper than a copy)
	if (!(keyBufferPtr = CFStringGetCStringPtr((CFStringRef)key, kCFStringEncodingMacRoman)) && stringKeyLen < KEY_BUFF_SIZE) {
	    const Boolean converted = CFStringGetCString((CFStringRef)key, keyBuffer, KEY_BUFF_SIZE, kCFStringEncodingMacRoman);
            if (converted && strnlen(keyBuffer, KEY_BUFF_SIZE) == stringKeyLen) {
                // The pointer should now point to our keyBuffer instead of the original string buffer, since we've copied it
                keyBufferPtr = keyBuffer;
            }
	}
    }
    
    // Perform linear search of the keys
    int32_t err = CF_NO_ERROR;
    const uint64_t objectsRangeEnd = _CFBinaryPlistTrailer_objectsRangeEnd(trailer);
    for (CFIndex idx = 0; idx < cnt; idx++) {
        if (!_getOffsetOfRefAt(databytes, ptr, trailer, &off)) {
            FAIL_FALSE;
	}
	marker = *(databytes + off);
	// if it is an ASCII string in the data, then we do a memcmp. If the key isn't ASCII, then it won't pass the compare, unless it hits some odd edge case of the ASCII string actually containing the unicode escape sequence.
	if (keyBufferPtr && (marker & 0xf0) == kCFBinaryPlistMarkerASCIIString) {
	    CFIndex len = marker & 0x0f;
	    // move past the marker
	    err = CF_NO_ERROR;
	    const uint8_t *ptr2 = check_ptr_add(databytes, off, &err);
	    if (CF_NO_ERROR != err) FAIL_FALSE;
	    ptr2 = check_ptr_add(ptr2, 1, &err);
	    if (CF_NO_ERROR != err) FAIL_FALSE;
	    
	    // If the key's length is large, and the length we are querying is also large, then we have to read it in. If stringKeyLen is less than 0xf, then len will never be equal to it if it was encoded as large.
	    if (0xf == len && stringKeyLen >= 0xf) {
		uint64_t bigint = 0;
		if (!_readInt(ptr2, databytes + objectsRangeEnd, &bigint, &ptr2)) FAIL_FALSE;
		if (LONG_MAX < bigint) FAIL_FALSE;
		len = (CFIndex)bigint;
	    }
	    
	    if (len == stringKeyLen) {                
		err = CF_NO_ERROR;
		extent = check_ptr_add(ptr2, len, &err);
		if (CF_NO_ERROR != err) FAIL_FALSE;
		
		if (databytes + trailer->_offsetTableOffset <= extent) FAIL_FALSE;
		
		// Compare the key to this potential match
		if (memcmp(ptr2, keyBufferPtr, stringKeyLen) == 0) {
		    match = true;
		}
	    }
	} else {
            // temp object not saved in 'objects', because we don't know what allocator to use
            // (what allocator __CFBinaryPlistCreateObjectFiltered() or __CFBinaryPlistCreateObject()
            //  will eventually be called with which results in that object)
	    keyInData = NULL;
            CFTypeID typeID = _kCFRuntimeNotATypeID;
	    if (!__CFBinaryPlistCreateObjectFiltered(databytes, datalen, off, trailer, kCFAllocatorSystemDefault, kCFPropertyListImmutable, NULL /*objects*/, NULL, 0, NULL, &keyInData, &typeID) || !_typeIsPlistPrimitive(typeID)) {
		if (keyInData) CFRelease(keyInData);
		FAIL_FALSE;
	    }
	    
	    match = CFEqual(key, keyInData);            
            CFRelease(keyInData);
	}            
	
	if (match) {
            if (!_getOffsetOfRefAt(databytes, ptr + totalKeySize, trailer, voffset)) {
                FAIL_FALSE;
            }
            if (koffset) { *koffset = off; }
            return true;
	}
	
	ptr += trailer->_objectRefSize;
    }
    
    FAIL_FALSE;
}

extern CFDictionaryRef __CFDictionaryCreateTransfer(CFAllocatorRef allocator, const void * *klist, const void * *vlist, CFIndex numValues);
extern CFSetRef __CFSetCreateTransfer(CFAllocatorRef allocator, const void * *klist, CFIndex numValues);
extern CFArrayRef __CFArrayCreateTransfer(CFAllocatorRef allocator, const void * *klist, CFIndex numValues);
CF_PRIVATE void __CFPropertyListCreateSplitKeypaths(CFAllocatorRef allocator, CFSetRef currentKeys, CFSetRef *theseKeys, CFSetRef *nextKeys);

CF_PRIVATE bool __CFBinaryPlistCreateObjectFiltered(const uint8_t *databytes, uint64_t datalen, uint64_t startOffset, const CFBinaryPlistTrailer *trailer, CFAllocatorRef allocator, CFOptionFlags mutabilityOption, CFMutableDictionaryRef objects, CFMutableSetRef set, CFIndex curDepth, CFSetRef keyPaths, CFPropertyListRef *outPlist, CFTypeID *outPlistTypeID) {
    
    // NOTE: Bailing out here will cause us to attempt to parse
    //       as XML (which will fail) then as a OpenSTEP plist
    //       the final error string is less than helpful:
    //       "Unexpected character b at line 1".
    //       It would be nice to actually be more descriptive but that
    //       would require a more scaffolding.
    if (curDepth > _CFPropertyListMaxRecursionDepth()) {
        // Bail before we get so far into the stack that we run out of space.
        // Emit an `os_log_fault` to relay the issue to the debugger and to track how common this case may be.
        os_log_fault(_CFOSLog(), "Too many nested arrays or dictionaries");
        FAIL_FALSE;
    }

    if (objects && outPlist) {
        *outPlist = CFDictionaryGetValue(objects, (const void *)(uintptr_t)startOffset);
        if (*outPlist) {
            // have to assume that '*plist' was previously created with same allocator that is now being passed in
            CFRetain(*outPlist);
            if (outPlistTypeID) *outPlistTypeID = CFGetTypeID(*outPlist);
            return true;
        }
    }

    // at any one invocation of this function, set should contain the offsets in the "path" down to this object
    if (set && CFSetContainsValue(set, (const void *)(uintptr_t)startOffset)) FAIL_FALSE;

    // databytes is trusted to be at least datalen bytes long
    // *trailer contents are trusted, even for overflows -- was checked when the trailer was parsed
    uint64_t objectsRangeStart = 8;
    const uint64_t objectsRangeEnd = _CFBinaryPlistTrailer_objectsRangeEnd(trailer);
    if (startOffset < objectsRangeStart || objectsRangeEnd < startOffset) FAIL_FALSE;

    uint64_t off;
    CFPropertyListRef *list = NULL;

    uint8_t marker = *(databytes + startOffset);
    switch (marker & 0xf0) {
    case kCFBinaryPlistMarkerNull:
	switch (marker) {
	case kCFBinaryPlistMarkerNull:
	    if (outPlist) *outPlist = kCFNull;
            if (outPlistTypeID) *outPlistTypeID = _kCFRuntimeIDCFNull;
	    return true;
	case kCFBinaryPlistMarkerFalse:
	    if (outPlist) *outPlist = kCFBooleanFalse;
            if (outPlistTypeID) *outPlistTypeID = _kCFRuntimeIDCFBoolean;
	    return true;
	case kCFBinaryPlistMarkerTrue:
	    if (outPlist) *outPlist = kCFBooleanTrue;
            if (outPlistTypeID) *outPlistTypeID = _kCFRuntimeIDCFBoolean;
	    return true;
	}
	FAIL_FALSE;
    case kCFBinaryPlistMarkerInt:
    {
	const uint8_t *ptr = (databytes + startOffset);
	int32_t err = CF_NO_ERROR;
	ptr = check_ptr_add(ptr, 1, &err);
	if (CF_NO_ERROR != err) FAIL_FALSE;
	uint64_t cnt = 1 << (marker & 0x0f);
	const uint8_t *extent = check_ptr_add(ptr, cnt, &err) - 1;
	if (CF_NO_ERROR != err) FAIL_FALSE;
	if (databytes + objectsRangeEnd < extent) FAIL_FALSE;
	if (16 < cnt) FAIL_FALSE;
	// in format version '00', 1, 2, and 4-byte integers have to be interpreted as unsigned,
	// whereas 8-byte integers are signed (and 16-byte when available)
	// negative 1, 2, 4-byte integers are always emitted as 8 bytes in format '00'
	// integers are not required to be in the most compact possible representation, but only the last 64 bits are significant currently
	uint64_t bigint = _getSizedInt(ptr, cnt);
        if (outPlistTypeID) *outPlistTypeID = _kCFRuntimeIDCFNumber;
        if (outPlist) {
            CFNumberRef number = NULL;
            if (8 < cnt) {
                CFSInt128Struct val;
                val.high = 0;
                val.low = bigint;
                number = CFNumberCreate(allocator, kCFNumberSInt128Type, &val);
            } else {
                number = CFNumberCreate(allocator, kCFNumberSInt64Type, &bigint);
            }
            // these are always immutable
            if (objects && number) {
                CFDictionarySetValue(objects, (const void *)(uintptr_t)startOffset, number);
            }
            *outPlist = number;
            return number ? true : false;
        } else {
            // Assume CFNumber creation would always succeed.
            return true;
        }
    }
    case kCFBinaryPlistMarkerReal:
	switch (marker & 0x0f) {
	case 2: {
	    const uint8_t *ptr = (databytes + startOffset);
	    int32_t err = CF_NO_ERROR;
	    ptr = check_ptr_add(ptr, 1, &err);
	    if (CF_NO_ERROR != err) FAIL_FALSE;
	    const uint8_t *extent = check_ptr_add(ptr, 4, &err) - 1;
	    if (CF_NO_ERROR != err) FAIL_FALSE;
	    if (databytes + objectsRangeEnd < extent) FAIL_FALSE;
	    CFSwappedFloat32 swapped32;
	    memmove(&swapped32, ptr, 4);
	    float f = CFConvertFloat32SwappedToHost(swapped32);
            if (outPlistTypeID) *outPlistTypeID = _kCFRuntimeIDCFNumber;
            if (outPlist) {
                CFNumberRef number = CFNumberCreate(allocator, kCFNumberFloat32Type, &f);
                // these are always immutable
                if (objects && number) {
                    CFDictionarySetValue(objects, (const void *)(uintptr_t)startOffset, number);
                }
                *outPlist = number;
                return number ? true : false;
            } else {
                // Assume CFNumber creation would always succeed.
                return true;
            }
	}
	case 3: {
	    const uint8_t *ptr = (databytes + startOffset);
	    int32_t err = CF_NO_ERROR;
	    ptr = check_ptr_add(ptr, 1, &err);
	    if (CF_NO_ERROR != err) FAIL_FALSE;
	    const uint8_t *extent = check_ptr_add(ptr, 8, &err) - 1;
	    if (CF_NO_ERROR != err) FAIL_FALSE;
	    if (databytes + objectsRangeEnd < extent) FAIL_FALSE;
	    CFSwappedFloat64 swapped64;
	    memmove(&swapped64, ptr, 8);
	    double d = CFConvertFloat64SwappedToHost(swapped64);
            if (outPlistTypeID) *outPlistTypeID = _kCFRuntimeIDCFNumber;
            if (outPlist) {
                CFNumberRef number = CFNumberCreate(allocator, kCFNumberFloat64Type, &d);
                // these are always immutable
                if (objects && number) {
                    CFDictionarySetValue(objects, (const void *)(uintptr_t)startOffset, number);
                }
                *outPlist = number;
                return number ? true : false;
            } else {
                // Assume CFNumber creation would always succeed.
                return true;
            }
	}
	}
	FAIL_FALSE;
    case kCFBinaryPlistMarkerDate & 0xf0:
	switch (marker) {
	case kCFBinaryPlistMarkerDate: {
	    const uint8_t *ptr = (databytes + startOffset);
	    int32_t err = CF_NO_ERROR;
	    ptr = check_ptr_add(ptr, 1, &err);
	    if (CF_NO_ERROR != err) FAIL_FALSE;
	    const uint8_t *extent = check_ptr_add(ptr, 8, &err) - 1;
	    if (CF_NO_ERROR != err) FAIL_FALSE;
	    if (databytes + objectsRangeEnd < extent) FAIL_FALSE;
	    CFSwappedFloat64 swapped64;
	    memmove(&swapped64, ptr, 8);
	    double d = CFConvertFloat64SwappedToHost(swapped64);
            if (outPlistTypeID) *outPlistTypeID = _kCFRuntimeIDCFDate;
            if (outPlist) {
                CFDateRef date = CFDateCreate(allocator, d);
                // these are always immutable
                if (objects && date) {
                    CFDictionarySetValue(objects, (const void *)(uintptr_t)startOffset, date);
                }
                *outPlist = date;
                return date ? true : false;
            } else {
                // Assume CFDate creation would always succeed.
                return true;
            }
	}
	}
	FAIL_FALSE;
    case kCFBinaryPlistMarkerData: {
	const uint8_t *ptr = databytes + startOffset;
	int32_t err = CF_NO_ERROR;
	ptr = check_ptr_add(ptr, 1, &err);
	if (CF_NO_ERROR != err) FAIL_FALSE;
	CFIndex cnt = marker & 0x0f;
	if (0xf == cnt) {
	    uint64_t bigint = 0;
	    if (!_readInt(ptr, databytes + objectsRangeEnd, &bigint, &ptr)) FAIL_FALSE;
	    if (LONG_MAX < bigint) FAIL_FALSE;
	    cnt = (CFIndex)bigint;
	}
	const uint8_t *extent = check_ptr_add(ptr, cnt, &err) - 1;
	if (CF_NO_ERROR != err) FAIL_FALSE;
	if (databytes + objectsRangeEnd < extent) FAIL_FALSE;
        if (outPlistTypeID) *outPlistTypeID = _kCFRuntimeIDCFData;
        if (outPlist) {
            CFDataRef data = NULL;
            if (mutabilityOption == kCFPropertyListMutableContainersAndLeaves) {
                data = CFDataCreateMutable(allocator, 0);
                if (data) CFDataAppendBytes((CFMutableDataRef)data, ptr, cnt);
            } else {
                data = CFDataCreate(allocator, ptr, cnt);
            }
            if (objects && data && (mutabilityOption != kCFPropertyListMutableContainersAndLeaves)) {
                CFDictionarySetValue(objects, (const void *)(uintptr_t)startOffset, data);
            }
            *outPlist = data;
            return data ? true : false;
        } else {
            // Assume CFData creation would always succeed
            return true;
        }
	}
    case kCFBinaryPlistMarkerASCIIString: {
	const uint8_t *ptr = databytes + startOffset;
	int32_t err = CF_NO_ERROR;
	ptr = check_ptr_add(ptr, 1, &err);
	if (CF_NO_ERROR != err) FAIL_FALSE;
	CFIndex cnt = marker & 0x0f;
	if (0xf == cnt) {
            uint64_t bigint = 0;
	    if (!_readInt(ptr, databytes + objectsRangeEnd, &bigint, &ptr)) FAIL_FALSE;
	    if (LONG_MAX < bigint) FAIL_FALSE;
	    cnt = (CFIndex)bigint;
	}
	const uint8_t *extent = check_ptr_add(ptr, cnt, &err) - 1;
	if (CF_NO_ERROR != err) FAIL_FALSE;
	if (databytes + objectsRangeEnd < extent) FAIL_FALSE;
        if (outPlistTypeID) *outPlistTypeID = _kCFRuntimeIDCFString;
        if (outPlist) {
            CFStringRef string = CFStringCreateWithBytes(allocator, ptr, cnt, kCFStringEncodingASCII, false);
            if (mutabilityOption == kCFPropertyListMutableContainersAndLeaves) {
                if (string) {
                    CFStringRef tmp = string;
                    string = CFStringCreateMutableCopy(allocator, 0, string);
                    CFRelease(tmp);
                }
            }
            if (objects && string && (mutabilityOption != kCFPropertyListMutableContainersAndLeaves)) {
                CFDictionarySetValue(objects, (const void *)(uintptr_t)startOffset, string);
            }
            *outPlist = string;
            return string ? true : false;
        } else {
            // Assume CFString creation with kCFStringEncodingASCII would always succeed.
            return true;
        }
	}
    case kCFBinaryPlistMarkerUnicode16String: {
	const uint8_t *ptr = databytes + startOffset;
	int32_t err = CF_NO_ERROR;
	ptr = check_ptr_add(ptr, 1, &err);
	if (CF_NO_ERROR != err) FAIL_FALSE;
	CFIndex cnt = marker & 0x0f;
	if (0xf == cnt) {
            uint64_t bigint = 0;
	    if (!_readInt(ptr, databytes + objectsRangeEnd, &bigint, &ptr)) FAIL_FALSE;
	    if (LONG_MAX < bigint) FAIL_FALSE;
	    cnt = (CFIndex)bigint;
	}
	const uint8_t *extent = check_ptr_add(ptr, cnt, &err) - 1;
	extent = check_ptr_add(extent, cnt, &err);	// 2 bytes per character
	if (CF_NO_ERROR != err) FAIL_FALSE;
	if (databytes + objectsRangeEnd < extent) FAIL_FALSE;
	size_t byte_cnt = check_size_t_mul(cnt, sizeof(UniChar), &err);
	if (CF_NO_ERROR != err) FAIL_FALSE;
        if (outPlistTypeID) *outPlistTypeID = _kCFRuntimeIDCFString;
        if (outPlist) {
            UniChar *chars = (UniChar *)CFAllocatorAllocate(kCFAllocatorSystemDefault, byte_cnt, 0);
            if (!chars) FAIL_FALSE;
            memmove(chars, ptr, byte_cnt);
            for (CFIndex idx = 0; idx < cnt; idx++) {
                chars[idx] = CFSwapInt16BigToHost(chars[idx]);
            }
            CFStringRef string = CFStringCreateWithCharacters(allocator, chars, cnt);
            if (mutabilityOption == kCFPropertyListMutableContainersAndLeaves) {
                if (string) {
                    CFStringRef tmp = string;
                    string = CFStringCreateMutableCopy(allocator, 0, string);
                    CFRelease(tmp);
                }
            }
            CFAllocatorDeallocate(kCFAllocatorSystemDefault, chars);
            if (objects && string && (mutabilityOption != kCFPropertyListMutableContainersAndLeaves)) {
                CFDictionarySetValue(objects, (const void *)(uintptr_t)startOffset, string);
            }
            *outPlist = string;
            return string ? true : false;
        } else {
            // Assume CFStringCreateWithCharacters would always succeed.
            return true;
        }
	}
    case kCFBinaryPlistMarkerUID: {
	const uint8_t *ptr = databytes + startOffset;
	int32_t err = CF_NO_ERROR;
	ptr = check_ptr_add(ptr, 1, &err);
	if (CF_NO_ERROR != err) FAIL_FALSE;
	CFIndex cnt = (marker & 0x0f) + 1;
	const uint8_t *extent = check_ptr_add(ptr, cnt, &err) - 1;
	if (CF_NO_ERROR != err) FAIL_FALSE;
	if (databytes + objectsRangeEnd < extent) FAIL_FALSE;
	// uids are not required to be in the most compact possible representation, but only the last 64 bits are significant currently
	uint64_t bigint = _getSizedInt(ptr, cnt);
	if (UINT32_MAX < bigint) FAIL_FALSE;
        if (outPlistTypeID) *outPlistTypeID = _kCFRuntimeIDCFKeyedArchiverUID;
        if (outPlist) {
            CFKeyedArchiverUIDRef uid = _CFKeyedArchiverUIDCreate(allocator, (uint32_t)bigint);
            // these are always immutable
            if (objects && uid) {
                CFDictionarySetValue(objects, (const void *)(uintptr_t)startOffset, uid);
            }
            *outPlist = uid;
            return (uid) ? true : false;
        } else {
            // Assume CFKeyedArchiverUID creation would always succeed.
            return true;
        }
	}
    case kCFBinaryPlistMarkerArray:
    case kCFBinaryPlistMarkerSet: {
	const uint8_t *ptr = databytes + startOffset;
	int32_t err = CF_NO_ERROR;
	ptr = check_ptr_add(ptr, 1, &err);
	if (CF_NO_ERROR != err) FAIL_FALSE;
	CFIndex arrayCount = marker & 0x0f;
	if (0xf == arrayCount) {
	    uint64_t bigint = 0;
	    if (!_readInt(ptr, databytes + objectsRangeEnd, &bigint, &ptr)) FAIL_FALSE;
	    if (LONG_MAX < bigint) FAIL_FALSE;
	    arrayCount = (CFIndex)bigint;
	}
	size_t byte_cnt = check_size_t_mul(arrayCount, trailer->_objectRefSize, &err);
	if (CF_NO_ERROR != err) FAIL_FALSE;
	const uint8_t *extent = check_ptr_add(ptr, byte_cnt, &err) - 1;
	if (CF_NO_ERROR != err) FAIL_FALSE;
	if (databytes + objectsRangeEnd < extent) FAIL_FALSE;
	byte_cnt = check_size_t_mul(arrayCount, sizeof(CFPropertyListRef), &err);
	if (CF_NO_ERROR != err) FAIL_FALSE;
        STACK_BUFFER_DECL(CFPropertyListRef, buffer, (arrayCount > 0 && arrayCount <= 256) ? arrayCount : 1);
        if (outPlist) {
            list = (arrayCount <= 256) ? buffer : (CFPropertyListRef *)CFAllocatorAllocate(kCFAllocatorSystemDefault, byte_cnt, 0);
            if (!list) FAIL_FALSE;
        }
        _CFReleaseDeferred CFMutableSetRef madeSet = NULL;
	if (!set && 15 < curDepth) {
	    madeSet = CFSetCreateMutable(kCFAllocatorSystemDefault, 0, NULL);
            set = madeSet;
	}
        
        Boolean success = true;
        CFTypeID typeID = _kCFRuntimeNotATypeID;
        if (set) CFSetAddValue(set, (const void *)(uintptr_t)startOffset);
        if ((marker & 0xf0) == kCFBinaryPlistMarkerArray && keyPaths) {
            // Only get a subset of this array
            CFSetRef theseKeys, nextKeys;
            __CFPropertyListCreateSplitKeypaths(kCFAllocatorSystemDefault, keyPaths, &theseKeys, &nextKeys);
            
            CFMutableArrayRef array = CFArrayCreateMutable(allocator, CFSetGetCount(theseKeys), &kCFTypeArrayCallBacks);
            if (theseKeys) {
                CFTypeRef *keys = (CFTypeRef *)malloc(CFSetGetCount(theseKeys) * sizeof(CFTypeRef));
                CFSetGetValues(theseKeys, keys);
                CFIndex theseKeysCount = CFSetGetCount(theseKeys);
                for (CFIndex i = 0; i < theseKeysCount; i++) {
                    CFStringRef key = (CFStringRef)keys[i];
                    SInt32 intValue = CFStringGetIntValue(key);
                    if ((intValue == 0 && CFStringCompare(CFSTR("0"), key, 0) != kCFCompareEqualTo) || intValue == INT_MAX || intValue == INT_MIN || intValue < 0) {
                        // skip, doesn't appear to be a proper integer
                    } else {
                        uint64_t valueOffset;
                        Boolean found = __CFBinaryPlistGetOffsetForValueFromArray2(databytes, datalen, startOffset, trailer, (CFIndex)intValue, &valueOffset, objects);
                        if (found) {
                            CFPropertyListRef result = NULL;
                            success = __CFBinaryPlistCreateObjectFiltered(databytes, datalen, valueOffset, trailer, allocator, mutabilityOption, objects, set, curDepth + 1, nextKeys, outPlist ? &result : NULL, NULL);
                            if (success) {
                                if (result) {
                                    CFArrayAppendValue(array, result);
                                    CFRelease(result);
                                }
                            } else {
                                break;
                            }
                        }
                    }
                }
                
                free(keys);
                CFRelease(theseKeys);
            }
            if (nextKeys) CFRelease(nextKeys);
            
            if (success && outPlist) {
                if (!(mutabilityOption == kCFPropertyListMutableContainers || mutabilityOption == kCFPropertyListMutableContainersAndLeaves)) {
                    // make immutable
                    *outPlist = CFArrayCreateCopy(allocator, array);
                    CFRelease(array);
                } else {
                    *outPlist = array;
                }
            } else if (array) {
                CFRelease(array);
            }
            typeID = _kCFRuntimeIDCFArray;
        } else {            
            for (CFIndex idx = 0; idx < arrayCount; idx++) {
                if (!_getOffsetOfRefAt(databytes, ptr, trailer, &off)) {
                    if (list) {
                        while (idx--) {
                            CFRelease(list[idx]);
                        }
                        if (list != buffer) CFAllocatorDeallocate(kCFAllocatorSystemDefault, list);
                    }
                    FAIL_FALSE;
                }
                CFPropertyListRef pl = NULL;
                if (!__CFBinaryPlistCreateObjectFiltered(databytes, datalen, off, trailer, allocator, mutabilityOption, objects, set, curDepth + 1, NULL, outPlist ? &pl : NULL, NULL)) {
                    if (list) {
                        while (idx--) {
                            CFRelease(list[idx]);
                        }
                        if (list != buffer) CFAllocatorDeallocate(kCFAllocatorSystemDefault, list);
                    }
                    FAIL_FALSE;
                }
                if (list) {
                    *((void **)list + idx) = (void *)pl;
                }
                ptr += trailer->_objectRefSize;
            }
            success = true;
            if ((marker & 0xf0) == kCFBinaryPlistMarkerArray) {
                if (outPlist) {
                    if (mutabilityOption != kCFPropertyListImmutable) {
                        *outPlist = CFArrayCreateMutable(allocator, 0, &kCFTypeArrayCallBacks);
                        CFArrayReplaceValues((CFMutableArrayRef)*outPlist, CFRangeMake(0, 0), list, arrayCount);
                        for (CFIndex idx = 0; idx < arrayCount; idx++) {
                            CFRelease(list[idx]);
                        }
                    } else {
                        *outPlist = __CFArrayCreateTransfer(allocator, list, arrayCount);
                    }
                }
                typeID = _kCFRuntimeIDCFArray;
            } else {
                if (outPlist) {
                    if (mutabilityOption != kCFPropertyListImmutable) {
                        *outPlist = CFSetCreateMutable(allocator, 0, &kCFTypeSetCallBacks);
                        for (CFIndex idx = 0; idx < arrayCount; idx++) {
                            CFSetAddValue((CFMutableSetRef)*outPlist, list[idx]);
                        }
                        for (CFIndex idx = 0; idx < arrayCount; idx++) {
                            CFRelease(list[idx]);
                        }
                    } else {
                        *outPlist = __CFSetCreateTransfer(allocator, list, arrayCount);
                    }
                }
                typeID = _kCFRuntimeIDCFSet;
            }
        }
        if (outPlistTypeID) *outPlistTypeID = typeID;
        if (set) CFSetRemoveValue(set, (const void *)(uintptr_t)startOffset);
        if (objects && success && outPlist && (mutabilityOption == kCFPropertyListImmutable)) {
            CFDictionarySetValue(objects, (const void *)(uintptr_t)startOffset, *outPlist);
	}
	if (list && list != buffer) CFAllocatorDeallocate(kCFAllocatorSystemDefault, list);
	return success;
	}
    case kCFBinaryPlistMarkerDict: {
	const uint8_t *ptr = databytes + startOffset;
	int32_t err = CF_NO_ERROR;
	ptr = check_ptr_add(ptr, 1, &err);
	if (CF_NO_ERROR != err) FAIL_FALSE;
	CFIndex dictionaryCount = marker & 0x0f;
	if (0xf == dictionaryCount) {
	    uint64_t bigint = 0;
	    if (!_readInt(ptr, databytes + objectsRangeEnd, &bigint, &ptr)) FAIL_FALSE;
	    if (LONG_MAX < bigint) FAIL_FALSE;
	    dictionaryCount = (CFIndex)bigint;
	}
	dictionaryCount = check_size_t_mul(dictionaryCount, 2, &err);
	if (CF_NO_ERROR != err) FAIL_FALSE;
	size_t byte_cnt = check_size_t_mul(dictionaryCount, trailer->_objectRefSize, &err);
	if (CF_NO_ERROR != err) FAIL_FALSE;
	const uint8_t *extent = check_ptr_add(ptr, byte_cnt, &err) - 1;
	if (CF_NO_ERROR != err) FAIL_FALSE;
	if (databytes + objectsRangeEnd < extent) FAIL_FALSE;
	byte_cnt = check_size_t_mul(dictionaryCount, sizeof(CFPropertyListRef), &err);
	if (CF_NO_ERROR != err) FAIL_FALSE;
        STACK_BUFFER_DECL(CFPropertyListRef, buffer, 0 < dictionaryCount && dictionaryCount <= 256 ? dictionaryCount : 1);
        if (outPlist) {
            list = (dictionaryCount <= 256) ? buffer : (CFPropertyListRef *)CFAllocatorAllocate(kCFAllocatorSystemDefault, byte_cnt, 0);
            if (!list) FAIL_FALSE;
        }
        _CFReleaseDeferred CFMutableSetRef madeSet = NULL;
	if (!set && 15 < curDepth) {
	    madeSet = CFSetCreateMutable(kCFAllocatorSystemDefault, 0, NULL);
            set = madeSet;
	}
        
        Boolean success = true;
        if (set) CFSetAddValue(set, (const void *)(uintptr_t)startOffset);
        if (keyPaths) {
            // Only get a subset of this dictionary
            CFSetRef theseKeys, nextKeys;
            __CFPropertyListCreateSplitKeypaths(kCFAllocatorSystemDefault, keyPaths, &theseKeys, &nextKeys);
            
            CFMutableDictionaryRef dict = CFDictionaryCreateMutable(allocator, CFSetGetCount(theseKeys), &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks);
            if (theseKeys) {
                CFTypeRef *keys = (CFTypeRef *)malloc(CFSetGetCount(theseKeys) * sizeof(CFTypeRef));
                CFSetGetValues(theseKeys, keys);
                for (CFIndex i = 0; i < CFSetGetCount(theseKeys); i++) {
                    CFStringRef key = (CFStringRef)keys[i];
                    uint64_t keyOffset, valueOffset;
                    Boolean found = __CFBinaryPlistGetOffsetForValueFromDictionary3(databytes, datalen, startOffset, trailer, key, &keyOffset, &valueOffset, false, objects);
                    if (found) {
                        CFPropertyListRef result = NULL;
                        success = __CFBinaryPlistCreateObjectFiltered(databytes, datalen, valueOffset, trailer, allocator, mutabilityOption, objects, set, curDepth + 1, nextKeys, outPlist ? &result : NULL, NULL);
                        if (success) {
                            if (result) {
                                CFDictionarySetValue(dict, key, result);
                                CFRelease(result);
                            }
                        } else {
                            break;
                        }
                    }
                }
                
                free(keys);
                CFRelease(theseKeys);
            }
            if (nextKeys) CFRelease(nextKeys);
            
            if (success && outPlist) {
                if (!(mutabilityOption == kCFPropertyListMutableContainers || mutabilityOption == kCFPropertyListMutableContainersAndLeaves)) {
                    // make immutable
                    *outPlist = CFDictionaryCreateCopy(allocator, dict);
                    CFRelease(dict);
                } else {
                    *outPlist = dict;
                }
            } else if (dict) {
                CFRelease(dict);
            }
        } else {
            CFIndex const halfDictionaryCount = dictionaryCount / 2;
            for (CFIndex idx = 0; idx < dictionaryCount; idx++) {
                if (!_getOffsetOfRefAt(databytes, ptr, trailer, &off)) {
                    if (list) {
                        while (idx--) {
                            CFRelease(list[idx]);
                        }
                        if (list != buffer) CFAllocatorDeallocate(kCFAllocatorSystemDefault, list);
                    }
                    FAIL_FALSE;
                }
                CFPropertyListRef pl = NULL;
                CFTypeID typeID = _kCFRuntimeNotATypeID;
                if (!__CFBinaryPlistCreateObjectFiltered(databytes, datalen, off, trailer, allocator, mutabilityOption, objects, set, curDepth + 1, NULL, (outPlist ? &pl : NULL), &typeID) || (idx < halfDictionaryCount && !_typeIsPlistPrimitive(typeID))) {
                    if (pl) CFRelease(pl);
                    if (list) {
                        while (idx--) {
                            CFRelease(list[idx]);
                        }
                        if (list != buffer) CFAllocatorDeallocate(kCFAllocatorSystemDefault, list);
                    }
                    FAIL_FALSE;
                }
                if (list) {
                    *((void **)list + idx) = (void *)pl;
#if __clang_analyzer__
                    // The static analyzer can't reason that we're always looping through this an even number of times. It thinks list[idx + halfDictionaryCount] below will be uninitialized.
                    if (idx % 2 == 0) {
                        *((void **)list + halfDictionaryCount) = NULL;
                    }
#endif
                }
                ptr += trailer->_objectRefSize;
            }
            if (outPlist) {
                if (mutabilityOption != kCFPropertyListImmutable) {
                    CFMutableDictionaryRef dict = CFDictionaryCreateMutable(allocator, 0, &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks);
                    for (CFIndex idx = 0; idx < halfDictionaryCount; idx++) {
                        CFDictionaryAddValue((CFMutableDictionaryRef)dict, list[idx], list[idx + halfDictionaryCount]);
                    }
                    for (CFIndex idx = 0; idx < dictionaryCount; idx++) {
                        CFRelease(list[idx]);
                    }
                    *outPlist = dict;
                } else {
                    *outPlist = __CFDictionaryCreateTransfer(allocator, list, list + halfDictionaryCount, halfDictionaryCount);
                }
            }
            if (outPlistTypeID) *outPlistTypeID = _kCFRuntimeIDCFDictionary;
        }
        if (set) CFSetRemoveValue(set, (const void *)(uintptr_t)startOffset);
        if (objects && success && outPlist && (mutabilityOption == kCFPropertyListImmutable)) {
            CFDictionarySetValue(objects, (const void *)(uintptr_t)startOffset, *outPlist);
	}
	if (list && list != buffer) CFAllocatorDeallocate(kCFAllocatorSystemDefault, list);
	return success;
	}
    }
    FAIL_FALSE;
}

bool __CFBinaryPlistCreateObject(const uint8_t *databytes, uint64_t datalen, uint64_t startOffset, const CFBinaryPlistTrailer *trailer, CFAllocatorRef allocator, CFOptionFlags mutabilityOption, CFMutableDictionaryRef objects, CFPropertyListRef *plist) {
	// for compatibility with Foundation's use, need to leave this here
    return __CFBinaryPlistCreateObjectFiltered(databytes, datalen, startOffset, trailer, allocator, mutabilityOption, objects, NULL, 0, NULL, plist, NULL);
}

CF_PRIVATE bool __CFTryParseBinaryPlist(CFAllocatorRef allocator, CFDataRef data, CFOptionFlags option, CFPropertyListRef *plist, CFStringRef *errorString) {
    uint8_t marker;    
    CFBinaryPlistTrailer trailer;
    uint64_t offset;
    const uint8_t *databytes = CFDataGetBytePtr(data);
    uint64_t datalen = CFDataGetLength(data);

    if (8 <= datalen && __CFBinaryPlistGetTopLevelInfo(databytes, datalen, &marker, &offset, &trailer)) {
	// FALSE: We know for binary plist parsing that the result objects will be retained
	// by their containing collections as the parsing proceeds, so we do not need
	// to use retaining callbacks for the objects map in this case. WHY: the file might
	// be malformed and contain hash-equal keys for the same dictionary (for example)
	// and the later key will cause the previous one to be released when we set the second
	// in the dictionary.
	CFMutableDictionaryRef objects = CFDictionaryCreateMutable(kCFAllocatorSystemDefault, 0, NULL, &kCFTypeDictionaryValueCallBacks);
	_CFDictionarySetCapacity(objects, trailer._numObjects);
	CFPropertyListRef pl = NULL;
        bool result = true;
        if (__CFBinaryPlistCreateObjectFiltered(databytes, datalen, offset, &trailer, allocator, option, objects, NULL, 0, NULL, &pl, NULL)) {
	    if (plist) *plist = pl;
#if 0
// code to check the 1.5 version code against any binary plist successfully parsed above
extern size_t __CFBinaryPlistWrite15(CFPropertyListRef plist, CFMutableDataRef data, CFErrorRef *error);
extern CFPropertyListRef __CFBinaryPlistCreate15(const uint8_t *databytes, uint64_t datalen, CFErrorRef *error);

CFMutableDataRef mdata = CFDataCreateMutable(0, 0);
size_t s = __CFBinaryPlistWrite15(pl, mdata, NULL);
//double ratio = (double)s / (double)datalen;
//if (ratio < 0.75 || ratio > 4.0) CFLog(4, CFSTR("@@@ note: Binary plist of %ld bytes is %ld bytes (%f) in version 1.5"), datalen, s, ratio);
if (s != CFDataGetLength(mdata)) CFLog(3, CFSTR("### error: returned length not equal to data length (%ld != %ld)"), s, CFDataGetLength(mdata));
CFPropertyListRef pl2 = __CFBinaryPlistCreate15((const uint8_t *)CFDataGetBytePtr(mdata), CFDataGetLength(mdata), NULL);
if (!CFEqual(pl, pl2)) CFLog(3, CFSTR("*** error: plists before and after are not equal\n--------\n%@\n--------\n%@\n--------"), pl, pl2);
#endif
        } else {
	    if (plist) *plist = NULL;
            if (errorString) *errorString = (CFStringRef)CFRetain(CFSTR("binary data is corrupt"));
            result = false;
	}
        CFRelease(objects);
        return result;
    }
    FAIL_FALSE;
}