1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
|
/* CFData.c
Copyright (c) 1998-2019, Apple Inc. and the Swift project authors
Portions Copyright (c) 2014-2019, Apple Inc. and the Swift project authors
Licensed under Apache License v2.0 with Runtime Library Exception
See http://swift.org/LICENSE.txt for license information
See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
Responsibility: Kevin Perry
*/
#include "CFBase.h"
#include "CFData.h"
#include "CFPriv.h"
#include "CFInternal.h"
#include "CFRuntime_Internal.h"
#include <string.h>
#if DEPLOYMENT_RUNTIME_SWIFT
DECLARE_STATIC_CLASS_REF(NSMutableData);
static const void *_NSMutableData = STATIC_CLASS_REF(NSMutableData);
static Boolean _CFDataShouldBridgeToSwift(CFTypeID type, CFDataRef data);
#define CF_SWIFT_NSDATA_FUNCDISPATCHV(type, ret, obj, fn, ...) CF_SWIFT_FUNCDISPATCHV_CHECK(_CFDataShouldBridgeToSwift, type, ret, obj, fn, ## __VA_ARGS__)
#else
#define CF_SWIFT_NSDATA_FUNCDISPATCHV(...)
#endif
#if TARGET_RT_64_BIT
#define CFDATA_MAX_SIZE ((1ULL << 42) - 1)
#else
#define CFDATA_MAX_SIZE ((1ULL << 31) - 1)
#endif
#if TARGET_OS_MAC
#include <mach/mach.h>
CF_INLINE unsigned long __CFPageSize() { return vm_page_size; }
#elif TARGET_OS_WIN32
CF_INLINE unsigned long __CFPageSize() {
SYSTEM_INFO sysInfo;
GetSystemInfo(&sysInfo);
return sysInfo.dwPageSize;
}
#elif TARGET_OS_LINUX || TARGET_OS_BSD
#include <unistd.h>
CF_INLINE unsigned long __CFPageSize() {
return (unsigned long)getpagesize();
}
#elif TARGET_OS_WASI
CF_INLINE unsigned long __CFPageSize() {
// WebAssembly linear memory pages are always 64KiB in size
return 65536;
}
#endif
#define INLINE_BYTES_THRESHOLD ((4 * __CFPageSize()) - sizeof(struct __CFData) - 15)
struct __CFData {
CFRuntimeBase _base;
CFIndex _length; /* number of bytes */
CFIndex _capacity; /* maximum number of bytes */
CFAllocatorRef _bytesDeallocator; /* used only for immutable; if NULL, no deallocation */
#if DEPLOYMENT_RUNTIME_SWIFT
void *_deallocHandler; // for swift
#endif
uint8_t *_bytes; /* compaction: direct access to _bytes is only valid when data is not inline */
};
#if DEPLOYMENT_RUNTIME_SWIFT
static Boolean _CFDataShouldBridgeToSwift(CFTypeID type, CFDataRef data) {
return CF_IS_SWIFT(type, data) && data->_base._cfisa != (uintptr_t)_NSMutableData;
}
#endif
/*
Bit 0 = is mutable
Bit 1 = growable
Bit 2 = bytes inline
Bit 3 = use given CFAllocator
Bit 4 = don't deallocate
Bits 1-0 are used for mutability variation
Bit 6 = not all bytes have been zeroed yet (mutable)
*/
enum {
__kCFMutableMask = 0x01,
__kCFGrowableMask = 0x02,
};
enum {
// These bits are within the mutable mask and growable mask
__kCFMutable = 0,
__kCFGrowable = 1,
// These bits are stand-alone
__kCFBytesInline = 2,
__kCFUseAllocator = 3,
__kCFDontDeallocate = 4,
__kCFNeedsZero = 6,
};
typedef enum {
kCFImmutable = 0x0, /* unchangable and fixed capacity; default */
kCFFixedMutable = 0x1, /* changeable and fixed capacity */
kCFMutable = 0x3 /* changeable and variable capacity */
} _CFDataMutableVariety;
CF_INLINE Boolean __CFDataIsMutable(CFDataRef data) {
return __CFRuntimeGetFlag(data, __kCFMutable);
}
CF_INLINE Boolean __CFDataIsGrowable(CFDataRef data) {
return __CFRuntimeGetFlag(data, __kCFGrowable);
}
CF_INLINE Boolean __CFDataBytesInline(CFDataRef data) {
return __CFRuntimeGetFlag(data, __kCFBytesInline);
}
CF_INLINE void __CFDataSetInline(CFDataRef data, Boolean flag) {
__CFRuntimeSetFlag(data, __kCFBytesInline, flag);
}
CF_INLINE Boolean __CFDataUseAllocator(CFDataRef data) {
return __CFRuntimeGetFlag(data, __kCFUseAllocator);
}
CF_INLINE void __CFDataSetUseAllocator(CFDataRef data, Boolean flag) {
__CFRuntimeSetFlag(data, __kCFUseAllocator, flag);
}
CF_INLINE Boolean __CFDataDontDeallocate(CFDataRef data) {
return __CFRuntimeGetFlag(data, __kCFDontDeallocate);
}
CF_INLINE void __CFDataSetDontDeallocate(CFDataRef data, Boolean flag) {
__CFRuntimeSetFlag(data, __kCFDontDeallocate, flag);
}
CF_INLINE _CFDataMutableVariety __CFMutableVariety(const void *cf) {
return __CFRuntimeGetValue(cf, 1, 0);
}
CF_INLINE void __CFSetMutableVariety(void *cf, _CFDataMutableVariety v) {
__CFRuntimeSetValue(cf, 1, 0, v);
}
CF_INLINE Boolean __CFDataNeedsToZero(CFDataRef data) {
return __CFRuntimeGetFlag(data, __kCFNeedsZero);
}
CF_INLINE void __CFDataSetNeedsToZero(CFDataRef data, Boolean zero) {
__CFRuntimeSetFlag(data, __kCFNeedsZero, zero);
}
CF_INLINE CFIndex __CFDataLength(CFDataRef data) {
return data->_length;
}
CF_INLINE void __CFDataSetLength(CFMutableDataRef data, CFIndex v) {
data->_length = v;
}
CF_INLINE CFIndex __CFDataCapacity(CFDataRef data) {
return data->_capacity;
}
CF_INLINE void __CFDataSetCapacity(CFMutableDataRef data, CFIndex v) {
data->_capacity = v;
}
#if TARGET_RT_64_BIT
#define CHUNK_SIZE (1ULL << 29)
#define LOW_THRESHOLD (1ULL << 20)
#define HIGH_THRESHOLD (1ULL << 32)
#else
#define CHUNK_SIZE (1ULL << 26)
#define LOW_THRESHOLD (1ULL << 20)
#define HIGH_THRESHOLD (1ULL << 29)
#endif
CF_INLINE CFIndex __CFDataRoundUpCapacity(CFIndex capacity) {
if (capacity < 16) {
return 16;
} else if (capacity < LOW_THRESHOLD) {
/* Up to 4x */
long idx = flsl(capacity);
return (1L << (long)(idx + ((idx % 2 == 0) ? 0 : 1)));
} else if (capacity < HIGH_THRESHOLD) {
/* Up to 2x */
return (1L << (long)flsl(capacity));
} else {
/* Round up to next multiple of CHUNK_SIZE */
unsigned long long newCapacity = CHUNK_SIZE * (1+(capacity >> ((long)flsl(CHUNK_SIZE)-1)));
return __CFMin(newCapacity, CFDATA_MAX_SIZE);
}
}
__attribute__((cold))
static void __CFDataHandleOutOfMemory(CFTypeRef obj, CFIndex numBytes) CLANG_ANALYZER_NORETURN {
CFStringRef msg;
if(0 < numBytes && numBytes <= CFDATA_MAX_SIZE) {
msg = CFStringCreateWithFormat(kCFAllocatorSystemDefault, NULL, CFSTR("Attempt to allocate %ld bytes for NS/CFData failed"), numBytes);
} else {
msg = CFStringCreateWithFormat(kCFAllocatorSystemDefault, NULL, CFSTR("Attempt to allocate %ld bytes for NS/CFData failed. Maximum size: %lld"), numBytes, CFDATA_MAX_SIZE);
}
CFLog(kCFLogLevelCritical, CFSTR("%@"), msg);
HALT;
}
#define FAUX_HALT_MSG(msg) fprintf(stderr, "%s\n", msg)
CF_INLINE void __CFDataValidateRange(CFDataRef data, CFRange range) {
if (range.location < 0) FAUX_HALT_MSG("range.location out of range (<0)");
if (range.location > __CFDataLength(data)) FAUX_HALT_MSG("range.location out of range (>len)");
if (range.length < 0) FAUX_HALT_MSG("length cannot be less than zero");
if (range.location + range.length > __CFDataLength(data)) FAUX_HALT_MSG("ending index out of bounds");
}
static Boolean __CFDataEqual(CFTypeRef cf1, CFTypeRef cf2) {
CFDataRef data1 = (CFDataRef)cf1;
CFDataRef data2 = (CFDataRef)cf2;
CFIndex length;
length = __CFDataLength(data1);
if (length != __CFDataLength(data2)) return false;
const uint8_t *bytePtr1 = _CFDataGetBytePtrNonObjC(data1);
const uint8_t *bytePtr2 = _CFDataGetBytePtrNonObjC(data2);
if (bytePtr1 == bytePtr2) return true;
return 0 == memcmp(bytePtr1, bytePtr2, length);
}
static CFHashCode __CFDataHash(CFTypeRef cf) {
CFDataRef data = (CFDataRef)cf;
return CFHashBytes((uint8_t *)_CFDataGetBytePtrNonObjC(data), __CFMin(__CFDataLength(data), 80));
}
static CFStringRef __CFDataCopyDescription(CFTypeRef cf) {
CFDataRef data = (CFDataRef)cf;
CFMutableStringRef result;
CFIndex idx;
CFIndex len;
const uint8_t *bytes;
len = __CFDataLength(data);
bytes = _CFDataGetBytePtrNonObjC(data);
result = CFStringCreateMutable(CFGetAllocator(data), 0);
CFStringAppendFormat(result, NULL, CFSTR("<CFData %p [%p]>{length = %lu, capacity = %lu, bytes = 0x"), cf, CFGetAllocator(data), (unsigned long)len, (unsigned long)__CFDataCapacity(data));
if (24 < len) {
for (idx = 0; idx < 16; idx += 4) {
CFStringAppendFormat(result, NULL, CFSTR("%02x%02x%02x%02x"), bytes[idx], bytes[idx + 1], bytes[idx + 2], bytes[idx + 3]);
}
CFStringAppend(result, CFSTR(" ... "));
for (idx = len - 8; idx < len; idx += 4) {
CFStringAppendFormat(result, NULL, CFSTR("%02x%02x%02x%02x"), bytes[idx], bytes[idx + 1], bytes[idx + 2], bytes[idx + 3]);
}
} else {
for (idx = 0; idx < len; idx++) {
CFStringAppendFormat(result, NULL, CFSTR("%02x"), bytes[idx]);
}
}
CFStringAppend(result, CFSTR("}"));
return result;
}
static void *__CFDataInlineBytesPtr(CFDataRef data) {
return (void *)((uintptr_t)((int8_t *)data + sizeof(struct __CFData) + 15) & ~0xF); // 16-byte align
}
static Boolean __CFDataShouldAllocateCleared(CFDataRef data, CFIndex size) {
Boolean result;
if (__CFDataUseAllocator(data)) {
result = false;
} else {
result = (size > (128 * 1024));
}
return result;
}
// Check __CFDataShouldAllocateCleared before passing true.
static void *__CFDataAllocate(CFDataRef data, CFIndex size, Boolean clear) {
void *bytes = NULL;
if (__CFDataUseAllocator(data)) {
CFAllocatorRef allocator = __CFGetAllocator(data);
bytes = CFAllocatorAllocate(allocator, size, 0);
if (clear) memset((uint8_t *)bytes, 0, size);
} else {
if (clear) {
bytes = calloc(1, size);
} else {
bytes = malloc(size);
}
}
return bytes;
}
static void __CFDataDeallocate(CFTypeRef cf) {
CFMutableDataRef data = (CFMutableDataRef)cf;
if (!__CFDataBytesInline(data) && !__CFDataDontDeallocate(data)) {
CFAllocatorRef deallocator = data->_bytesDeallocator;
if (deallocator != NULL) {
CFAllocatorDeallocate(deallocator, data->_bytes);
CFRelease(deallocator);
data->_bytes = NULL;
} else {
if (__CFDataUseAllocator(data)) {
CFAllocatorDeallocate(__CFGetAllocator(data), data->_bytes);
} else if (data->_bytes) {
free(data->_bytes);
}
data->_bytes = NULL;
}
}
}
const CFRuntimeClass __CFDataClass = {
_kCFRuntimeScannedObject,
"CFData",
NULL, // init
NULL, // copy
__CFDataDeallocate,
__CFDataEqual,
__CFDataHash,
NULL, //
__CFDataCopyDescription
};
CFTypeID CFDataGetTypeID(void) {
return _kCFRuntimeIDCFData;
}
void _CFDataInit(CFMutableDataRef memory, CFOptionFlags variety, CFIndex capacity, const uint8_t *bytes, CFIndex length, Boolean noCopy) {
Boolean isMutable = ((variety & __kCFMutableMask) != 0);
Boolean isGrowable = ((variety & __kCFGrowableMask) != 0);
Boolean isDontDeallocate = ((variety & __kCFDontDeallocate) != 0);
__CFDataSetLength(memory, 0);
__CFDataSetDontDeallocate(memory, isDontDeallocate);
if (isMutable && isGrowable) {
__CFDataSetCapacity(memory, __CFDataRoundUpCapacity(1));
__CFSetMutableVariety(memory, kCFMutable);
} else {
/* Don't round up capacity */
__CFDataSetCapacity(memory, capacity);
__CFSetMutableVariety(memory, kCFFixedMutable);
}
if (noCopy) {
memory->_bytes = (uint8_t *)bytes;
__CFDataSetLength(memory, length);
// Mutable no-copy datas are not allowed, so don't bother setting needsToZero flag.
} else {
Boolean cleared = (isMutable && !isGrowable && !_CFExecutableLinkedOnOrAfter(CFSystemVersionSnowLeopard));
// assume that allocators give 16-byte aligned memory back -- it is their responsibility
memory->_bytes = __CFDataAllocate(memory, __CFDataCapacity(memory) * sizeof(uint8_t), cleared);
if (__CFOASafe) __CFSetLastAllocationEventName(memory->_bytes, "CFData (store)");
if (NULL == memory->_bytes) {
return;
}
__CFDataSetNeedsToZero(memory, !cleared);
CFDataReplaceBytes(memory, CFRangeMake(0, 0), bytes, length);
}
__CFSetMutableVariety(memory, variety);
}
static Boolean __CFDataShouldUseAllocator(CFAllocatorRef allocator) {
CFAllocatorRef const effectiveAllocator = (allocator == kCFAllocatorDefault) ? __CFGetDefaultAllocator() : allocator;
return effectiveAllocator != kCFAllocatorSystemDefault && effectiveAllocator != kCFAllocatorMalloc && effectiveAllocator != kCFAllocatorMallocZone;
}
// NULL bytesDeallocator to this function does not mean the default allocator, it means
// that there should be no deallocator, and the bytes should be copied.
static CFMutableDataRef __CFDataInit(CFAllocatorRef allocator, _CFDataMutableVariety variety, CFIndex capacity, const uint8_t *bytes, CFIndex length, CFAllocatorRef bytesDeallocator) CF_RETURNS_RETAINED {
CFMutableDataRef memory;
CFAssert2(0 <= capacity, __kCFLogAssertion, "%s(): capacity (%ld) cannot be less than zero", __PRETTY_FUNCTION__, capacity);
CFAssert3(kCFFixedMutable != variety || length <= capacity, __kCFLogAssertion, "%s(): for kCFFixedMutable type, capacity (%ld) must be greater than or equal to number of initial elements (%ld)", __PRETTY_FUNCTION__, capacity, length);
CFAssert2(0 <= length, __kCFLogAssertion, "%s(): length (%ld) cannot be less than zero", __PRETTY_FUNCTION__, length);
Boolean noCopy = bytesDeallocator != NULL;
Boolean isMutable = ((variety & __kCFMutableMask) != 0);
Boolean isGrowable = ((variety & __kCFGrowableMask) != 0);
Boolean allocateInline = !isGrowable && !noCopy && capacity < INLINE_BYTES_THRESHOLD;
allocator = (allocator == NULL) ? __CFGetDefaultAllocator() : allocator;
Boolean useAllocator = __CFDataShouldUseAllocator(allocator);
CFIndex size = sizeof(struct __CFData) - sizeof(CFRuntimeBase);
if (allocateInline) {
size += sizeof(uint8_t) * capacity + sizeof(uint8_t) * 15; // for 16-byte alignment fixup
}
memory = (CFMutableDataRef)_CFRuntimeCreateInstance(allocator, CFDataGetTypeID(), size, NULL);
if (NULL == memory) {
return NULL;
}
#if DEPLOYMENT_RUNTIME_SWIFT
memory->_deallocHandler = NULL;
#endif
__CFDataSetLength(memory, 0);
__CFDataSetInline(memory, allocateInline);
__CFDataSetUseAllocator(memory, useAllocator);
if (isMutable && isGrowable) {
__CFDataSetCapacity(memory, __CFDataRoundUpCapacity(1));
__CFSetMutableVariety(memory, kCFMutable);
} else {
// Don't round up capacity
__CFDataSetCapacity(memory, capacity);
// Immutable datas are temporarily set to "fixed mutable" since we pass it to CFDataReplaceBytes() to copy in the initial bytes.
__CFSetMutableVariety(memory, kCFFixedMutable);
}
if (noCopy) {
memory->_bytes = (uint8_t *)bytes;
memory->_bytesDeallocator = (CFAllocatorRef)CFRetain(bytesDeallocator);
__CFDataSetLength(memory, length);
// Mutable no-copy datas are not allowed, so don't bother setting needsToZero flag.
} else {
Boolean cleared = (isMutable && !isGrowable && !_CFExecutableLinkedOnOrAfter(CFSystemVersionSnowLeopard));
if (!allocateInline) {
// assume that allocators give 16-byte aligned memory back -- it is their responsibility
memory->_bytes = __CFDataAllocate(memory, __CFDataCapacity(memory) * sizeof(uint8_t), cleared);
if (__CFOASafe) __CFSetLastAllocationEventName(memory->_bytes, "CFData (store)");
if (NULL == memory->_bytes) {
CFRelease(memory);
return NULL;
}
} else {
if (length == 0 && !isMutable) {
// NSData sets its bytes pointer to NULL when its length is zero. Starting in 10.7 we do the same for CFData.
memory->_bytes = NULL;
// It is important to set this data as not inlined, so we do not recalculate a bytes pointer from null.
__CFDataSetInline(memory, false);
}
cleared = true;
}
__CFDataSetNeedsToZero(memory, !cleared);
memory->_bytesDeallocator = NULL;
CFDataReplaceBytes(memory, CFRangeMake(0, 0), bytes, length);
}
// Ensure immutable datas get marked as such now.
if (!isMutable) {
__CFSetMutableVariety(memory, kCFImmutable);
}
return memory;
}
CFDataRef CFDataCreate(CFAllocatorRef allocator, const uint8_t *bytes, CFIndex length) {
return __CFDataInit(allocator, kCFImmutable, length, bytes, length, NULL);
}
CFDataRef CFDataCreateWithBytesNoCopy(CFAllocatorRef allocator, const uint8_t *bytes, CFIndex length, CFAllocatorRef bytesDeallocator) {
CFAssert1((0 == length || bytes != NULL), __kCFLogAssertion, "%s(): bytes pointer cannot be NULL if length is non-zero", __PRETTY_FUNCTION__);
if (NULL == bytesDeallocator) bytesDeallocator = __CFGetDefaultAllocator();
return __CFDataInit(allocator, kCFImmutable, length, bytes, length, bytesDeallocator);
}
CFDataRef CFDataCreateCopy(CFAllocatorRef allocator, CFDataRef data) {
Boolean allowRetain = true;
if (allowRetain) {
CF_OBJC_FUNCDISPATCHV(CFDataGetTypeID(), CFDataRef, (NSData *)data, copy);
CF_SWIFT_NSDATA_FUNCDISPATCHV(CFDataGetTypeID(), CFDataRef, data, NSData.copy);
// If the data isn't mutable...
if (!__CFDataIsMutable(data)) {
// ... and the requested allocator is the same as the data's ...
CFAllocatorRef const effectiveCopyAllocator = __CFDataShouldUseAllocator(allocator) ? allocator : NULL;
CFAllocatorRef const effectiveDataAllocator = __CFDataUseAllocator(data) ? __CFGetAllocator(data) : NULL;
if (effectiveCopyAllocator == effectiveDataAllocator) {
// ... and the buffer is owned by the CFData.
if (__CFDataBytesInline(data) || (data->_bytesDeallocator == NULL)) {
// Then just retain instead of making a true copy
return CFRetain(data);
}
}
}
}
CFIndex length = CFDataGetLength(data);
return __CFDataInit(allocator, kCFImmutable, length, CFDataGetBytePtr(data), length, NULL);
}
CF_PRIVATE CFMutableDataRef _CFDataCreateFixedMutableWithBuffer(CFAllocatorRef allocator, CFIndex capacity, const uint8_t *bytes, CFAllocatorRef bytesDeallocator) {
return (CFMutableDataRef)__CFDataInit(allocator, kCFFixedMutable, capacity, bytes, 0, bytesDeallocator);
}
CFMutableDataRef CFDataCreateMutable(CFAllocatorRef allocator, CFIndex capacity) {
CFMutableDataRef r = (CFMutableDataRef)__CFDataInit(allocator, (0 == capacity) ? kCFMutable : kCFFixedMutable, capacity, NULL, 0, NULL);
return r;
}
CFMutableDataRef CFDataCreateMutableCopy(CFAllocatorRef allocator, CFIndex capacity, CFDataRef data) {
CFMutableDataRef r = (CFMutableDataRef) __CFDataInit(allocator, (0 == capacity) ? kCFMutable : kCFFixedMutable, capacity, CFDataGetBytePtr(data), CFDataGetLength(data), NULL);
return r;
}
CFIndex CFDataGetLength(CFDataRef data) {
CF_OBJC_FUNCDISPATCHV(CFDataGetTypeID(), CFIndex, (NSData *)data, length);
CF_SWIFT_NSDATA_FUNCDISPATCHV(_kCFRuntimeIDCFData, CFIndex, data, NSData.length);
__CFGenericValidateType(data, CFDataGetTypeID());
return __CFDataLength(data);
}
CF_PRIVATE uint8_t *_CFDataGetBytePtrNonObjC(CFDataRef data) {
__CFGenericValidateType(data, CFDataGetTypeID());
return __CFDataBytesInline(data) ? (uint8_t *)__CFDataInlineBytesPtr(data) : data->_bytes;
}
const uint8_t *CFDataGetBytePtr(CFDataRef data) {
CF_OBJC_FUNCDISPATCHV(CFDataGetTypeID(), const uint8_t *, (NSData *)data, bytes);
CF_SWIFT_NSDATA_FUNCDISPATCHV(_kCFRuntimeIDCFData, const uint8_t *, data, NSData.bytes);
return _CFDataGetBytePtrNonObjC(data);
}
uint8_t *CFDataGetMutableBytePtr(CFMutableDataRef data) {
CF_OBJC_FUNCDISPATCHV(CFDataGetTypeID(), uint8_t *, (NSMutableData *)data, mutableBytes);
CF_SWIFT_NSDATA_FUNCDISPATCHV(_kCFRuntimeIDCFData, uint8_t *, data, NSData.mutableBytes);
CFAssert1(__CFDataIsMutable(data), __kCFLogAssertion, "%s(): data is immutable", __PRETTY_FUNCTION__);
return _CFDataGetBytePtrNonObjC(data);
}
void CFDataGetBytes(CFDataRef data, CFRange range, uint8_t *buffer) {
CF_OBJC_FUNCDISPATCHV(CFDataGetTypeID(), void, (NSData *)data, getBytes:(void *)buffer range:NSMakeRange(range.location, range.length));
CF_SWIFT_NSDATA_FUNCDISPATCHV(_kCFRuntimeIDCFData, void, data, NSData.getBytes, range, buffer);
__CFDataValidateRange(data, range);
memmove(buffer, _CFDataGetBytePtrNonObjC(data) + range.location, range.length);
}
/* Allocates new block of data with at least numNewValues more bytes than the current length. If clear is true, the new bytes up to at least the new length with be zeroed. */
static void __CFDataGrow(CFMutableDataRef data, CFIndex numNewValues, Boolean clear) {
CFIndex oldLength = __CFDataLength(data);
CFIndex newLength = oldLength + numNewValues;
if (newLength > CFDATA_MAX_SIZE || newLength < 0) __CFDataHandleOutOfMemory(data, newLength * sizeof(uint8_t));
CFIndex capacity = __CFDataRoundUpCapacity(newLength);
CFAllocatorRef allocator = CFGetAllocator(data);
void *bytes = NULL;
void *oldBytes = data->_bytes;
Boolean allocateCleared = clear && __CFDataShouldAllocateCleared(data, capacity);
if (allocateCleared && !__CFDataUseAllocator(data) && (oldLength == 0 || (newLength / oldLength) > 4)) {
// If the length that needs to be zeroed is significantly greater than the length of the data, then calloc/memmove is probably more efficient than realloc/memset.
bytes = __CFDataAllocate(data, capacity * sizeof(uint8_t), true);
if (NULL != bytes) {
memmove(bytes, oldBytes, oldLength);
__CFDataDeallocate(data);
}
}
if (bytes == NULL) {
// If the calloc/memmove approach either failed or was never attempted, then realloc.
allocateCleared = false;
if (__CFDataUseAllocator(data)) {
bytes = __CFSafelyReallocateWithAllocator(allocator, oldBytes, capacity * sizeof(uint8_t), 0, NULL);
} else {
bytes = __CFSafelyReallocate(oldBytes, capacity * sizeof(uint8_t), NULL);
}
}
if (NULL == bytes) __CFDataHandleOutOfMemory(data, capacity * sizeof(uint8_t));
if (clear && !allocateCleared && oldLength < newLength) {
memset((uint8_t *)bytes + oldLength, 0, newLength - oldLength);
}
__CFDataSetCapacity(data, capacity);
__CFDataSetNeedsToZero(data, !allocateCleared);
data->_bytes = bytes;
if (__CFOASafe) __CFSetLastAllocationEventName(data->_bytes, "CFData (store)");
}
void CFDataSetLength(CFMutableDataRef data, CFIndex newLength) {
CFIndex oldLength, capacity;
Boolean isGrowable;
CF_OBJC_FUNCDISPATCHV(CFDataGetTypeID(), void, (NSMutableData *)data, setLength:(NSUInteger)newLength);
CF_SWIFT_NSDATA_FUNCDISPATCHV(_kCFRuntimeIDCFData, void, data, NSData.setLength, newLength);
CFAssert1(__CFDataIsMutable(data), __kCFLogAssertion, "%s(): data is immutable", __PRETTY_FUNCTION__);
oldLength = __CFDataLength(data);
capacity = __CFDataCapacity(data);
isGrowable = __CFDataIsGrowable(data);
if (__CFDataIsMutable(data)) {
if (newLength < 0) {
if (isGrowable) {
__CFDataHandleOutOfMemory(data, newLength);
} else {
HALT;
}
} else if (capacity < newLength) {
if (isGrowable) {
__CFDataGrow(data, newLength - oldLength, true);
} else {
CFAssert1(newLength <= __CFDataCapacity(data), __kCFLogAssertion, "%s(): fixed-capacity data is full", __PRETTY_FUNCTION__);
// Continuing after this could cause buffer overruns.
HALT_MSG("fixed-capacity CFMutableData is full");
}
} else if (oldLength < newLength && __CFDataNeedsToZero(data)) {
memset(_CFDataGetBytePtrNonObjC(data) + oldLength, 0, newLength - oldLength);
} else if (newLength < oldLength) {
__CFDataSetNeedsToZero(data, true);
}
}
__CFDataSetLength(data, newLength);
}
void CFDataIncreaseLength(CFMutableDataRef data, CFIndex extraLength) {
CF_OBJC_FUNCDISPATCHV(CFDataGetTypeID(), void, (NSMutableData *)data, increaseLengthBy:(NSUInteger)extraLength);
CF_SWIFT_NSDATA_FUNCDISPATCHV(_kCFRuntimeIDCFData, void, data, NSData.increaseLengthBy, extraLength);
CFAssert1(__CFDataIsMutable(data), __kCFLogAssertion, "%s(): data is immutable", __PRETTY_FUNCTION__);
if (extraLength < 0) HALT; // Avoid integer overflow.
CFDataSetLength(data, __CFDataLength(data) + extraLength);
}
void CFDataAppendBytes(CFMutableDataRef data, const uint8_t *bytes, CFIndex length) {
CF_OBJC_FUNCDISPATCHV(CFDataGetTypeID(), void, (NSMutableData *)data, appendBytes:(const void *)bytes length:(NSUInteger)length);
CF_SWIFT_NSDATA_FUNCDISPATCHV(_kCFRuntimeIDCFData, void, data, NSData.appendBytes, bytes, length);
CFAssert1(__CFDataIsMutable(data), __kCFLogAssertion, "%s(): data is immutable", __PRETTY_FUNCTION__);
CFDataReplaceBytes(data, CFRangeMake(__CFDataLength(data), 0), bytes, length);
}
void CFDataDeleteBytes(CFMutableDataRef data, CFRange range) {
CF_OBJC_FUNCDISPATCHV(CFDataGetTypeID(), void, (NSMutableData *)data, replaceBytesInRange:NSMakeRange(range.location, range.length) withBytes:NULL length:0);
CF_SWIFT_NSDATA_FUNCDISPATCHV(_kCFRuntimeIDCFData, void, data, NSData.replaceBytes, range, NULL, 0);
CFAssert1(__CFDataIsMutable(data), __kCFLogAssertion, "%s(): data is immutable", __PRETTY_FUNCTION__);
CFDataReplaceBytes(data, range, NULL, 0);
}
void CFDataReplaceBytes(CFMutableDataRef data, CFRange range, const uint8_t *newBytes, CFIndex newBytesLength) {
CF_OBJC_FUNCDISPATCHV(CFDataGetTypeID(), void, (NSMutableData *)data, replaceBytesInRange:NSMakeRange(range.location, range.length) withBytes:(const void *)newBytes length:(NSUInteger)newBytesLength);
CF_SWIFT_NSDATA_FUNCDISPATCHV(_kCFRuntimeIDCFData, void, data, NSData.replaceBytes, range, newBytes, newBytesLength);
__CFGenericValidateType(data, CFDataGetTypeID());
__CFDataValidateRange(data, range);
CFAssert1(__CFDataIsMutable(data), __kCFLogAssertion, "%s(): data is immutable", __PRETTY_FUNCTION__);
CFAssert2(0 <= newBytesLength, __kCFLogAssertion, "%s(): newLength (%ld) cannot be less than zero", __PRETTY_FUNCTION__, newBytesLength);
CFIndex const originalCapacity = __CFDataCapacity(data);
CFIndex const originalLength = __CFDataLength(data);
if (range.length < 0) HALT_MSG("Negative range.length passed to CFDataReplaceBytes");
if (newBytesLength < 0) HALT_MSG("Negative buffer length passed to CFDataReplaceBytes");
CFIndex const newLength = originalLength - range.length + newBytesLength;
if (newLength < 0) HALT_MSG("Invalid range passed to CFDataReplaceBytes");
if (newBytesLength > 0 && newBytes == NULL) HALT_MSG("Invalid length passed to CFDataReplaceBytes when newBytes == NULL");
uint8_t * dstBuf = _CFDataGetBytePtrNonObjC(data);
uint8_t * srcBuf = (uint8_t *)newBytes;
switch (__CFMutableVariety(data)) {
case kCFMutable:
if (originalCapacity < newLength) {
// We need to grow the CFData, but if the buffer we're inserting overlaps with the current buffer, we need to copy it out so it can survive a realloc, which may change the pointers, making newBytes invalid.
Boolean const buffersOverlap = dstBuf && srcBuf && (srcBuf < dstBuf + originalCapacity) && (srcBuf < newBytes + newBytesLength);
if (buffersOverlap) {
size_t const allocationSize = newBytesLength * sizeof(uint8_t);
srcBuf = (uint8_t *)malloc(allocationSize);
if (srcBuf == NULL) {
__CFDataHandleOutOfMemory(data, allocationSize);
}
memmove(srcBuf, newBytes, allocationSize);
}
__CFDataGrow(data, newLength - originalLength, false);
dstBuf = _CFDataGetBytePtrNonObjC(data);
}
break;
case kCFFixedMutable:
CFAssert1(newLength <= originalCapacity, __kCFLogAssertion, "%s(): fixed-capacity data is full", __PRETTY_FUNCTION__);
// Continuing after this could cause buffer overruns.
if (newLength > originalCapacity) HALT_MSG("fixed-capacity CFMutableData is full");
break;
}
Boolean const hasBytesToInsert = srcBuf != NULL && newBytesLength > 0;
CFIndex const distanceToShift = newBytesLength - range.length;
CFIndex const amountToShift = originalLength - (range.location + range.length);
Boolean const hasBytesToShift = distanceToShift != 0 && amountToShift > 0;
if (hasBytesToShift) {
uint8_t * const shiftSrc = dstBuf + range.location + range.length;
uint8_t * const shiftDst = shiftSrc + distanceToShift;
memmove(shiftDst, shiftSrc, amountToShift * sizeof(uint8_t));
}
if (hasBytesToInsert) {
memmove(dstBuf + range.location, srcBuf, newBytesLength * sizeof(uint8_t));
}
if (srcBuf != newBytes) free(srcBuf);
__CFDataSetLength(data, newLength);
}
#define REVERSE_BUFFER(type, buf, len) { \
type tmp; \
for(int i = 0; i < (len)/2; i++) { \
tmp = (buf)[i]; \
(buf)[i] = (buf)[(len) - i - 1]; \
(buf)[(len) - i - 1] = tmp; \
} \
}
static void _computeGoodSubstringShift(const uint8_t *needle, int needleLength, unsigned long shift[], unsigned long suff[]) {
int f, g, i, j;
// Compute suffix lengths
suff[needleLength - 1] = needleLength;
f = g = needleLength - 1;
for (i = needleLength - 2; i >= 0; --i) {
if (i > g && suff[i + needleLength - 1 - f] < i - g)
suff[i] = suff[i + needleLength - 1 - f];
else {
if (i < g)
g = i;
f = i;
while (g >= 0 && needle[g] == needle[g + needleLength - 1 - f])
--g;
suff[i] = f - g;
}
}
// Compute shift table
for (i = 0; i < needleLength; ++i)
shift[i] = needleLength;
j = 0;
for (i = needleLength - 1; i >= 0; --i)
if (suff[i] == i + 1)
for (; j < needleLength - 1 - i; ++j)
if (shift[j] == needleLength)
shift[j] = needleLength - 1 - i;
// Set the amount of shift necessary to move each of the suffix matches found into a position where it overlaps with the suffix. If there are duplicate matches the latest one is the one that should take effect.
for (i = 0; i <= needleLength - 2; ++i)
shift[needleLength - 1 - suff[i]] = needleLength - 1 - i;
// Since the Boyer-Moore algorithm moves the pointer back while scanning substrings, add the distance to the end of the potential substring.
for (i = 0; i < needleLength - 1; ++i) {
shift[i] += (needleLength - 1 - i);
}
}
#define new_ulong_array(N, C) \
size_t N ## _count__ = (C); \
if (N ## _count__ > LONG_MAX / sizeof(unsigned long)) { \
__CFDataHandleOutOfMemory(data, (N ## _count__) * sizeof(unsigned long)); \
} \
Boolean N ## _is_stack__ = (N ## _count__ <= 256); \
if (N ## _count__ == 0) N ## _count__ = 1; \
STACK_BUFFER_DECL(unsigned long, N ## _buffer__, N ## _is_stack__ ? N ## _count__ : 1); \
unsigned long * N = N ## _is_stack__ ? N ## _buffer__ : (unsigned long *)malloc((N ## _count__) * sizeof(unsigned long)); \
if (! N) { \
__CFDataHandleOutOfMemory(data, (N ## _count__) * sizeof(unsigned long)); \
} \
do {} while (0)
#define free_ulong_array(N) \
if (! N ## _is_stack__) { \
free(N); \
} \
do {} while (0)
static const uint8_t * __CFDataSearchBoyerMoore(const CFDataRef data, const uint8_t *haystack, unsigned long haystackLength, const uint8_t *needle, unsigned long needleLength, Boolean backwards) {
unsigned long badCharacterShift[UCHAR_MAX + 1] = {0};
new_ulong_array(goodSubstringShift, needleLength);
new_ulong_array(suffixLengths, needleLength);
if(backwards) {
for (int i = 0; i < sizeof(badCharacterShift) / sizeof(*badCharacterShift); i++)
badCharacterShift[i] = needleLength;
for (int i = needleLength - 1; i >= 0; i--)
badCharacterShift[needle[i]] = i;
// To get the correct shift table for backwards search reverse the needle, compute the forwards shift table, and then reverse the result.
uint8_t *needleCopy = (uint8_t *)malloc(needleLength * sizeof(uint8_t));
if (!needleCopy) {
__CFDataHandleOutOfMemory(data, needleLength * sizeof(uint8_t));
}
memmove(needleCopy, needle, needleLength);
REVERSE_BUFFER(uint8_t, needleCopy, needleLength);
_computeGoodSubstringShift(needleCopy, needleLength, goodSubstringShift, suffixLengths);
REVERSE_BUFFER(unsigned long, goodSubstringShift, needleLength);
free(needleCopy);
} else {
for (int i = 0; i < sizeof(badCharacterShift) / sizeof(*badCharacterShift); i++)
badCharacterShift[i] = needleLength;
for (int i = 0; i < needleLength; i++)
badCharacterShift[needle[i]] = needleLength - i- 1;
_computeGoodSubstringShift(needle, needleLength, goodSubstringShift, suffixLengths);
}
const uint8_t *scan_needle;
const uint8_t *scan_haystack;
const uint8_t *result = NULL;
if(backwards) {
const uint8_t *const end_needle = needle + needleLength;
scan_needle = needle;
scan_haystack = haystack + haystackLength - needleLength;
while (scan_haystack >= haystack && scan_needle < end_needle) {
if (*scan_haystack == *scan_needle) {
scan_haystack++;
scan_needle++;
} else {
scan_haystack -= __CFMax(badCharacterShift[*scan_haystack], goodSubstringShift[scan_needle - needle]);
scan_needle = needle;
}
}
if (scan_needle == end_needle) {
result = (scan_haystack - needleLength);
}
} else {
const uint8_t *const end_haystack = haystack + haystackLength;
scan_needle = needle + needleLength - 1;
scan_haystack = haystack + needleLength - 1;
while (scan_haystack < end_haystack && scan_needle >= needle) {
if (*scan_haystack == *scan_needle) {
scan_haystack--;
scan_needle--;
} else {
scan_haystack += __CFMax(badCharacterShift[*scan_haystack], goodSubstringShift[scan_needle - needle]);
scan_needle = needle + needleLength - 1;
}
}
if (scan_needle < needle) {
result = (scan_haystack + 1);
}
}
free_ulong_array(goodSubstringShift);
free_ulong_array(suffixLengths);
return result;
}
CFRange _CFDataFindBytes(CFDataRef data, CFDataRef dataToFind, CFRange searchRange, CFDataSearchFlags compareOptions) {
const uint8_t *fullHaystack = CFDataGetBytePtr(data);
const uint8_t *needle = CFDataGetBytePtr(dataToFind);
unsigned long fullHaystackLength = CFDataGetLength(data);
unsigned long needleLength = CFDataGetLength(dataToFind);
if(compareOptions & kCFDataSearchAnchored) {
if(searchRange.length > needleLength) {
if(compareOptions & kCFDataSearchBackwards) {
searchRange.location += (searchRange.length - needleLength);
}
searchRange.length = needleLength;
}
}
if(searchRange.length > fullHaystackLength - searchRange.location) {
searchRange.length = fullHaystackLength - searchRange.location;
}
if(searchRange.length < needleLength || fullHaystackLength == 0 || needleLength == 0) {
return CFRangeMake(kCFNotFound, 0);
}
const uint8_t *haystack = fullHaystack + searchRange.location;
const uint8_t *searchResult = __CFDataSearchBoyerMoore(data, haystack, searchRange.length, needle, needleLength, (compareOptions & kCFDataSearchBackwards) != 0);
CFIndex resultLocation = (searchResult == NULL) ? kCFNotFound : searchRange.location + (searchResult - haystack);
return CFRangeMake(resultLocation, resultLocation == kCFNotFound ? 0: needleLength);
}
CFRange CFDataFind(CFDataRef data, CFDataRef dataToFind, CFRange searchRange, CFDataSearchFlags compareOptions) {
// No objc dispatch
__CFGenericValidateType(data, CFDataGetTypeID());
__CFGenericValidateType(dataToFind, CFDataGetTypeID());
__CFDataValidateRange(data, searchRange);
return _CFDataFindBytes(data, dataToFind, searchRange, compareOptions);
}
#undef INLINE_BYTES_THRESHOLD
#undef CFDATA_MAX_SIZE
#undef REVERSE_BUFFER
|