1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
|
/* CFNumber.c
Copyright (c) 1999-2019, Apple Inc. and the Swift project authors
Portions Copyright (c) 2014-2019, Apple Inc. and the Swift project authors
Licensed under Apache License v2.0 with Runtime Library Exception
See http://swift.org/LICENSE.txt for license information
See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
Responsibility: Ali Ozer
*/
#include "CFBase.h"
#include "CFNumber.h"
#include "CFInternal.h"
#include "CFRuntime_Internal.h"
#include "CFPriv.h"
#include "CFNumber_Private.h"
#include <math.h>
#include <float.h>
#include <assert.h>
typedef CF_ENUM(uint8_t, _CFNumberCanonicalTypeIndex) {
kCFNumberSInt8CanonicalTypeIndex = 0x0,
kCFNumberSInt16CanonicalTypeIndex = 0x1,
kCFNumberSInt32CanonicalTypeIndex = 0x2,
kCFNumberSInt64CanonicalTypeIndex = 0x3,
kCFNumberFloat32CanonicalTypeIndex = 0x4,
kCFNumberFloat64CanonicalTypeIndex = 0x5,
kCFNumberSInt128CanonicalTypeIndex = 0x6,
};
static const CFNumberType __CFNumberCanonicalTypes[] = {
[kCFNumberSInt8CanonicalTypeIndex] = kCFNumberSInt8Type,
[kCFNumberSInt16CanonicalTypeIndex] = kCFNumberSInt16Type,
[kCFNumberSInt32CanonicalTypeIndex] = kCFNumberSInt32Type,
[kCFNumberSInt64CanonicalTypeIndex] = kCFNumberSInt64Type,
[kCFNumberFloat32CanonicalTypeIndex] = kCFNumberFloat32Type,
[kCFNumberFloat64CanonicalTypeIndex] = kCFNumberFloat64Type,
[kCFNumberSInt128CanonicalTypeIndex] = kCFNumberSInt128Type,
};
static const uint8_t __CFNumberCanonicalTypeIndex[] = {
[kCFNumberSInt8Type] = kCFNumberSInt8CanonicalTypeIndex,
[kCFNumberSInt16Type] = kCFNumberSInt16CanonicalTypeIndex,
[kCFNumberSInt32Type] = kCFNumberSInt32CanonicalTypeIndex,
[kCFNumberSInt64Type] = kCFNumberSInt64CanonicalTypeIndex,
[kCFNumberFloat32Type] = kCFNumberFloat32CanonicalTypeIndex,
[kCFNumberFloat64Type] = kCFNumberFloat64CanonicalTypeIndex,
[kCFNumberSInt128Type] = kCFNumberSInt128CanonicalTypeIndex,
};
/*
____ ____ ____ ____ ____ ____ ____ ____
63 47 32
____ ____ ____ ____ ____ ____ __pp fttt
31 15 0
t: The type index of the canonical type
f: A flag to tell if the type is a preserved type or a non preserved type (1 means preserved 0 means not preserved)
p: Bits reserved for reinterpreting both the range of `p` and `t` as a preserved type
_: Bits reserved for the remainder of the CFRuntime field.
*/
// NOTE: Only 6 bits are allowed in the runtime values!
#define __CFRuntimeGetNumberType(num) (__CFNumberCanonicalTypes[__CFRuntimeGetValue((num), 5, 0) & 0x7])
#define __CFRuntimeGetNumberPreservedType(num) (__CFRuntimeGetValue((num), 5, 0) & 0x3f)
#define __CFRuntimeSetNumberType(num, type) (__CFRuntimeSetValue((num), 5, 0, (__CFNumberCanonicalTypeIndex[type] & 0x7)))
#define __CFRuntimeSetNumberPreservedType(num, type) (__CFRuntimeSetValue((num), 5, 0, (type & 0x3f)))
#define __CFRuntimeIsPreservedNumber(num) (__CFRuntimeGetValue((num), 5, 0) & 0x8)
#if TARGET_OS_WIN32
#define isnan(A) _isnan(A)
#define isinf(A) !_finite(A)
#define copysign(A, B) _copysign(A, B)
#endif
#define __CFAssertIsBoolean(cf) __CFGenericValidateType(cf, CFBooleanGetTypeID())
struct __CFBoolean {
CFRuntimeBase _base;
};
DECLARE_STATIC_CLASS_REF(__NSCFBoolean);
_CF_CONSTANT_OBJECT_BACKING struct __CFBoolean __kCFBooleanTrue = {
INIT_CFRUNTIME_BASE_WITH_CLASS(__NSCFBoolean, _kCFRuntimeIDCFBoolean)
};
const CFBooleanRef kCFBooleanTrue = &__kCFBooleanTrue;
_CF_CONSTANT_OBJECT_BACKING struct __CFBoolean __kCFBooleanFalse = {
INIT_CFRUNTIME_BASE_WITH_CLASS(__NSCFBoolean, _kCFRuntimeIDCFBoolean)
};
const CFBooleanRef kCFBooleanFalse = &__kCFBooleanFalse;
static CFStringRef __CFBooleanCopyDescription(CFTypeRef cf) {
CFBooleanRef boolean = (CFBooleanRef)cf;
return CFStringCreateWithFormat(kCFAllocatorSystemDefault, NULL, CFSTR("<CFBoolean %p [%p]>{value = %s}"), cf, CFGetAllocator(cf), (boolean == kCFBooleanTrue) ? "true" : "false");
}
CF_PRIVATE CFStringRef __CFBooleanCopyFormattingDescription(CFTypeRef cf, CFDictionaryRef formatOptions) {
CFBooleanRef boolean = (CFBooleanRef)cf;
return (CFStringRef)CFRetain((boolean == kCFBooleanTrue) ? CFSTR("true") : CFSTR("false"));
}
static CFHashCode __CFBooleanHash(CFTypeRef cf) {
CFBooleanRef boolean = (CFBooleanRef)cf;
return (boolean == kCFBooleanTrue) ? _CFHashInt(1) : _CFHashInt(0);
}
static void __CFBooleanDeallocate(CFTypeRef cf) {
CFAssert(false, __kCFLogAssertion, "Deallocated CFBoolean!");
}
const CFRuntimeClass __CFBooleanClass = {
0,
"CFBoolean",
NULL, // init
NULL, // copy
__CFBooleanDeallocate,
NULL,
__CFBooleanHash,
__CFBooleanCopyFormattingDescription,
__CFBooleanCopyDescription
};
CFTypeID CFBooleanGetTypeID(void) {
return _kCFRuntimeIDCFBoolean;
}
Boolean CFBooleanGetValue(CFBooleanRef boolean) {
CF_OBJC_FUNCDISPATCHV(CFBooleanGetTypeID(), Boolean, (NSNumber *)boolean, boolValue);
return (boolean == kCFBooleanTrue) ? true : false;
}
/*** CFNumber ***/
#define __CFAssertIsNumber(cf) __CFGenericValidateType(cf, CFNumberGetTypeID())
#define __CFAssertIsValidNumberType(type) CFAssert2((0 < type && type <= kCFNumberMaxType) || (type == kCFNumberSInt128Type), __kCFLogAssertion, "%s(): bad CFNumber type %ld", __PRETTY_FUNCTION__, type);
/* The IEEE bit patterns... Also have:
0x7f800000 float +Inf
0x7fc00000 float NaN
0xff800000 float -Inf
*/
#define BITSFORDOUBLENAN ((uint64_t)0x7ff8000000000000ULL)
#define BITSFORDOUBLEPOSINF ((uint64_t)0x7ff0000000000000ULL)
#define BITSFORDOUBLENEGINF ((uint64_t)0xfff0000000000000ULL)
// The union dance is to avoid needing hard coded values for different floating point ABIs, technically would be safe to hardcode values, but this way is future proofed
typedef union {
Float32 floatValue;
int32_t bits;
} Float32Bits;
typedef union {
Float64 floatValue;
int64_t bits;
} Float64Bits;
typedef union {
Float32Bits _32;
Float64Bits _64;
} FloatBits;
static const Float32Bits floatZeroBits = {.floatValue = 0.0f};
static const Float32Bits floatOneBits = {.floatValue = 1.0f};
static const Float64Bits doubleZeroBits = {.floatValue = 0.0f};
static const Float64Bits doubleOneBits = {.floatValue = 1.0f};
#define BITSFORFLOATZERO floatZeroBits.bits
#define BITSFORFLOATONE floatOneBits.bits
#define BITSFORDOUBLEZERO doubleZeroBits.bits
#define BITSFORDOUBLEONE doubleOneBits.bits
#if TARGET_OS_MAC || TARGET_OS_LINUX || TARGET_OS_BSD || TARGET_OS_WASI
#define FLOAT_POSITIVE_2_TO_THE_64 0x1.0p+64L
#define FLOAT_NEGATIVE_2_TO_THE_127 -0x1.0p+127L
#define FLOAT_POSITIVE_2_TO_THE_127 0x1.0p+127L
#elif TARGET_OS_WIN32
#define FLOAT_POSITIVE_2_TO_THE_64 18446744073709551616.0
#define FLOAT_NEGATIVE_2_TO_THE_127 -170141183460469231731687303715884105728.0
#define FLOAT_POSITIVE_2_TO_THE_127 170141183460469231731687303715884105728.0
#else
#error Unknown or unspecified DEPLOYMENT_TARGET
#endif
static uint8_t isNeg128(const CFSInt128Struct *in) {
return in->high < 0;
}
static CFComparisonResult cmp128(const CFSInt128Struct *in1, const CFSInt128Struct *in2) {
if (in1->high < in2->high) return kCFCompareLessThan;
if (in1->high > in2->high) return kCFCompareGreaterThan;
if (in1->low < in2->low) return kCFCompareLessThan;
if (in1->low > in2->low) return kCFCompareGreaterThan;
return kCFCompareEqualTo;
}
// allows out to be the same as in1 or in2
static void add128(CFSInt128Struct *out, CFSInt128Struct *in1, CFSInt128Struct *in2) {
CFSInt128Struct tmp;
tmp.low = in1->low + in2->low;
tmp.high = in1->high + in2->high;
if (UINT64_MAX - in1->low < in2->low) {
tmp.high++;
}
*out = tmp;
}
// allows out to be the same as in
static void neg128(CFSInt128Struct *out, CFSInt128Struct *in) {
uint64_t tmplow = ~in->low;
out->low = tmplow + 1;
out->high = ~in->high;
if (UINT64_MAX == tmplow) {
out->high++;
}
}
static const CFSInt128Struct powersOf10[] = {
{ 0x4B3B4CA85A86C47ALL, 0x098A224000000000ULL },
{ 0x0785EE10D5DA46D9LL, 0x00F436A000000000ULL },
{ 0x00C097CE7BC90715LL, 0xB34B9F1000000000ULL },
{ 0x0013426172C74D82LL, 0x2B878FE800000000ULL },
{ 0x0001ED09BEAD87C0LL, 0x378D8E6400000000ULL },
{ 0x0000314DC6448D93LL, 0x38C15B0A00000000ULL },
{ 0x000004EE2D6D415BLL, 0x85ACEF8100000000ULL },
{ 0x0000007E37BE2022LL, 0xC0914B2680000000ULL },
{ 0x0000000C9F2C9CD0LL, 0x4674EDEA40000000ULL },
{ 0x00000001431E0FAELL, 0x6D7217CAA0000000ULL },
{ 0x00000000204FCE5ELL, 0x3E25026110000000ULL },
{ 0x00000000033B2E3CLL, 0x9FD0803CE8000000ULL },
{ 0x000000000052B7D2LL, 0xDCC80CD2E4000000ULL },
{ 0x0000000000084595LL, 0x161401484A000000ULL },
{ 0x000000000000D3C2LL, 0x1BCECCEDA1000000ULL },
{ 0x000000000000152DLL, 0x02C7E14AF6800000ULL },
{ 0x000000000000021ELL, 0x19E0C9BAB2400000ULL },
{ 0x0000000000000036LL, 0x35C9ADC5DEA00000ULL },
{ 0x0000000000000005LL, 0x6BC75E2D63100000ULL },
{ 0x0000000000000000LL, 0x8AC7230489E80000ULL },
{ 0x0000000000000000LL, 0x0DE0B6B3A7640000ULL },
{ 0x0000000000000000LL, 0x016345785D8A0000ULL },
{ 0x0000000000000000LL, 0x002386F26FC10000ULL },
{ 0x0000000000000000LL, 0x00038D7EA4C68000ULL },
{ 0x0000000000000000LL, 0x00005AF3107A4000ULL },
{ 0x0000000000000000LL, 0x000009184E72A000ULL },
{ 0x0000000000000000LL, 0x000000E8D4A51000ULL },
{ 0x0000000000000000LL, 0x000000174876E800ULL },
{ 0x0000000000000000LL, 0x00000002540BE400ULL },
{ 0x0000000000000000LL, 0x000000003B9ACA00ULL },
{ 0x0000000000000000LL, 0x0000000005F5E100ULL },
{ 0x0000000000000000LL, 0x0000000000989680ULL },
{ 0x0000000000000000LL, 0x00000000000F4240ULL },
{ 0x0000000000000000LL, 0x00000000000186A0ULL },
{ 0x0000000000000000LL, 0x0000000000002710ULL },
{ 0x0000000000000000LL, 0x00000000000003E8ULL },
{ 0x0000000000000000LL, 0x0000000000000064ULL },
{ 0x0000000000000000LL, 0x000000000000000AULL },
{ 0x0000000000000000LL, 0x0000000000000001ULL },
};
static const CFSInt128Struct neg_powersOf10[] = {
{ 0xB4C4B357A5793B85LL, 0xF675DDC000000000ULL },
{ 0xF87A11EF2A25B926LL, 0xFF0BC96000000000ULL },
{ 0xFF3F68318436F8EALL, 0x4CB460F000000000ULL },
{ 0xFFECBD9E8D38B27DLL, 0xD478701800000000ULL },
{ 0xFFFE12F64152783FLL, 0xC872719C00000000ULL },
{ 0xFFFFCEB239BB726CLL, 0xC73EA4F600000000ULL },
{ 0xFFFFFB11D292BEA4LL, 0x7A53107F00000000ULL },
{ 0xFFFFFF81C841DFDDLL, 0x3F6EB4D980000000ULL },
{ 0xFFFFFFF360D3632FLL, 0xB98B1215C0000000ULL },
{ 0xFFFFFFFEBCE1F051LL, 0x928DE83560000000ULL },
{ 0xFFFFFFFFDFB031A1LL, 0xC1DAFD9EF0000000ULL },
{ 0xFFFFFFFFFCC4D1C3LL, 0x602F7FC318000000ULL },
{ 0xFFFFFFFFFFAD482DLL, 0x2337F32D1C000000ULL },
{ 0xFFFFFFFFFFF7BA6ALL, 0xE9EBFEB7B6000000ULL },
{ 0xFFFFFFFFFFFF2C3DLL, 0xE43133125F000000ULL },
{ 0xFFFFFFFFFFFFEAD2LL, 0xFD381EB509800000ULL },
{ 0xFFFFFFFFFFFFFDE1LL, 0xE61F36454DC00000ULL },
{ 0xFFFFFFFFFFFFFFC9LL, 0xCA36523A21600000ULL },
{ 0xFFFFFFFFFFFFFFFALL, 0x9438A1D29CF00000ULL },
{ 0xFFFFFFFFFFFFFFFFLL, 0x7538DCFB76180000ULL },
{ 0xFFFFFFFFFFFFFFFFLL, 0xF21F494C589C0000ULL },
{ 0xFFFFFFFFFFFFFFFFLL, 0xFE9CBA87A2760000ULL },
{ 0xFFFFFFFFFFFFFFFFLL, 0xFFDC790D903F0000ULL },
{ 0xFFFFFFFFFFFFFFFFLL, 0xFFFC72815B398000ULL },
{ 0xFFFFFFFFFFFFFFFFLL, 0xFFFFA50CEF85C000ULL },
{ 0xFFFFFFFFFFFFFFFFLL, 0xFFFFF6E7B18D6000ULL },
{ 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFF172B5AF000ULL },
{ 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFFE8B7891800ULL },
{ 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFFFDABF41C00ULL },
{ 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFFFFC4653600ULL },
{ 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFFFFFA0A1F00ULL },
{ 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFFFFFF676980ULL },
{ 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFFFFFFF0BDC0ULL },
{ 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFFFFFFFE7960ULL },
{ 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFFFFFFFFD8F0ULL },
{ 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFFFFFFFFFC18ULL },
{ 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFFFFFFFFFF9CULL },
{ 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFFFFFFFFFFF6ULL },
{ 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFFFFFFFFFFFFULL },
};
static void emit128(char *buffer, const CFSInt128Struct *in, Boolean forcePlus) {
CFSInt128Struct tmp = *in;
if (isNeg128(&tmp)) {
neg128(&tmp, &tmp);
*buffer++ = '-';
} else if (forcePlus) {
*buffer++ = '+';
}
Boolean doneOne = false;
int idx;
for (idx = 0; idx < sizeof(powersOf10) / sizeof(powersOf10[0]); idx++) {
int count = 0;
while (cmp128(&powersOf10[idx], &tmp) <= 0) {
add128(&tmp, &tmp, (CFSInt128Struct *)&neg_powersOf10[idx]);
count++;
}
if (0 != count || doneOne) {
*buffer++ = '0' + count;
doneOne = true;
}
}
if (!doneOne) {
*buffer++ = '0';
}
*buffer = '\0';
}
static void cvtSInt128ToFloat64(Float64 *out, const CFSInt128Struct *in) {
// switching to a positive number results in better accuracy
// for negative numbers close to zero, because the multiply
// of -1 by 2^64 (scaling the Float64 high) is avoided
Boolean wasNeg = false;
CFSInt128Struct tmp = *in;
if (isNeg128(&tmp)) {
neg128(&tmp, &tmp);
wasNeg = true;
}
Float64 d = (Float64)tmp.high * FLOAT_POSITIVE_2_TO_THE_64 + (Float64)tmp.low;
if (wasNeg) d = -d;
*out = d;
}
static void cvtFloat64ToSInt128(CFSInt128Struct *out, const Float64 *in) {
CFSInt128Struct i;
Float64 d = *in;
if (d < FLOAT_NEGATIVE_2_TO_THE_127) {
i.high = 0x8000000000000000LL;
i.low = 0x0000000000000000ULL;
*out = i;
return;
}
if (FLOAT_POSITIVE_2_TO_THE_127<= d) {
i.high = 0x7fffffffffffffffLL;
i.low = 0xffffffffffffffffULL;
*out = i;
return;
}
Float64 t = floor(d / FLOAT_POSITIVE_2_TO_THE_64);
i.high = (int64_t)t;
i.low = (uint64_t)(d - t * FLOAT_POSITIVE_2_TO_THE_64);
*out = i;
}
struct __CFNumber {
CFRuntimeBase _base;
FloatBits _bits; // need this space here for the constant objects
/* 0 or 8 more bytes allocated here */
};
/* Seven bits in base:
Bits 6..5: unused
Bits 4..0: CFNumber type
*/
DECLARE_STATIC_CLASS_REF(__NSCFNumber);
// Note: The isa for these things is fixed up later
static _CF_CONSTANT_OBJECT_BACKING struct __CFNumber __kCFNumberNaN = {
INIT_CFRUNTIME_BASE_WITH_CLASS_AND_FLAGS(__NSCFNumber, _kCFRuntimeIDCFNumber, kCFNumberFloat64CanonicalTypeIndex),
{ ._64.bits = BITSFORDOUBLENAN }
};
const CFNumberRef kCFNumberNaN = &__kCFNumberNaN;
static _CF_CONSTANT_OBJECT_BACKING struct __CFNumber __kCFNumberNegativeInfinity = {
INIT_CFRUNTIME_BASE_WITH_CLASS_AND_FLAGS(__NSCFNumber, _kCFRuntimeIDCFNumber, kCFNumberFloat64CanonicalTypeIndex),
{ ._64.bits = BITSFORDOUBLENEGINF }
};
const CFNumberRef kCFNumberNegativeInfinity = &__kCFNumberNegativeInfinity;
static _CF_CONSTANT_OBJECT_BACKING struct __CFNumber __kCFNumberPositiveInfinity = {
INIT_CFRUNTIME_BASE_WITH_CLASS_AND_FLAGS(__NSCFNumber, _kCFRuntimeIDCFNumber, kCFNumberFloat64CanonicalTypeIndex),
{ ._64.bits = BITSFORDOUBLEPOSINF }
};
const CFNumberRef kCFNumberPositiveInfinity = &__kCFNumberPositiveInfinity;
static _CF_CONSTANT_OBJECT_BACKING struct __CFNumber __kCFNumberFloat32Zero = {
INIT_CFRUNTIME_BASE_WITH_CLASS_AND_FLAGS(__NSCFNumber, _kCFRuntimeIDCFNumber, kCFNumberFloat32CanonicalTypeIndex),
{ ._32.floatValue = 0.0f }
};
static const CFNumberRef kCFNumberFloat32Zero = &__kCFNumberFloat32Zero;
static _CF_CONSTANT_OBJECT_BACKING struct __CFNumber __kCFNumberFloat32One = {
INIT_CFRUNTIME_BASE_WITH_CLASS_AND_FLAGS(__NSCFNumber, _kCFRuntimeIDCFNumber, kCFNumberFloat32CanonicalTypeIndex),
{ ._32.floatValue = 1.0f }
};
static const CFNumberRef kCFNumberFloat32One = &__kCFNumberFloat32One;
static _CF_CONSTANT_OBJECT_BACKING struct __CFNumber __kCFNumberFloat64Zero = {
INIT_CFRUNTIME_BASE_WITH_CLASS_AND_FLAGS(__NSCFNumber, _kCFRuntimeIDCFNumber, kCFNumberFloat64CanonicalTypeIndex),
{ ._64.floatValue = 0.0f }
};
static const CFNumberRef kCFNumberFloat64Zero = &__kCFNumberFloat64Zero;
static _CF_CONSTANT_OBJECT_BACKING struct __CFNumber __kCFNumberFloat64One = {
INIT_CFRUNTIME_BASE_WITH_CLASS_AND_FLAGS(__NSCFNumber, _kCFRuntimeIDCFNumber, kCFNumberFloat64CanonicalTypeIndex),
{ ._64.floatValue = 1.0f }
};
static const CFNumberRef kCFNumberFloat64One = &__kCFNumberFloat64One;
static const struct {
uint16_t canonicalType:5; // canonical fixed-width type
uint16_t floatBit:1; // is float
uint16_t storageBit:1; // storage size (0: (float ? 4 : 8), 1: (float ? 8 : 16) bits)
uint16_t lgByteSize:3; // base-2 log byte size of public type
uint16_t unused:6;
} __CFNumberTypeTable[] = {
/* 0 */ {0, 0, 0, 0},
/* kCFNumberSInt8Type */ {kCFNumberSInt8Type, 0, 0, 0, 0},
/* kCFNumberSInt16Type */ {kCFNumberSInt16Type, 0, 0, 1, 0},
/* kCFNumberSInt32Type */ {kCFNumberSInt32Type, 0, 0, 2, 0},
/* kCFNumberSInt64Type */ {kCFNumberSInt64Type, 0, 0, 3, 0},
/* kCFNumberFloat32Type */ {kCFNumberFloat32Type, 1, 0, 2, 0},
/* kCFNumberFloat64Type */ {kCFNumberFloat64Type, 1, 1, 3, 0},
/* kCFNumberCharType */ {kCFNumberSInt8Type, 0, 0, 0, 0},
/* kCFNumberShortType */ {kCFNumberSInt16Type, 0, 0, 1, 0},
/* kCFNumberIntType */ {kCFNumberSInt32Type, 0, 0, 2, 0},
#if TARGET_RT_64_BIT
/* kCFNumberLongType */ {kCFNumberSInt64Type, 0, 0, 3, 0},
#else
/* kCFNumberLongType */ {kCFNumberSInt32Type, 0, 0, 2, 0},
#endif
/* kCFNumberLongLongType */ {kCFNumberSInt64Type, 0, 0, 3, 0},
/* kCFNumberFloatType */ {kCFNumberFloat32Type, 1, 0, 2, 0},
/* kCFNumberDoubleType */ {kCFNumberFloat64Type, 1, 1, 3, 0},
#if TARGET_RT_64_BIT
/* kCFNumberCFIndexType */ {kCFNumberSInt64Type, 0, 0, 3, 0},
/* kCFNumberNSIntegerType */ {kCFNumberSInt64Type, 0, 0, 3, 0},
/* kCFNumberCGFloatType */ {kCFNumberFloat64Type, 1, 1, 3, 0},
#else
/* kCFNumberCFIndexType */ {kCFNumberSInt32Type, 0, 0, 2, 0},
/* kCFNumberNSIntegerType */ {kCFNumberSInt32Type, 0, 0, 2, 0},
/* kCFNumberCGFloatType */ {kCFNumberFloat32Type, 1, 0, 2, 0},
#endif
/* kCFNumberSInt128Type */ {kCFNumberSInt128Type, 0, 1, 4, 0},
};
CF_INLINE CFNumberType __CFNumberGetType(CFNumberRef num) {
return __CFRuntimeGetNumberType(num);
}
#define CVT(SRC_TYPE, DST_TYPE, DST_MIN, DST_MAX) do { \
SRC_TYPE sv; memmove(&sv, data, sizeof(SRC_TYPE)); \
DST_TYPE dv = (sv < DST_MIN) ? (DST_TYPE)DST_MIN : (DST_TYPE)(((DST_MAX < sv) ? DST_MAX : sv)); \
memmove(valuePtr, &dv, sizeof(DST_TYPE)); \
SRC_TYPE vv = (SRC_TYPE)dv; return (vv == sv); \
} while (0)
#define CVT128ToInt(SRC_TYPE, DST_TYPE, DST_MIN, DST_MAX) do { \
SRC_TYPE sv; memmove(&sv, data, sizeof(SRC_TYPE)); \
DST_TYPE dv; Boolean noLoss = false; \
if (0 < sv.high || (0 == sv.high && (int64_t)DST_MAX < sv.low)) { \
dv = DST_MAX; \
} else if (sv.high < -1 || (-1 == sv.high && sv.low < (int64_t)DST_MIN)) { \
dv = DST_MIN; \
} else { \
dv = (DST_TYPE)sv.low; \
noLoss = true; \
} \
memmove(valuePtr, &dv, sizeof(DST_TYPE)); \
return noLoss; \
} while (0)
// returns false if the output value is not the same as the number's value, which
// can occur due to accuracy loss and the value not being within the target range
static Boolean __CFNumberGetValue(CFNumberRef number, CFNumberType type, void *valuePtr) {
type = __CFNumberTypeTable[type].canonicalType;
CFNumberType ntype = __CFNumberGetType(number);
const void *data = &(number->_bits._64.bits);
Boolean floatBit = __CFNumberTypeTable[ntype].floatBit;
Boolean storageBit = __CFNumberTypeTable[ntype].storageBit;
switch (type) {
case kCFNumberSInt8Type:
if (floatBit) {
if (!storageBit) {
CVT(Float32, int8_t, INT8_MIN, INT8_MAX);
} else {
CVT(Float64, int8_t, INT8_MIN, INT8_MAX);
}
} else {
if (!storageBit) {
CVT(int64_t, int8_t, INT8_MIN, INT8_MAX);
} else {
CVT128ToInt(CFSInt128Struct, int8_t, INT8_MIN, INT8_MAX);
}
}
return true;
case kCFNumberSInt16Type:
if (floatBit) {
if (!storageBit) {
CVT(Float32, int16_t, INT16_MIN, INT16_MAX);
} else {
CVT(Float64, int16_t, INT16_MIN, INT16_MAX);
}
} else {
if (!storageBit) {
CVT(int64_t, int16_t, INT16_MIN, INT16_MAX);
} else {
CVT128ToInt(CFSInt128Struct, int16_t, INT16_MIN, INT16_MAX);
}
}
return true;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wimplicit-const-int-float-conversion"
case kCFNumberSInt32Type:
if (floatBit) {
if (!storageBit) {
CVT(Float32, int32_t, INT32_MIN, INT32_MAX);
} else {
CVT(Float64, int32_t, INT32_MIN, INT32_MAX);
}
} else {
if (!storageBit) {
CVT(int64_t, int32_t, INT32_MIN, INT32_MAX);
} else {
CVT128ToInt(CFSInt128Struct, int32_t, INT32_MIN, INT32_MAX);
}
}
return true;
case kCFNumberSInt64Type:
if (floatBit) {
if (!storageBit) {
CVT(Float32, int64_t, INT64_MIN, INT64_MAX);
} else {
CVT(Float64, int64_t, INT64_MIN, INT64_MAX);
}
} else {
if (!storageBit) {
memmove(valuePtr, data, 8);
} else {
CVT128ToInt(CFSInt128Struct, int64_t, INT64_MIN, INT64_MAX);
}
}
return true;
#pragma GCC diagnostic pop
case kCFNumberSInt128Type:
if (floatBit) {
if (!storageBit) {
Float32 f;
memmove(&f, data, 4);
Float64 d = f;
CFSInt128Struct i;
cvtFloat64ToSInt128(&i, &d);
memmove(valuePtr, &i, 16);
Float64 d2;
cvtSInt128ToFloat64(&d2, &i);
Float32 f2 = (Float32)d2;
return (f2 == f);
} else {
Float64 d;
memmove(&d, data, 8);
CFSInt128Struct i;
cvtFloat64ToSInt128(&i, &d);
memmove(valuePtr, &i, 16);
Float64 d2;
cvtSInt128ToFloat64(&d2, &i);
return (d2 == d);
}
} else {
if (!storageBit) {
int64_t j;
memmove(&j, data, 8);
CFSInt128Struct i;
i.low = j;
i.high = (j < 0) ? -1LL : 0LL;
memmove(valuePtr, &i, 16);
} else {
memmove(valuePtr, data, 16);
}
}
return true;
case kCFNumberFloat32Type:
if (floatBit) {
if (!storageBit) {
memmove(valuePtr, data, 4);
} else {
double d;
memmove(&d, data, 8);
if (isnan(d)) {
uint32_t l = 0x7fc00000;
memmove(valuePtr, &l, 4);
return true;
} else if (isinf(d)) {
uint32_t l = 0x7f800000;
if (d < 0.0) l += 0x80000000UL;
memmove(valuePtr, &l, 4);
return true;
}
CVT(Float64, Float32, -FLT_MAX, FLT_MAX);
}
} else {
if (!storageBit) {
CVT(int64_t, Float32, -FLT_MAX, FLT_MAX);
} else {
CFSInt128Struct i;
memmove(&i, data, 16);
Float64 d;
cvtSInt128ToFloat64(&d, &i);
Float32 f = (Float32)d;
memmove(valuePtr, &f, 4);
d = f;
CFSInt128Struct i2;
cvtFloat64ToSInt128(&i2, &d);
return cmp128(&i2, &i) == kCFCompareEqualTo;
}
}
return true;
case kCFNumberFloat64Type:
if (floatBit) {
if (!storageBit) {
float f;
memmove(&f, data, 4);
if (isnan(f)) {
uint64_t l = BITSFORDOUBLENAN;
memmove(valuePtr, &l, 8);
return true;
} else if (isinf(f)) {
uint64_t l = BITSFORDOUBLEPOSINF;
if (f < 0.0) l += 0x8000000000000000ULL;
memmove(valuePtr, &l, 8);
return true;
}
CVT(Float32, Float64, -DBL_MAX, DBL_MAX);
} else {
memmove(valuePtr, data, 8);
}
} else {
if (!storageBit) {
CVT(int64_t, Float64, -DBL_MAX, DBL_MAX);
} else {
CFSInt128Struct i;
memmove(&i, data, 16);
Float64 d;
cvtSInt128ToFloat64(&d, &i);
memmove(valuePtr, &d, 8);
CFSInt128Struct i2;
cvtFloat64ToSInt128(&i2, &d);
return cmp128(&i2, &i) == kCFCompareEqualTo;
}
}
return true;
}
return false;
}
#define CVT_COMPAT(SRC_TYPE, DST_TYPE, FT) do { \
SRC_TYPE sv; memmove(&sv, data, sizeof(SRC_TYPE)); \
DST_TYPE dv = (DST_TYPE)(sv); \
memmove(valuePtr, &dv, sizeof(DST_TYPE)); \
SRC_TYPE vv = (SRC_TYPE)dv; return (FT) || (vv == sv); \
} while (0)
#define CVT128ToInt_COMPAT(SRC_TYPE, DST_TYPE) do { \
SRC_TYPE sv; memmove(&sv, data, sizeof(SRC_TYPE)); \
DST_TYPE dv; dv = (DST_TYPE)sv.low; \
memmove(valuePtr, &dv, sizeof(DST_TYPE)); \
uint64_t vv = (uint64_t)dv; return (vv == sv.low); \
} while (0)
// this has the old cast-style behavior
static Boolean __CFNumberGetValueCompat(CFNumberRef number, CFNumberType type, void *valuePtr) {
type = __CFNumberTypeTable[type].canonicalType;
CFNumberType ntype = __CFNumberGetType(number);
const void *data = &(number->_bits._64.bits);
switch (type) {
case kCFNumberSInt8Type:
if (__CFNumberTypeTable[ntype].floatBit) {
if (0 == __CFNumberTypeTable[ntype].storageBit) {
CVT_COMPAT(Float32, int8_t, 0);
} else {
CVT_COMPAT(Float64, int8_t, 0);
}
} else {
if (0 == __CFNumberTypeTable[ntype].storageBit) {
// Leopard's implementation of this always returned true. We should only return true when the conversion is lossless. However, there are some clients who use CFNumber with small unsigned values disguised as signed values. Since there is no CFNumber API yet for unsigned values, we need to accommodate those clients for now. <rdar://problem/6471866>
// This accommodation should be removed if CFNumber ever provides API for unsigned values. <rdar://problem/6473890>
int64_t sv; memmove(&sv, data, sizeof(int64_t));
int8_t dv = (int8_t)(sv);
memmove(valuePtr, &dv, sizeof(int8_t));
int64_t vv = (int64_t)dv; return !_CFExecutableLinkedOnOrAfter(CFSystemVersionSnowLeopard) || ((sv >> 8LL) == 0LL) || (vv == sv);
} else {
CVT128ToInt_COMPAT(CFSInt128Struct, int8_t);
}
}
return true;
case kCFNumberSInt16Type:
if (__CFNumberTypeTable[ntype].floatBit) {
if (0 == __CFNumberTypeTable[ntype].storageBit) {
CVT_COMPAT(Float32, int16_t, 0);
} else {
CVT_COMPAT(Float64, int16_t, 0);
}
} else {
if (0 == __CFNumberTypeTable[ntype].storageBit) {
// Leopard's implementation of this always returned true. We should only return true when the conversion is lossless. However, there are some clients who use CFNumber with small unsigned values disguised as signed values. Since there is no CFNumber API yet for unsigned values, we need to accommodate those clients for now. <rdar://problem/6471866>
// This accommodation should be removed if CFNumber ever provides API for unsigned values. <rdar://problem/6473890>
int64_t sv; memmove(&sv, data, sizeof(int64_t));
int16_t dv = (int16_t)(sv);
memmove(valuePtr, &dv, sizeof(int16_t));
int64_t vv = (int64_t)dv; return !_CFExecutableLinkedOnOrAfter(CFSystemVersionSnowLeopard) || ((sv >> 16LL) == 0LL) || (vv == sv);
} else {
CVT128ToInt_COMPAT(CFSInt128Struct, int16_t);
}
}
return true;
case kCFNumberSInt32Type:
if (__CFNumberTypeTable[ntype].floatBit) {
if (0 == __CFNumberTypeTable[ntype].storageBit) {
CVT_COMPAT(Float32, int32_t, 0);
} else {
CVT_COMPAT(Float64, int32_t, 0);
}
} else {
if (0 == __CFNumberTypeTable[ntype].storageBit) {
CVT_COMPAT(int64_t, int32_t, 0);
} else {
CVT128ToInt_COMPAT(CFSInt128Struct, int32_t);
}
}
return true;
case kCFNumberSInt64Type:
if (__CFNumberTypeTable[ntype].floatBit) {
if (0 == __CFNumberTypeTable[ntype].storageBit) {
CVT_COMPAT(Float32, int64_t, 0);
} else {
CVT_COMPAT(Float64, int64_t, 0);
}
} else {
if (0 == __CFNumberTypeTable[ntype].storageBit) {
CVT_COMPAT(int64_t, int64_t, 0);
} else {
CVT128ToInt_COMPAT(CFSInt128Struct, int64_t);
}
}
return true;
case kCFNumberSInt128Type:
if (__CFNumberTypeTable[ntype].floatBit) {
if (0 == __CFNumberTypeTable[ntype].storageBit) {
Float32 f;
memmove(&f, data, 4);
Float64 d = f;
CFSInt128Struct i;
cvtFloat64ToSInt128(&i, &d);
memmove(valuePtr, &i, 16);
Float64 d2;
cvtSInt128ToFloat64(&d2, &i);
Float32 f2 = (Float32)d2;
return (f2 == f);
} else {
Float64 d;
memmove(&d, data, 8);
CFSInt128Struct i;
cvtFloat64ToSInt128(&i, &d);
memmove(valuePtr, &i, 16);
Float64 d2;
cvtSInt128ToFloat64(&d2, &i);
return (d2 == d);
}
} else {
if (0 == __CFNumberTypeTable[ntype].storageBit) {
int64_t j;
memmove(&j, data, 8);
CFSInt128Struct i;
i.low = j;
i.high = (j < 0) ? -1LL : 0LL;
memmove(valuePtr, &i, 16);
} else {
memmove(valuePtr, data, 16);
}
}
return true;
case kCFNumberFloat32Type:
if (__CFNumberTypeTable[ntype].floatBit) {
if (0 == __CFNumberTypeTable[ntype].storageBit) {
memmove(valuePtr, data, 4);
} else {
CVT_COMPAT(Float64, Float32, 0);
}
} else {
if (0 == __CFNumberTypeTable[ntype].storageBit) {
CVT_COMPAT(int64_t, Float32, 0);
} else {
CFSInt128Struct i;
memmove(&i, data, 16);
Float64 d;
cvtSInt128ToFloat64(&d, &i);
Float32 f = (Float32)d;
memmove(valuePtr, &f, 4);
d = f;
CFSInt128Struct i2;
cvtFloat64ToSInt128(&i2, &d);
return cmp128(&i2, &i) == kCFCompareEqualTo;
}
}
return true;
case kCFNumberFloat64Type:
if (__CFNumberTypeTable[ntype].floatBit) {
if (0 == __CFNumberTypeTable[ntype].storageBit) {
CVT_COMPAT(Float32, Float64, 0);
} else {
memmove(valuePtr, data, 8);
}
} else {
if (0 == __CFNumberTypeTable[ntype].storageBit) {
CVT_COMPAT(int64_t, Float64, 0);
} else {
CFSInt128Struct i;
memmove(&i, data, 16);
Float64 d;
cvtSInt128ToFloat64(&d, &i);
memmove(valuePtr, &d, 8);
CFSInt128Struct i2;
cvtFloat64ToSInt128(&i2, &d);
return cmp128(&i2, &i) == kCFCompareEqualTo;
}
}
return true;
}
return false;
}
static CFStringRef __CFNumberCopyDescription(CFTypeRef cf) {
CFNumberRef number = (CFNumberRef)cf;
CFNumberType type = __CFNumberGetType(number);
CFMutableStringRef mstr = CFStringCreateMutable(kCFAllocatorSystemDefault, 0);
CFStringAppendFormat(mstr, NULL, CFSTR("<CFNumber %p [%p]>{value = "), cf, CFGetAllocator(cf));
if (__CFNumberTypeTable[type].floatBit) {
Float64 d;
__CFNumberGetValue(number, kCFNumberFloat64Type, &d);
if (isnan(d)) {
CFStringAppend(mstr, CFSTR("nan"));
} else if (isinf(d)) {
CFStringAppend(mstr, (0.0 < d) ? CFSTR("+infinity") : CFSTR("-infinity"));
} else if (0.0 == d) {
CFStringAppend(mstr, (copysign(1.0, d) < 0.0) ? CFSTR("-0.0") : CFSTR("+0.0"));
} else {
CFStringAppendFormat(mstr, NULL, CFSTR("%+.*f"), (__CFNumberTypeTable[type].storageBit ? 20 : 10), d);
}
const char *typeName = "unknown float";
switch (type) {
case kCFNumberFloat32Type: typeName = "kCFNumberFloat32Type"; break;
case kCFNumberFloat64Type: typeName = "kCFNumberFloat64Type"; break;
}
CFStringAppendFormat(mstr, NULL, CFSTR(", type = %s}"), typeName);
} else {
CFSInt128Struct i;
__CFNumberGetValue(number, kCFNumberSInt128Type, &i);
char buffer[128];
emit128(buffer, &i, true);
const char *typeName = "unknown integer";
switch (type) {
case kCFNumberSInt8Type: typeName = "kCFNumberSInt8Type"; break;
case kCFNumberSInt16Type: typeName = "kCFNumberSInt16Type"; break;
case kCFNumberSInt32Type: typeName = "kCFNumberSInt32Type"; break;
case kCFNumberSInt64Type: typeName = "kCFNumberSInt64Type"; break;
case kCFNumberSInt128Type: typeName = "kCFNumberSInt128Type"; break;
}
CFStringAppendFormat(mstr, NULL, CFSTR("%s, type = %s}"), buffer, typeName);
}
return mstr;
}
// This function separated out from __CFNumberCopyFormattingDescription() so the plist creation can use it as well.
static CFStringRef __CFNumberCreateFormattingDescriptionAsFloat64(CFAllocatorRef allocator, CFTypeRef cf) {
Float64 d;
CFNumberGetValue((CFNumberRef)cf, kCFNumberFloat64Type, &d);
if (isnan(d)) {
return (CFStringRef)CFRetain(CFSTR("nan"));
}
if (isinf(d)) {
return (CFStringRef)CFRetain((0.0 < d) ? CFSTR("+infinity") : CFSTR("-infinity"));
}
if (0.0 == d) {
return (CFStringRef)CFRetain(CFSTR("0.0"));
}
// if %g is used here, need to use DBL_DIG + 2 on Mac OS X, but %f needs +1
return CFStringCreateWithFormat(allocator, NULL, CFSTR("%.*g"), DBL_DIG + 2, d);
}
CF_PRIVATE CFStringRef __CFNumberCopyFormattingDescriptionAsFloat64(CFTypeRef cf) {
CFStringRef result = __CFNumberCreateFormattingDescriptionAsFloat64(kCFAllocatorSystemDefault, cf);
return result;
}
CF_PRIVATE CFStringRef __CFNumberCreateFormattingDescription(CFAllocatorRef allocator, CFTypeRef cf, CFDictionaryRef formatOptions) {
CFNumberRef number = (CFNumberRef)cf;
CFNumberType type = __CFNumberGetType(number);
if (__CFNumberTypeTable[type].floatBit) {
return __CFNumberCreateFormattingDescriptionAsFloat64(allocator, number);
}
CFSInt128Struct i;
__CFNumberGetValue(number, kCFNumberSInt128Type, &i);
char buffer[128];
emit128(buffer, &i, false);
return CFStringCreateWithFormat(allocator, NULL, CFSTR("%s"), buffer);
}
static CFStringRef __CFNumberCopyFormattingDescription_new(CFTypeRef cf, CFDictionaryRef formatOptions) {
CFNumberRef number = (CFNumberRef)cf;
CFNumberType type = __CFNumberGetType(number);
if (__CFNumberTypeTable[type].floatBit) {
return __CFNumberCopyFormattingDescriptionAsFloat64(number);
}
CFSInt128Struct i;
__CFNumberGetValue(number, kCFNumberSInt128Type, &i);
char buffer[128];
emit128(buffer, &i, false);
return CFStringCreateWithFormat(kCFAllocatorSystemDefault, NULL, CFSTR("%s"), buffer);
}
CF_PRIVATE CFStringRef __CFNumberCopyFormattingDescription(CFTypeRef cf, CFDictionaryRef formatOptions) {
CFStringRef result = __CFNumberCopyFormattingDescription_new(cf, formatOptions);
return result;
}
static Boolean __CFNumberEqual(CFTypeRef cf1, CFTypeRef cf2) {
Boolean b = CFNumberCompare((CFNumberRef)cf1, (CFNumberRef)cf2, 0) == kCFCompareEqualTo;
return b;
}
static CFHashCode __CFNumberHash(CFTypeRef cf) {
CFHashCode h;
CFNumberRef number = (CFNumberRef)cf;
switch (__CFNumberGetType(number)) {
case kCFNumberSInt8Type:
case kCFNumberSInt16Type:
case kCFNumberSInt32Type: {
SInt32 i;
__CFNumberGetValue(number, kCFNumberSInt32Type, &i);
h = _CFHashInt(i);
break;
}
default: {
Float64 d;
__CFNumberGetValue(number, kCFNumberFloat64Type, &d);
h = _CFHashDouble((double)d);
break;
}
}
return h;
}
enum {
kCFNumberCachingEnabled = 0,
kCFNumberCachingDisabled = 1,
kCFNumberCachingFullyDisabled = 2
};
static char __CFNumberCaching = kCFNumberCachingEnabled;
const CFRuntimeClass __CFNumberClass = {
0,
"CFNumber",
NULL, // init
NULL, // copy
NULL,
__CFNumberEqual,
__CFNumberHash,
__CFNumberCopyFormattingDescription,
__CFNumberCopyDescription
};
CFTypeID CFNumberGetTypeID(void) {
// TODO: Move other work out of here
static dispatch_once_t initOnce;
dispatch_once(&initOnce, ^{
const char *caching = getenv("CFNumberDisableCache"); // "all" to disable caching and tagging; anything else to disable caching; nothing to leave both enabled
if (caching) __CFNumberCaching = (!strcmp(caching, "all")) ? kCFNumberCachingFullyDisabled : kCFNumberCachingDisabled; // initial state above is kCFNumberCachingEnabled
});
return _kCFRuntimeIDCFNumber;
}
#define MinCachedInt (-1)
#define MaxCachedInt (12)
#define NotToBeCached (MinCachedInt - 1)
static CFNumberRef __CFNumberCache[MaxCachedInt - MinCachedInt + 1] = {NULL}; // Storing CFNumberRefs for range MinCachedInt..MaxCachedInt
static inline void __CFNumberInit(CFNumberRef result, CFNumberType type, const void *valuePtr) {
__CFAssertIsValidNumberType(type);
uint64_t value;
switch (__CFNumberTypeTable[type].canonicalType) {
case kCFNumberSInt8Type: value = (uint64_t)(int64_t)*(int8_t *)valuePtr; goto smallVal;
case kCFNumberSInt16Type: value = (uint64_t)(int64_t)*(int16_t *)valuePtr; goto smallVal;
case kCFNumberSInt32Type: value = (uint64_t)(int64_t)*(int32_t *)valuePtr; goto smallVal;
smallVal: memmove((void *)&result->_bits._64.bits, &value, 8); break;
case kCFNumberSInt64Type: memmove((void *)&result->_bits._64.bits, valuePtr, 8); break;
case kCFNumberSInt128Type: memmove((void *)&result->_bits._64.bits, valuePtr, 16); break;
case kCFNumberFloat32Type: memmove((void *)&result->_bits._64.bits, valuePtr, 4); break;
case kCFNumberFloat64Type: memmove((void *)&result->_bits._64.bits, valuePtr, 8); break;
}
}
static inline void _CFNumberInit(CFNumberRef result, CFNumberType type, const void *valuePtr) {
__CFNumberInit(result, type, valuePtr);
}
void _CFNumberInitBool(CFNumberRef result, Boolean value) {
_CFNumberInit(result, kCFNumberCharType, &value);
}
void _CFNumberInitInt8(CFNumberRef result, int8_t value) {
_CFNumberInit(result, kCFNumberCharType, &value);
}
void _CFNumberInitUInt8(CFNumberRef result, uint8_t value) {
_CFNumberInit(result, kCFNumberCharType, &value);
}
void _CFNumberInitInt16(CFNumberRef result, int16_t value) {
_CFNumberInit(result, kCFNumberShortType, &value);
}
void _CFNumberInitUInt16(CFNumberRef result, uint16_t value) {
_CFNumberInit(result, kCFNumberShortType, &value);
}
void _CFNumberInitInt32(CFNumberRef result, int32_t value) {
_CFNumberInit(result, kCFNumberIntType, &value);
}
void _CFNumberInitUInt32(CFNumberRef result, uint32_t value) {
_CFNumberInit(result, kCFNumberIntType, &value);
}
void _CFNumberInitInt(CFNumberRef result, long value) {
_CFNumberInit(result, kCFNumberLongType, &value);
}
void _CFNumberInitUInt(CFNumberRef result, unsigned long value) {
_CFNumberInit(result, kCFNumberLongType, &value);
}
void _CFNumberInitInt64(CFNumberRef result, int64_t value) {
_CFNumberInit(result, kCFNumberLongLongType, &value);
}
void _CFNumberInitUInt64(CFNumberRef result, uint64_t value) {
_CFNumberInit(result, kCFNumberLongLongType, &value);
}
void _CFNumberInitFloat(CFNumberRef result, float value) {
_CFNumberInit(result, kCFNumberFloatType, &value);
}
void _CFNumberInitDouble(CFNumberRef result, double value) {
_CFNumberInit(result, kCFNumberDoubleType, &value);
}
static CFNumberRef _CFNumberCreate(CFAllocatorRef allocator, CFNumberType type, const void *valuePtr) {
__CFAssertIsValidNumberType(type);
//printf("+ [%p] CFNumberCreate(%p, %d, %p)\n", pthread_self(), allocator, type, valuePtr);
if (!allocator) allocator = __CFGetDefaultAllocator();
// Look for cases where we can return a cached instance.
// We only use cached objects if the allocator is the system
// default allocator, except for the special floating point
// constant objects, where we return the cached object
// regardless of allocator, since that is what has always
// been done (and now must for compatibility).
int64_t valToBeCached = NotToBeCached;
if (__CFNumberTypeTable[type].floatBit) {
CFNumberRef cached = NULL;
if (0 == __CFNumberTypeTable[type].storageBit) {
Float32Bits f = *(Float32Bits *)valuePtr;
if (f.bits == BITSFORFLOATZERO) cached = kCFNumberFloat32Zero;
else if (f.bits == BITSFORFLOATONE) cached = kCFNumberFloat32One;
else if (isnan(f.floatValue)) cached = kCFNumberNaN;
else if (isinf(f.floatValue)) cached = (f.floatValue < 0.0) ? kCFNumberNegativeInfinity : kCFNumberPositiveInfinity;
} else {
Float64Bits d = *(Float64Bits *)valuePtr;
if (d.bits == BITSFORDOUBLEZERO) cached = kCFNumberFloat64Zero;
else if (d.bits == BITSFORDOUBLEONE) cached = kCFNumberFloat64One;
else if (isnan(d.floatValue)) cached = kCFNumberNaN;
else if (isinf(d.floatValue)) cached = (d.floatValue < 0.0) ? kCFNumberNegativeInfinity : kCFNumberPositiveInfinity;
}
if (cached) return (CFNumberRef)CFRetain(cached);
} else if (_CFAllocatorIsSystemDefault(allocator) && (__CFNumberCaching == kCFNumberCachingEnabled)) {
switch (__CFNumberTypeTable[type].canonicalType) {
case kCFNumberSInt8Type: {int8_t val = *(int8_t *)valuePtr; if (MinCachedInt <= val && val <= MaxCachedInt) valToBeCached = (int64_t)val; break;}
case kCFNumberSInt16Type: {int16_t val = *(int16_t *)valuePtr; if (MinCachedInt <= val && val <= MaxCachedInt) valToBeCached = (int64_t)val; break;}
case kCFNumberSInt32Type: {int32_t val = *(int32_t *)valuePtr; if (MinCachedInt <= val && val <= MaxCachedInt) valToBeCached = (int64_t)val; break;}
case kCFNumberSInt64Type: {int64_t val = *(int64_t *)valuePtr; if (MinCachedInt <= val && val <= MaxCachedInt) valToBeCached = (int64_t)val; break;}
}
if (NotToBeCached != valToBeCached) {
CFNumberRef cached = __CFNumberCache[valToBeCached - MinCachedInt]; // Atomic to access the value in the cache
if (NULL != cached) return (CFNumberRef)CFRetain(cached);
}
}
CFIndex size = 8 + ((!__CFNumberTypeTable[type].floatBit && __CFNumberTypeTable[type].storageBit) ? 8 : 0);
CFNumberRef result = (CFNumberRef)_CFRuntimeCreateInstance(allocator, CFNumberGetTypeID(), size, NULL);
if (NULL == result) {
return NULL;
}
__CFRuntimeSetNumberType(result, (uint8_t)__CFNumberTypeTable[type].canonicalType);
// should be initialized BEFORE ever caching it!
__CFNumberInit(result, type, valuePtr);
// for a value to be cached, we already have the value handy
if (NotToBeCached != valToBeCached) {
memmove((void *)&result->_bits._64.bits, &valToBeCached, 8);
// Put this in the cache unless the cache is already filled (by another thread). If we do put it in the cache, retain it an extra time for the cache.
// Note that we don't bother freeing this result and returning the cached value if the cache was filled, since cached CFNumbers are not guaranteed unique.
// Barrier assures that the number that is placed in the cache is properly formed.
CFNumberType origType = __CFNumberGetType(result);
// Force all cached numbers to have the same type, so that the type does not
// depend on the order and original type in/with which the numbers are created.
// Forcing the type AFTER it was cached would cause a race condition with other
// threads pulling the number object out of the cache and using it.
__CFRuntimeSetNumberType(result, (uint8_t)kCFNumberSInt32Type);
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated"
if (OSAtomicCompareAndSwapPtrBarrier(NULL, (void *)result, (void *volatile *)&__CFNumberCache[valToBeCached - MinCachedInt])) {
#pragma GCC diagnostic pop
CFRetain(result);
} else {
// Did not cache the number object, put original type back.
__CFRuntimeSetNumberType(result, origType);
}
return result;
}
return result;
}
CFNumberRef CFNumberCreate(CFAllocatorRef allocator, CFNumberType type, const void *valuePtr) {
return _CFNumberCreate(allocator, type, valuePtr);
}
CFNumberType CFNumberGetType(CFNumberRef number) {
CF_SWIFT_FUNCDISPATCHV(_kCFRuntimeIDCFNumber, CFNumberType, (CFSwiftRef)number, NSNumber._cfNumberGetType);
CFNumberType type;
#if DEPLOYMENT_RUNTIME_OBJC
if (CF_IS_OBJC(_kCFRuntimeIDCFNumber, (const void *)number)) {
type = (CFNumberType)[(NSNumber *)number _cfNumberType];
} else {
#endif
__CFAssertIsNumber(number);
type = __CFNumberGetType(number);
#if DEPLOYMENT_RUNTIME_OBJC
}
#endif
if (kCFNumberSInt128Type == type) type = kCFNumberSInt64Type; // must hide this type, since it is not public
return type;
}
CF_EXPORT CFNumberType _CFNumberGetType2(CFNumberRef number) {
CF_OBJC_FUNCDISPATCHV(_kCFRuntimeIDCFNumber, CFNumberType, (NSNumber *)number, _cfNumberType);
__CFAssertIsNumber(number);
return __CFNumberGetType(number);
}
CFIndex CFNumberGetByteSize(CFNumberRef number) {
__CFAssertIsNumber(number);
CFIndex r = 1 << __CFNumberTypeTable[CFNumberGetType(number)].lgByteSize;
return r;
}
Boolean CFNumberIsFloatType(CFNumberRef number) {
__CFAssertIsNumber(number);
Boolean r = __CFNumberTypeTable[CFNumberGetType(number)].floatBit;
return r;
}
Boolean CFNumberGetValue(CFNumberRef number, CFNumberType type, void *valuePtr) {
//printf("+ [%p] CFNumberGetValue(%p, %d, %p)\n", pthread_self(), number, type, valuePtr);
CF_OBJC_FUNCDISPATCHV(_kCFRuntimeIDCFNumber, Boolean, (NSNumber *)number, _getValue:(void *)valuePtr forType:(CFNumberType)__CFNumberTypeTable[type].canonicalType);
CF_SWIFT_FUNCDISPATCHV(_kCFRuntimeIDCFNumber, Boolean, (CFSwiftRef)number, NSNumber._getValue, valuePtr, (CFNumberType)__CFNumberTypeTable[type].canonicalType);
__CFAssertIsNumber(number);
__CFAssertIsValidNumberType(type);
uint8_t localMemory[128];
Boolean r = __CFNumberGetValueCompat(number, type, valuePtr ? valuePtr : localMemory);
return r;
}
static CFComparisonResult CFNumberCompare_new(CFNumberRef number1, CFNumberRef number2, void *context) {
CF_OBJC_FUNCDISPATCHV(_kCFRuntimeIDCFNumber, CFComparisonResult, (NSNumber *)number1, compare:(NSNumber *)number2);
CF_OBJC_FUNCDISPATCHV(_kCFRuntimeIDCFNumber, CFComparisonResult, (NSNumber *)number2, _reverseCompare:(NSNumber *)number1);
__CFAssertIsNumber(number1);
__CFAssertIsNumber(number2);
CFNumberType type1 = __CFNumberGetType(number1);
CFNumberType type2 = __CFNumberGetType(number2);
// Both numbers are integers
if (!__CFNumberTypeTable[type1].floatBit && !__CFNumberTypeTable[type2].floatBit) {
CFSInt128Struct i1, i2;
__CFNumberGetValue(number1, kCFNumberSInt128Type, &i1);
__CFNumberGetValue(number2, kCFNumberSInt128Type, &i2);
return cmp128(&i1, &i2);
}
// Both numbers are floats
if (__CFNumberTypeTable[type1].floatBit && __CFNumberTypeTable[type2].floatBit) {
Float64 d1, d2;
__CFNumberGetValue(number1, kCFNumberFloat64Type, &d1);
__CFNumberGetValue(number2, kCFNumberFloat64Type, &d2);
double s1 = copysign(1.0, d1);
double s2 = copysign(1.0, d2);
if (isnan(d1) && isnan(d2)) return kCFCompareEqualTo;
if (isnan(d1)) return (s2 < 0.0) ? kCFCompareGreaterThan : kCFCompareLessThan;
if (isnan(d2)) return (s1 < 0.0) ? kCFCompareLessThan : kCFCompareGreaterThan;
// at this point, we know we don't have any NaNs
if (s1 < s2) return kCFCompareLessThan;
if (s2 < s1) return kCFCompareGreaterThan;
// at this point, we know the signs are the same; do not combine these tests
if (d1 < d2) return kCFCompareLessThan;
if (d2 < d1) return kCFCompareGreaterThan;
return kCFCompareEqualTo;
}
// One float, one integer; swap if necessary so number1 is the float
Boolean swapResult = false;
if (__CFNumberTypeTable[type2].floatBit) {
CFNumberRef tmp = number1;
number1 = number2;
number2 = tmp;
swapResult = true;
}
// At large integer values, the precision of double is quite low
// e.g. all values roughly 2^127 +- 2^73 are represented by 1 double, 2^127.
// If we just used double compare, that would make the 2^73 largest 128-bit
// integers look equal, so we have to use integer comparison when possible.
Float64 d1, d2;
__CFNumberGetValue(number1, kCFNumberFloat64Type, &d1);
// if the double value is really big, cannot be equal to integer
// nan d1 will not compare true here
if (d1 < FLOAT_NEGATIVE_2_TO_THE_127) {
return !swapResult ? kCFCompareLessThan : kCFCompareGreaterThan;
}
if (FLOAT_POSITIVE_2_TO_THE_127 <= d1) {
return !swapResult ? kCFCompareGreaterThan : kCFCompareLessThan;
}
CFSInt128Struct i1, i2;
__CFNumberGetValue(number1, kCFNumberSInt128Type, &i1);
__CFNumberGetValue(number2, kCFNumberSInt128Type, &i2);
CFComparisonResult res = cmp128(&i1, &i2);
if (kCFCompareEqualTo != res) {
return !swapResult ? res : -res;
}
// now things are equal, but perhaps due to rounding or nan
if (isnan(d1)) {
if (isNeg128(&i2)) {
return !swapResult ? kCFCompareGreaterThan : kCFCompareLessThan;
}
// nan compares less than positive 0 too
return !swapResult ? kCFCompareLessThan : kCFCompareGreaterThan;
}
// at this point, we know we don't have NaN
double s1 = copysign(1.0, d1);
double s2 = isNeg128(&i2) ? -1.0 : 1.0;
if (s1 < s2) return !swapResult ? kCFCompareLessThan : kCFCompareGreaterThan;
if (s2 < s1) return !swapResult ? kCFCompareGreaterThan : kCFCompareLessThan;
// at this point, we know the signs are the same; do not combine these tests
__CFNumberGetValue(number2, kCFNumberFloat64Type, &d2);
if (d1 < d2) return !swapResult ? kCFCompareLessThan : kCFCompareGreaterThan;
if (d2 < d1) return !swapResult ? kCFCompareGreaterThan : kCFCompareLessThan;
return kCFCompareEqualTo;
}
CFComparisonResult CFNumberCompare(CFNumberRef number1, CFNumberRef number2, void *context) {
CFComparisonResult r = CFNumberCompare_new(number1, number2, context);
return r;
}
#undef __CFAssertIsBoolean
#undef __CFAssertIsNumber
#undef __CFAssertIsValidNumberType
#undef BITSFORDOUBLENAN
#undef BITSFORDOUBLEPOSINF
#undef BITSFORDOUBLENEGINF
#undef MinCachedInt
#undef MaxCachedInt
#undef NotToBeCached
|