File: CFNumber.c

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (1322 lines) | stat: -rw-r--r-- 49,530 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
/*	CFNumber.c
	Copyright (c) 1999-2019, Apple Inc. and the Swift project authors
 
	Portions Copyright (c) 2014-2019, Apple Inc. and the Swift project authors
	Licensed under Apache License v2.0 with Runtime Library Exception
	See http://swift.org/LICENSE.txt for license information
	See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
	Responsibility: Ali Ozer
*/

#include "CFBase.h"
#include "CFNumber.h"
#include "CFInternal.h"
#include "CFRuntime_Internal.h"
#include "CFPriv.h"
#include "CFNumber_Private.h"
#include <math.h>
#include <float.h>
#include <assert.h>


typedef CF_ENUM(uint8_t, _CFNumberCanonicalTypeIndex) {
    kCFNumberSInt8CanonicalTypeIndex   = 0x0,
    kCFNumberSInt16CanonicalTypeIndex  = 0x1,
    kCFNumberSInt32CanonicalTypeIndex  = 0x2,
    kCFNumberSInt64CanonicalTypeIndex  = 0x3,
    kCFNumberFloat32CanonicalTypeIndex = 0x4,
    kCFNumberFloat64CanonicalTypeIndex = 0x5,
    kCFNumberSInt128CanonicalTypeIndex = 0x6,
};

static const CFNumberType __CFNumberCanonicalTypes[] = {
    [kCFNumberSInt8CanonicalTypeIndex] = kCFNumberSInt8Type,
    [kCFNumberSInt16CanonicalTypeIndex] = kCFNumberSInt16Type,
    [kCFNumberSInt32CanonicalTypeIndex] = kCFNumberSInt32Type,
    [kCFNumberSInt64CanonicalTypeIndex] = kCFNumberSInt64Type,
    [kCFNumberFloat32CanonicalTypeIndex] = kCFNumberFloat32Type,
    [kCFNumberFloat64CanonicalTypeIndex] = kCFNumberFloat64Type,
    [kCFNumberSInt128CanonicalTypeIndex] = kCFNumberSInt128Type,
};

static const uint8_t __CFNumberCanonicalTypeIndex[] = {
    [kCFNumberSInt8Type] = kCFNumberSInt8CanonicalTypeIndex,
    [kCFNumberSInt16Type] = kCFNumberSInt16CanonicalTypeIndex,
    [kCFNumberSInt32Type] = kCFNumberSInt32CanonicalTypeIndex,
    [kCFNumberSInt64Type] = kCFNumberSInt64CanonicalTypeIndex,
    [kCFNumberFloat32Type] = kCFNumberFloat32CanonicalTypeIndex,
    [kCFNumberFloat64Type] = kCFNumberFloat64CanonicalTypeIndex,
    [kCFNumberSInt128Type] = kCFNumberSInt128CanonicalTypeIndex,
};

/*
 ____ ____ ____ ____   ____ ____ ____ ____
 63                    47                32
 ____ ____ ____ ____   ____ ____ __pp fttt
 31                    15                0
 
 t: The type index of the canonical type
 f: A flag to tell if the type is a preserved type or a non preserved type (1 means preserved 0 means not preserved)
 p: Bits reserved for reinterpreting both the range of `p` and `t` as a preserved type
 _: Bits reserved for the remainder of the CFRuntime field.
 
*/

// NOTE: Only 6 bits are allowed in the runtime values!
#define __CFRuntimeGetNumberType(num) (__CFNumberCanonicalTypes[__CFRuntimeGetValue((num), 5, 0) & 0x7])
#define __CFRuntimeGetNumberPreservedType(num) (__CFRuntimeGetValue((num), 5, 0) & 0x3f)

#define __CFRuntimeSetNumberType(num, type) (__CFRuntimeSetValue((num), 5, 0, (__CFNumberCanonicalTypeIndex[type] & 0x7)))
#define __CFRuntimeSetNumberPreservedType(num, type) (__CFRuntimeSetValue((num), 5, 0, (type & 0x3f)))

#define __CFRuntimeIsPreservedNumber(num) (__CFRuntimeGetValue((num), 5, 0) & 0x8)



#if TARGET_OS_WIN32
#define isnan(A) _isnan(A)
#define isinf(A) !_finite(A)
#define copysign(A, B) _copysign(A, B)
#endif

#define __CFAssertIsBoolean(cf) __CFGenericValidateType(cf, CFBooleanGetTypeID())

struct __CFBoolean {
    CFRuntimeBase _base;
};

DECLARE_STATIC_CLASS_REF(__NSCFBoolean);

_CF_CONSTANT_OBJECT_BACKING struct __CFBoolean __kCFBooleanTrue = {
    INIT_CFRUNTIME_BASE_WITH_CLASS(__NSCFBoolean, _kCFRuntimeIDCFBoolean)
};
const CFBooleanRef kCFBooleanTrue = &__kCFBooleanTrue;

_CF_CONSTANT_OBJECT_BACKING struct __CFBoolean __kCFBooleanFalse = {
    INIT_CFRUNTIME_BASE_WITH_CLASS(__NSCFBoolean, _kCFRuntimeIDCFBoolean)
};
const CFBooleanRef kCFBooleanFalse = &__kCFBooleanFalse;

static CFStringRef __CFBooleanCopyDescription(CFTypeRef cf) {
    CFBooleanRef boolean = (CFBooleanRef)cf;
    return CFStringCreateWithFormat(kCFAllocatorSystemDefault, NULL, CFSTR("<CFBoolean %p [%p]>{value = %s}"), cf, CFGetAllocator(cf), (boolean == kCFBooleanTrue) ? "true" : "false");
}

CF_PRIVATE CFStringRef __CFBooleanCopyFormattingDescription(CFTypeRef cf, CFDictionaryRef formatOptions) {
    CFBooleanRef boolean = (CFBooleanRef)cf;
    return (CFStringRef)CFRetain((boolean == kCFBooleanTrue) ? CFSTR("true") : CFSTR("false"));
}

static CFHashCode __CFBooleanHash(CFTypeRef cf) {
    CFBooleanRef boolean = (CFBooleanRef)cf;
    return (boolean == kCFBooleanTrue) ? _CFHashInt(1) : _CFHashInt(0);
}

static void __CFBooleanDeallocate(CFTypeRef cf) {
    CFAssert(false, __kCFLogAssertion, "Deallocated CFBoolean!");
}

const CFRuntimeClass __CFBooleanClass = {
    0,
    "CFBoolean",
    NULL,      // init
    NULL,      // copy
    __CFBooleanDeallocate,
    NULL,
    __CFBooleanHash,
    __CFBooleanCopyFormattingDescription,
    __CFBooleanCopyDescription
};

CFTypeID CFBooleanGetTypeID(void) {
    return _kCFRuntimeIDCFBoolean;
}

Boolean CFBooleanGetValue(CFBooleanRef boolean) {
    CF_OBJC_FUNCDISPATCHV(CFBooleanGetTypeID(), Boolean, (NSNumber *)boolean, boolValue);
    return (boolean == kCFBooleanTrue) ? true : false;
}


/*** CFNumber ***/

#define __CFAssertIsNumber(cf) __CFGenericValidateType(cf, CFNumberGetTypeID())
#define __CFAssertIsValidNumberType(type) CFAssert2((0 < type && type <= kCFNumberMaxType) || (type == kCFNumberSInt128Type), __kCFLogAssertion, "%s(): bad CFNumber type %ld", __PRETTY_FUNCTION__, type);

/* The IEEE bit patterns... Also have:
0x7f800000		float +Inf
0x7fc00000		float NaN
0xff800000		float -Inf
*/
#define BITSFORDOUBLENAN	((uint64_t)0x7ff8000000000000ULL)
#define BITSFORDOUBLEPOSINF	((uint64_t)0x7ff0000000000000ULL)
#define BITSFORDOUBLENEGINF	((uint64_t)0xfff0000000000000ULL)

// The union dance is to avoid needing hard coded values for different floating point ABIs, technically would be safe to hardcode values, but this way is future proofed
typedef union {
    Float32 floatValue;
    int32_t bits;
} Float32Bits;

typedef union {
    Float64 floatValue;
    int64_t bits;
} Float64Bits;

typedef union {
    Float32Bits _32;
    Float64Bits _64;
} FloatBits;

static const Float32Bits floatZeroBits = {.floatValue = 0.0f};
static const Float32Bits floatOneBits = {.floatValue = 1.0f};

static const Float64Bits doubleZeroBits = {.floatValue = 0.0f};
static const Float64Bits doubleOneBits = {.floatValue = 1.0f};

#define BITSFORFLOATZERO floatZeroBits.bits
#define BITSFORFLOATONE  floatOneBits.bits

#define BITSFORDOUBLEZERO doubleZeroBits.bits
#define BITSFORDOUBLEONE  doubleOneBits.bits

#if TARGET_OS_MAC || TARGET_OS_LINUX || TARGET_OS_BSD || TARGET_OS_WASI
#define FLOAT_POSITIVE_2_TO_THE_64	0x1.0p+64L
#define FLOAT_NEGATIVE_2_TO_THE_127	-0x1.0p+127L
#define FLOAT_POSITIVE_2_TO_THE_127	0x1.0p+127L
#elif TARGET_OS_WIN32
#define FLOAT_POSITIVE_2_TO_THE_64	18446744073709551616.0
#define FLOAT_NEGATIVE_2_TO_THE_127	-170141183460469231731687303715884105728.0
#define FLOAT_POSITIVE_2_TO_THE_127	170141183460469231731687303715884105728.0
#else
#error Unknown or unspecified DEPLOYMENT_TARGET
#endif

static uint8_t isNeg128(const CFSInt128Struct *in) {
    return in->high < 0;
}

static CFComparisonResult cmp128(const CFSInt128Struct *in1, const CFSInt128Struct *in2) {
    if (in1->high < in2->high) return kCFCompareLessThan;
    if (in1->high > in2->high) return kCFCompareGreaterThan;
    if (in1->low < in2->low) return kCFCompareLessThan;
    if (in1->low > in2->low) return kCFCompareGreaterThan;
    return kCFCompareEqualTo;
}

// allows out to be the same as in1 or in2
static void add128(CFSInt128Struct *out, CFSInt128Struct *in1, CFSInt128Struct *in2) {
    CFSInt128Struct tmp;
    tmp.low = in1->low + in2->low;
    tmp.high = in1->high + in2->high;
    if (UINT64_MAX - in1->low < in2->low) {
        tmp.high++;
    }
    *out = tmp;
}

// allows out to be the same as in
static void neg128(CFSInt128Struct *out, CFSInt128Struct *in) {
    uint64_t tmplow = ~in->low;
    out->low = tmplow + 1;
    out->high = ~in->high;
    if (UINT64_MAX == tmplow) {
	out->high++;
    }
}

static const CFSInt128Struct powersOf10[] = {
    { 0x4B3B4CA85A86C47ALL, 0x098A224000000000ULL },
    { 0x0785EE10D5DA46D9LL, 0x00F436A000000000ULL },
    { 0x00C097CE7BC90715LL, 0xB34B9F1000000000ULL },
    { 0x0013426172C74D82LL, 0x2B878FE800000000ULL },
    { 0x0001ED09BEAD87C0LL, 0x378D8E6400000000ULL },
    { 0x0000314DC6448D93LL, 0x38C15B0A00000000ULL },
    { 0x000004EE2D6D415BLL, 0x85ACEF8100000000ULL },
    { 0x0000007E37BE2022LL, 0xC0914B2680000000ULL },
    { 0x0000000C9F2C9CD0LL, 0x4674EDEA40000000ULL },
    { 0x00000001431E0FAELL, 0x6D7217CAA0000000ULL },
    { 0x00000000204FCE5ELL, 0x3E25026110000000ULL },
    { 0x00000000033B2E3CLL, 0x9FD0803CE8000000ULL },
    { 0x000000000052B7D2LL, 0xDCC80CD2E4000000ULL },
    { 0x0000000000084595LL, 0x161401484A000000ULL },
    { 0x000000000000D3C2LL, 0x1BCECCEDA1000000ULL },
    { 0x000000000000152DLL, 0x02C7E14AF6800000ULL },
    { 0x000000000000021ELL, 0x19E0C9BAB2400000ULL },
    { 0x0000000000000036LL, 0x35C9ADC5DEA00000ULL },
    { 0x0000000000000005LL, 0x6BC75E2D63100000ULL },
    { 0x0000000000000000LL, 0x8AC7230489E80000ULL },
    { 0x0000000000000000LL, 0x0DE0B6B3A7640000ULL },
    { 0x0000000000000000LL, 0x016345785D8A0000ULL },
    { 0x0000000000000000LL, 0x002386F26FC10000ULL },
    { 0x0000000000000000LL, 0x00038D7EA4C68000ULL },
    { 0x0000000000000000LL, 0x00005AF3107A4000ULL },
    { 0x0000000000000000LL, 0x000009184E72A000ULL },
    { 0x0000000000000000LL, 0x000000E8D4A51000ULL },
    { 0x0000000000000000LL, 0x000000174876E800ULL },
    { 0x0000000000000000LL, 0x00000002540BE400ULL },
    { 0x0000000000000000LL, 0x000000003B9ACA00ULL },
    { 0x0000000000000000LL, 0x0000000005F5E100ULL },
    { 0x0000000000000000LL, 0x0000000000989680ULL },
    { 0x0000000000000000LL, 0x00000000000F4240ULL },
    { 0x0000000000000000LL, 0x00000000000186A0ULL },
    { 0x0000000000000000LL, 0x0000000000002710ULL },
    { 0x0000000000000000LL, 0x00000000000003E8ULL },
    { 0x0000000000000000LL, 0x0000000000000064ULL },
    { 0x0000000000000000LL, 0x000000000000000AULL },
    { 0x0000000000000000LL, 0x0000000000000001ULL },
};

static const CFSInt128Struct neg_powersOf10[] = {
    { 0xB4C4B357A5793B85LL, 0xF675DDC000000000ULL },
    { 0xF87A11EF2A25B926LL, 0xFF0BC96000000000ULL },
    { 0xFF3F68318436F8EALL, 0x4CB460F000000000ULL },
    { 0xFFECBD9E8D38B27DLL, 0xD478701800000000ULL },
    { 0xFFFE12F64152783FLL, 0xC872719C00000000ULL },
    { 0xFFFFCEB239BB726CLL, 0xC73EA4F600000000ULL },
    { 0xFFFFFB11D292BEA4LL, 0x7A53107F00000000ULL },
    { 0xFFFFFF81C841DFDDLL, 0x3F6EB4D980000000ULL },
    { 0xFFFFFFF360D3632FLL, 0xB98B1215C0000000ULL },
    { 0xFFFFFFFEBCE1F051LL, 0x928DE83560000000ULL },
    { 0xFFFFFFFFDFB031A1LL, 0xC1DAFD9EF0000000ULL },
    { 0xFFFFFFFFFCC4D1C3LL, 0x602F7FC318000000ULL },
    { 0xFFFFFFFFFFAD482DLL, 0x2337F32D1C000000ULL },
    { 0xFFFFFFFFFFF7BA6ALL, 0xE9EBFEB7B6000000ULL },
    { 0xFFFFFFFFFFFF2C3DLL, 0xE43133125F000000ULL },
    { 0xFFFFFFFFFFFFEAD2LL, 0xFD381EB509800000ULL },
    { 0xFFFFFFFFFFFFFDE1LL, 0xE61F36454DC00000ULL },
    { 0xFFFFFFFFFFFFFFC9LL, 0xCA36523A21600000ULL },
    { 0xFFFFFFFFFFFFFFFALL, 0x9438A1D29CF00000ULL },
    { 0xFFFFFFFFFFFFFFFFLL, 0x7538DCFB76180000ULL },
    { 0xFFFFFFFFFFFFFFFFLL, 0xF21F494C589C0000ULL },
    { 0xFFFFFFFFFFFFFFFFLL, 0xFE9CBA87A2760000ULL },
    { 0xFFFFFFFFFFFFFFFFLL, 0xFFDC790D903F0000ULL },
    { 0xFFFFFFFFFFFFFFFFLL, 0xFFFC72815B398000ULL },
    { 0xFFFFFFFFFFFFFFFFLL, 0xFFFFA50CEF85C000ULL },
    { 0xFFFFFFFFFFFFFFFFLL, 0xFFFFF6E7B18D6000ULL },
    { 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFF172B5AF000ULL },
    { 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFFE8B7891800ULL },
    { 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFFFDABF41C00ULL },
    { 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFFFFC4653600ULL },
    { 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFFFFFA0A1F00ULL },
    { 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFFFFFF676980ULL },
    { 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFFFFFFF0BDC0ULL },
    { 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFFFFFFFE7960ULL },
    { 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFFFFFFFFD8F0ULL },
    { 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFFFFFFFFFC18ULL },
    { 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFFFFFFFFFF9CULL },
    { 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFFFFFFFFFFF6ULL },
    { 0xFFFFFFFFFFFFFFFFLL, 0xFFFFFFFFFFFFFFFFULL },
};

static void emit128(char *buffer, const CFSInt128Struct *in, Boolean forcePlus) {
    CFSInt128Struct tmp = *in;
    if (isNeg128(&tmp)) {
	neg128(&tmp, &tmp);
	*buffer++ = '-';
    } else if (forcePlus) {
	*buffer++ = '+';
    }
    Boolean doneOne = false;
    int idx;
    for (idx = 0; idx < sizeof(powersOf10) / sizeof(powersOf10[0]); idx++) {
	int count = 0;
        while (cmp128(&powersOf10[idx], &tmp) <= 0) {
	    add128(&tmp, &tmp, (CFSInt128Struct *)&neg_powersOf10[idx]);
	    count++;
	}
	if (0 != count || doneOne) {
	    *buffer++ = '0' + count;
	    doneOne = true;
	}
    }
    if (!doneOne) {
	*buffer++ = '0';
    }
    *buffer = '\0';
}

static void cvtSInt128ToFloat64(Float64 *out, const CFSInt128Struct *in) {
    // switching to a positive number results in better accuracy
    // for negative numbers close to zero, because the multiply
    // of -1 by 2^64 (scaling the Float64 high) is avoided
    Boolean wasNeg = false;
    CFSInt128Struct tmp = *in;
    if (isNeg128(&tmp)) {
	neg128(&tmp, &tmp);
	wasNeg = true;
    }
    Float64 d = (Float64)tmp.high * FLOAT_POSITIVE_2_TO_THE_64 + (Float64)tmp.low;
    if (wasNeg) d = -d;
    *out = d;
}

static void cvtFloat64ToSInt128(CFSInt128Struct *out, const Float64 *in) {
    CFSInt128Struct i;
    Float64 d = *in;
    if (d < FLOAT_NEGATIVE_2_TO_THE_127) {
	i.high = 0x8000000000000000LL;
	i.low = 0x0000000000000000ULL;
	*out = i;
	return;
    }
    if (FLOAT_POSITIVE_2_TO_THE_127<= d) {
	i.high = 0x7fffffffffffffffLL;
	i.low = 0xffffffffffffffffULL;
	*out = i;
	return;
    }
    Float64 t = floor(d / FLOAT_POSITIVE_2_TO_THE_64);
    i.high = (int64_t)t;
    i.low = (uint64_t)(d - t * FLOAT_POSITIVE_2_TO_THE_64);
    *out = i;
}

struct __CFNumber {
    CFRuntimeBase _base;
    FloatBits _bits; // need this space here for the constant objects
    /* 0 or 8 more bytes allocated here */
};

/* Seven bits in base:
    Bits 6..5: unused
    Bits 4..0: CFNumber type
*/

DECLARE_STATIC_CLASS_REF(__NSCFNumber);

// Note: The isa for these things is fixed up later
static _CF_CONSTANT_OBJECT_BACKING struct __CFNumber __kCFNumberNaN = {
    INIT_CFRUNTIME_BASE_WITH_CLASS_AND_FLAGS(__NSCFNumber, _kCFRuntimeIDCFNumber, kCFNumberFloat64CanonicalTypeIndex),
    { ._64.bits = BITSFORDOUBLENAN }
};
const CFNumberRef kCFNumberNaN = &__kCFNumberNaN;

static _CF_CONSTANT_OBJECT_BACKING struct __CFNumber __kCFNumberNegativeInfinity = {
    INIT_CFRUNTIME_BASE_WITH_CLASS_AND_FLAGS(__NSCFNumber, _kCFRuntimeIDCFNumber, kCFNumberFloat64CanonicalTypeIndex),
    { ._64.bits = BITSFORDOUBLENEGINF }
};
const CFNumberRef kCFNumberNegativeInfinity = &__kCFNumberNegativeInfinity;

static _CF_CONSTANT_OBJECT_BACKING struct __CFNumber __kCFNumberPositiveInfinity = {
    INIT_CFRUNTIME_BASE_WITH_CLASS_AND_FLAGS(__NSCFNumber, _kCFRuntimeIDCFNumber, kCFNumberFloat64CanonicalTypeIndex),
    { ._64.bits = BITSFORDOUBLEPOSINF }
};
const CFNumberRef kCFNumberPositiveInfinity = &__kCFNumberPositiveInfinity;

static _CF_CONSTANT_OBJECT_BACKING struct __CFNumber __kCFNumberFloat32Zero = {
    INIT_CFRUNTIME_BASE_WITH_CLASS_AND_FLAGS(__NSCFNumber, _kCFRuntimeIDCFNumber, kCFNumberFloat32CanonicalTypeIndex),
    { ._32.floatValue = 0.0f }
};
static const CFNumberRef kCFNumberFloat32Zero = &__kCFNumberFloat32Zero;

static _CF_CONSTANT_OBJECT_BACKING struct __CFNumber __kCFNumberFloat32One = {
    INIT_CFRUNTIME_BASE_WITH_CLASS_AND_FLAGS(__NSCFNumber, _kCFRuntimeIDCFNumber, kCFNumberFloat32CanonicalTypeIndex),
    { ._32.floatValue = 1.0f }
};
static const CFNumberRef kCFNumberFloat32One = &__kCFNumberFloat32One;

static _CF_CONSTANT_OBJECT_BACKING struct __CFNumber __kCFNumberFloat64Zero = {
    INIT_CFRUNTIME_BASE_WITH_CLASS_AND_FLAGS(__NSCFNumber, _kCFRuntimeIDCFNumber, kCFNumberFloat64CanonicalTypeIndex),
    { ._64.floatValue = 0.0f }
};
static const CFNumberRef kCFNumberFloat64Zero = &__kCFNumberFloat64Zero;

static _CF_CONSTANT_OBJECT_BACKING struct __CFNumber __kCFNumberFloat64One = {
    INIT_CFRUNTIME_BASE_WITH_CLASS_AND_FLAGS(__NSCFNumber, _kCFRuntimeIDCFNumber, kCFNumberFloat64CanonicalTypeIndex),
    { ._64.floatValue = 1.0f }
};
static const CFNumberRef kCFNumberFloat64One = &__kCFNumberFloat64One;

static const struct {
    uint16_t canonicalType:5;	// canonical fixed-width type
    uint16_t floatBit:1;	// is float
    uint16_t storageBit:1;	// storage size (0: (float ? 4 : 8), 1: (float ? 8 : 16) bits)
    uint16_t lgByteSize:3;	// base-2 log byte size of public type
    uint16_t unused:6;
} __CFNumberTypeTable[] = {
    /* 0 */			{0, 0, 0, 0},

    /* kCFNumberSInt8Type */	{kCFNumberSInt8Type, 0, 0, 0, 0},
    /* kCFNumberSInt16Type */	{kCFNumberSInt16Type, 0, 0, 1, 0},
    /* kCFNumberSInt32Type */	{kCFNumberSInt32Type, 0, 0, 2, 0},
    /* kCFNumberSInt64Type */	{kCFNumberSInt64Type, 0, 0, 3, 0},
    /* kCFNumberFloat32Type */	{kCFNumberFloat32Type, 1, 0, 2, 0},
    /* kCFNumberFloat64Type */	{kCFNumberFloat64Type, 1, 1, 3, 0},

    /* kCFNumberCharType */	{kCFNumberSInt8Type, 0, 0, 0, 0},
    /* kCFNumberShortType */	{kCFNumberSInt16Type, 0, 0, 1, 0},
    /* kCFNumberIntType */	{kCFNumberSInt32Type, 0, 0, 2, 0},
#if TARGET_RT_64_BIT
    /* kCFNumberLongType */	{kCFNumberSInt64Type, 0, 0, 3, 0},
#else
    /* kCFNumberLongType */	{kCFNumberSInt32Type, 0, 0, 2, 0},
#endif
    /* kCFNumberLongLongType */	{kCFNumberSInt64Type, 0, 0, 3, 0},
    /* kCFNumberFloatType */	{kCFNumberFloat32Type, 1, 0, 2, 0},
    /* kCFNumberDoubleType */	{kCFNumberFloat64Type, 1, 1, 3, 0},

#if TARGET_RT_64_BIT
    /* kCFNumberCFIndexType */	{kCFNumberSInt64Type, 0, 0, 3, 0},
    /* kCFNumberNSIntegerType */ {kCFNumberSInt64Type, 0, 0, 3, 0},
    /* kCFNumberCGFloatType */	{kCFNumberFloat64Type, 1, 1, 3, 0},
#else
    /* kCFNumberCFIndexType */	{kCFNumberSInt32Type, 0, 0, 2, 0},
    /* kCFNumberNSIntegerType */ {kCFNumberSInt32Type, 0, 0, 2, 0},
    /* kCFNumberCGFloatType */	{kCFNumberFloat32Type, 1, 0, 2, 0},
#endif

    /* kCFNumberSInt128Type */	{kCFNumberSInt128Type, 0, 1, 4, 0},
};

CF_INLINE CFNumberType __CFNumberGetType(CFNumberRef num) {
    return __CFRuntimeGetNumberType(num);
}

#define CVT(SRC_TYPE, DST_TYPE, DST_MIN, DST_MAX) do { \
	SRC_TYPE sv; memmove(&sv, data, sizeof(SRC_TYPE)); \
	DST_TYPE dv = (sv < DST_MIN) ? (DST_TYPE)DST_MIN : (DST_TYPE)(((DST_MAX < sv) ? DST_MAX : sv)); \
	memmove(valuePtr, &dv, sizeof(DST_TYPE)); \
	SRC_TYPE vv = (SRC_TYPE)dv; return (vv == sv); \
	} while (0)

#define CVT128ToInt(SRC_TYPE, DST_TYPE, DST_MIN, DST_MAX) do { \
        SRC_TYPE sv; memmove(&sv, data, sizeof(SRC_TYPE)); \
	DST_TYPE dv; Boolean noLoss = false; \
	if (0 < sv.high || (0 == sv.high && (int64_t)DST_MAX < sv.low)) { \
	    dv = DST_MAX; \
	} else if (sv.high < -1 || (-1 == sv.high && sv.low < (int64_t)DST_MIN)) { \
	    dv = DST_MIN; \
	} else { \
	    dv = (DST_TYPE)sv.low; \
	    noLoss = true; \
	} \
        memmove(valuePtr, &dv, sizeof(DST_TYPE)); \
        return noLoss; \
        } while (0)

// returns false if the output value is not the same as the number's value, which
// can occur due to accuracy loss and the value not being within the target range
static Boolean __CFNumberGetValue(CFNumberRef number, CFNumberType type, void *valuePtr) {
    type = __CFNumberTypeTable[type].canonicalType;
    CFNumberType ntype = __CFNumberGetType(number);
    const void *data = &(number->_bits._64.bits);
    Boolean floatBit = __CFNumberTypeTable[ntype].floatBit;
    Boolean storageBit = __CFNumberTypeTable[ntype].storageBit;
    switch (type) {
    case kCFNumberSInt8Type:
	if (floatBit) {
	    if (!storageBit) {
		CVT(Float32, int8_t, INT8_MIN, INT8_MAX);
	    } else {
		CVT(Float64, int8_t, INT8_MIN, INT8_MAX);
	    }
	} else {
	    if (!storageBit) {
		CVT(int64_t, int8_t, INT8_MIN, INT8_MAX);
	    } else {
		CVT128ToInt(CFSInt128Struct, int8_t, INT8_MIN, INT8_MAX);
	    }
	}
	return true;
    case kCFNumberSInt16Type:
	if (floatBit) {
	    if (!storageBit) {
                CVT(Float32, int16_t, INT16_MIN, INT16_MAX);
	    } else {
                CVT(Float64, int16_t, INT16_MIN, INT16_MAX);
	    }
	} else {
	    if (!storageBit) {
                CVT(int64_t, int16_t, INT16_MIN, INT16_MAX);
	    } else {
		CVT128ToInt(CFSInt128Struct, int16_t, INT16_MIN, INT16_MAX);
	    }
	}
	return true;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wimplicit-const-int-float-conversion"
    case kCFNumberSInt32Type:
	if (floatBit) {
	    if (!storageBit) {
                CVT(Float32, int32_t, INT32_MIN, INT32_MAX);
	    } else {
                CVT(Float64, int32_t, INT32_MIN, INT32_MAX);
	    }
	} else {
	    if (!storageBit) {
                CVT(int64_t, int32_t, INT32_MIN, INT32_MAX);
	    } else {
		CVT128ToInt(CFSInt128Struct, int32_t, INT32_MIN, INT32_MAX);
	    }
	}
	return true;
    case kCFNumberSInt64Type:
	if (floatBit) {
	    if (!storageBit) {
                CVT(Float32, int64_t, INT64_MIN, INT64_MAX);
	    } else {
                CVT(Float64, int64_t, INT64_MIN, INT64_MAX);
	    }
	} else {
	    if (!storageBit) {
		memmove(valuePtr, data, 8);
	    } else {
		CVT128ToInt(CFSInt128Struct, int64_t, INT64_MIN, INT64_MAX);
	    }
	}
	return true;
#pragma GCC diagnostic pop
    case kCFNumberSInt128Type:
	if (floatBit) {
	    if (!storageBit) {
		Float32 f;
		memmove(&f, data, 4);
		Float64 d = f;
		CFSInt128Struct i;
		cvtFloat64ToSInt128(&i, &d);
		memmove(valuePtr, &i, 16);
		Float64 d2;
		cvtSInt128ToFloat64(&d2, &i);
		Float32 f2 = (Float32)d2;
		return (f2 == f);
	    } else {
		Float64 d;
		memmove(&d, data, 8);
		CFSInt128Struct i;
		cvtFloat64ToSInt128(&i, &d);
		memmove(valuePtr, &i, 16);
		Float64 d2;
		cvtSInt128ToFloat64(&d2, &i);
		return (d2 == d);
	    }
	} else {
	    if (!storageBit) {
		int64_t j;
		memmove(&j, data, 8);
		CFSInt128Struct i;
		i.low = j;
		i.high = (j < 0) ? -1LL : 0LL;
		memmove(valuePtr, &i, 16);
	    } else {
		memmove(valuePtr, data, 16);
	    }
	}
	return true;
    case kCFNumberFloat32Type:
	if (floatBit) {
	    if (!storageBit) {
		memmove(valuePtr, data, 4);
	    } else {
		double d;
		memmove(&d, data, 8);
		if (isnan(d)) {
		    uint32_t l = 0x7fc00000;
		    memmove(valuePtr, &l, 4);
		    return true;
		} else if (isinf(d)) {
		    uint32_t l = 0x7f800000;
		    if (d < 0.0) l += 0x80000000UL;
		    memmove(valuePtr, &l, 4);
		    return true;
		}
		CVT(Float64, Float32, -FLT_MAX, FLT_MAX);
	    }
	} else {
	    if (!storageBit) {
		CVT(int64_t, Float32, -FLT_MAX, FLT_MAX);
	    } else {
		CFSInt128Struct i;
		memmove(&i, data, 16);
		Float64 d;
		cvtSInt128ToFloat64(&d, &i);
		Float32 f = (Float32)d;
		memmove(valuePtr, &f, 4);
		d = f;
		CFSInt128Struct i2;
		cvtFloat64ToSInt128(&i2, &d);
		return cmp128(&i2, &i) == kCFCompareEqualTo;
	    }
	}
	return true;
    case kCFNumberFloat64Type:
	if (floatBit) {
	    if (!storageBit) {
		float f;
		memmove(&f, data, 4);
		if (isnan(f)) {
		    uint64_t l = BITSFORDOUBLENAN;
		    memmove(valuePtr, &l, 8);
		    return true;
		} else if (isinf(f)) {
		    uint64_t l = BITSFORDOUBLEPOSINF;
		    if (f < 0.0) l += 0x8000000000000000ULL;
		    memmove(valuePtr, &l, 8);
		    return true;
		}
		CVT(Float32, Float64, -DBL_MAX, DBL_MAX);
	    } else {
		memmove(valuePtr, data, 8);
	    }
	} else {
	    if (!storageBit) {
		CVT(int64_t, Float64, -DBL_MAX, DBL_MAX);
	    } else {
                CFSInt128Struct i;
                memmove(&i, data, 16);
                Float64 d;
                cvtSInt128ToFloat64(&d, &i);
                memmove(valuePtr, &d, 8);
                CFSInt128Struct i2;
                cvtFloat64ToSInt128(&i2, &d);
                return cmp128(&i2, &i) == kCFCompareEqualTo;
	    }
	}
	return true;
    }
    return false;
}

#define CVT_COMPAT(SRC_TYPE, DST_TYPE, FT) do { \
	SRC_TYPE sv; memmove(&sv, data, sizeof(SRC_TYPE)); \
	DST_TYPE dv = (DST_TYPE)(sv); \
	memmove(valuePtr, &dv, sizeof(DST_TYPE)); \
	SRC_TYPE vv = (SRC_TYPE)dv; return (FT) || (vv == sv); \
	} while (0)

#define CVT128ToInt_COMPAT(SRC_TYPE, DST_TYPE) do { \
        SRC_TYPE sv; memmove(&sv, data, sizeof(SRC_TYPE)); \
	DST_TYPE dv; dv = (DST_TYPE)sv.low; \
        memmove(valuePtr, &dv, sizeof(DST_TYPE)); \
	uint64_t vv = (uint64_t)dv; return (vv == sv.low); \
        } while (0)

// this has the old cast-style behavior
static Boolean __CFNumberGetValueCompat(CFNumberRef number, CFNumberType type, void *valuePtr) {
    type = __CFNumberTypeTable[type].canonicalType;
    CFNumberType ntype = __CFNumberGetType(number);
    const void *data = &(number->_bits._64.bits);
    switch (type) {
    case kCFNumberSInt8Type:
	if (__CFNumberTypeTable[ntype].floatBit) {
	    if (0 == __CFNumberTypeTable[ntype].storageBit) {
		CVT_COMPAT(Float32, int8_t, 0);
	    } else {
		CVT_COMPAT(Float64, int8_t, 0);
	    }
	} else {
	    if (0 == __CFNumberTypeTable[ntype].storageBit) {
		// Leopard's implementation of this always returned true. We should only return true when the conversion is lossless. However, there are some clients who use CFNumber with small unsigned values disguised as signed values. Since there is no CFNumber API yet for unsigned values, we need to accommodate those clients for now. <rdar://problem/6471866>
		// This accommodation should be removed if CFNumber ever provides API for unsigned values. <rdar://problem/6473890>
		int64_t sv; memmove(&sv, data, sizeof(int64_t));
		int8_t dv = (int8_t)(sv);
		memmove(valuePtr, &dv, sizeof(int8_t));
		int64_t vv = (int64_t)dv; return !_CFExecutableLinkedOnOrAfter(CFSystemVersionSnowLeopard) || ((sv >> 8LL) == 0LL) || (vv == sv);
	    } else {
		CVT128ToInt_COMPAT(CFSInt128Struct, int8_t);
	    }
	}
	return true;
    case kCFNumberSInt16Type:
	if (__CFNumberTypeTable[ntype].floatBit) {
	    if (0 == __CFNumberTypeTable[ntype].storageBit) {
		CVT_COMPAT(Float32, int16_t, 0);
	    } else {
		CVT_COMPAT(Float64, int16_t, 0);
	    }
	} else {
	    if (0 == __CFNumberTypeTable[ntype].storageBit) {
		// Leopard's implementation of this always returned true. We should only return true when the conversion is lossless. However, there are some clients who use CFNumber with small unsigned values disguised as signed values. Since there is no CFNumber API yet for unsigned values, we need to accommodate those clients for now. <rdar://problem/6471866>
		// This accommodation should be removed if CFNumber ever provides API for unsigned values. <rdar://problem/6473890>
		int64_t sv; memmove(&sv, data, sizeof(int64_t));
		int16_t dv = (int16_t)(sv);
		memmove(valuePtr, &dv, sizeof(int16_t));
		int64_t vv = (int64_t)dv; return !_CFExecutableLinkedOnOrAfter(CFSystemVersionSnowLeopard) || ((sv >> 16LL) == 0LL) || (vv == sv);
	    } else {
		CVT128ToInt_COMPAT(CFSInt128Struct, int16_t);
	    }
	}
	return true;
    case kCFNumberSInt32Type:
	if (__CFNumberTypeTable[ntype].floatBit) {
	    if (0 == __CFNumberTypeTable[ntype].storageBit) {
		CVT_COMPAT(Float32, int32_t, 0);
	    } else {
		CVT_COMPAT(Float64, int32_t, 0);
	    }
	} else {
	    if (0 == __CFNumberTypeTable[ntype].storageBit) {
                CVT_COMPAT(int64_t, int32_t, 0);
	    } else {
		CVT128ToInt_COMPAT(CFSInt128Struct, int32_t);
	    }
	}
	return true;
    case kCFNumberSInt64Type:
	if (__CFNumberTypeTable[ntype].floatBit) {
	    if (0 == __CFNumberTypeTable[ntype].storageBit) {
		CVT_COMPAT(Float32, int64_t, 0);
	    } else {
		CVT_COMPAT(Float64, int64_t, 0);
	    }
	} else {
	    if (0 == __CFNumberTypeTable[ntype].storageBit) {
                CVT_COMPAT(int64_t, int64_t, 0);
	    } else {
		CVT128ToInt_COMPAT(CFSInt128Struct, int64_t);
	    }
	}
	return true;
    case kCFNumberSInt128Type:
	if (__CFNumberTypeTable[ntype].floatBit) {
	    if (0 == __CFNumberTypeTable[ntype].storageBit) {
		Float32 f;
		memmove(&f, data, 4);
		Float64 d = f;
		CFSInt128Struct i;
		cvtFloat64ToSInt128(&i, &d);
		memmove(valuePtr, &i, 16);
		Float64 d2;
		cvtSInt128ToFloat64(&d2, &i);
		Float32 f2 = (Float32)d2;
		return (f2 == f);
	    } else {
		Float64 d;
		memmove(&d, data, 8);
		CFSInt128Struct i;
		cvtFloat64ToSInt128(&i, &d);
		memmove(valuePtr, &i, 16);
		Float64 d2;
		cvtSInt128ToFloat64(&d2, &i);
		return (d2 == d);
	    }
	} else {
	    if (0 == __CFNumberTypeTable[ntype].storageBit) {
		int64_t j;
		memmove(&j, data, 8);
		CFSInt128Struct i;
		i.low = j;
		i.high = (j < 0) ? -1LL : 0LL;
		memmove(valuePtr, &i, 16);
	    } else {
		memmove(valuePtr, data, 16);
	    }
	}
	return true;
    case kCFNumberFloat32Type:
	if (__CFNumberTypeTable[ntype].floatBit) {
	    if (0 == __CFNumberTypeTable[ntype].storageBit) {
		memmove(valuePtr, data, 4);
	    } else {
		CVT_COMPAT(Float64, Float32, 0);
	    }
	} else {
	    if (0 == __CFNumberTypeTable[ntype].storageBit) {
		CVT_COMPAT(int64_t, Float32, 0);
	    } else {
		CFSInt128Struct i;
		memmove(&i, data, 16);
		Float64 d;
		cvtSInt128ToFloat64(&d, &i);
		Float32 f = (Float32)d;
		memmove(valuePtr, &f, 4);
		d = f;
		CFSInt128Struct i2;
		cvtFloat64ToSInt128(&i2, &d);
		return cmp128(&i2, &i) == kCFCompareEqualTo;
	    }
	}
	return true;
    case kCFNumberFloat64Type:
	if (__CFNumberTypeTable[ntype].floatBit) {
	    if (0 == __CFNumberTypeTable[ntype].storageBit) {
		CVT_COMPAT(Float32, Float64, 0);
	    } else {
		memmove(valuePtr, data, 8);
	    }
	} else {
	    if (0 == __CFNumberTypeTable[ntype].storageBit) {
		CVT_COMPAT(int64_t, Float64, 0);
	    } else {
		CFSInt128Struct i;
		memmove(&i, data, 16);
		Float64 d;
		cvtSInt128ToFloat64(&d, &i);
		memmove(valuePtr, &d, 8);
		CFSInt128Struct i2;
		cvtFloat64ToSInt128(&i2, &d);
		return cmp128(&i2, &i) == kCFCompareEqualTo;
	    }
	}
	return true;
    }
    return false;
}

static CFStringRef __CFNumberCopyDescription(CFTypeRef cf) {
    CFNumberRef number = (CFNumberRef)cf;
    CFNumberType type = __CFNumberGetType(number);
    CFMutableStringRef mstr = CFStringCreateMutable(kCFAllocatorSystemDefault, 0);
    CFStringAppendFormat(mstr, NULL, CFSTR("<CFNumber %p [%p]>{value = "), cf, CFGetAllocator(cf));
    if (__CFNumberTypeTable[type].floatBit) {
	Float64 d;
        __CFNumberGetValue(number, kCFNumberFloat64Type, &d);
	if (isnan(d)) {
	    CFStringAppend(mstr, CFSTR("nan"));
	} else if (isinf(d)) {
	    CFStringAppend(mstr, (0.0 < d) ? CFSTR("+infinity") : CFSTR("-infinity"));
	} else if (0.0 == d) {
	    CFStringAppend(mstr, (copysign(1.0, d) < 0.0) ? CFSTR("-0.0") : CFSTR("+0.0"));
	} else {
	    CFStringAppendFormat(mstr, NULL, CFSTR("%+.*f"), (__CFNumberTypeTable[type].storageBit ? 20 : 10), d);
	}
	const char *typeName = "unknown float";
	switch (type) {
	case kCFNumberFloat32Type: typeName = "kCFNumberFloat32Type"; break;
	case kCFNumberFloat64Type: typeName = "kCFNumberFloat64Type"; break;
	}
	CFStringAppendFormat(mstr, NULL, CFSTR(", type = %s}"), typeName);
    } else {
	CFSInt128Struct i;
	__CFNumberGetValue(number, kCFNumberSInt128Type, &i);
	char buffer[128];
	emit128(buffer, &i, true);
	const char *typeName = "unknown integer";
	switch (type) {
	case kCFNumberSInt8Type: typeName = "kCFNumberSInt8Type"; break;
	case kCFNumberSInt16Type: typeName = "kCFNumberSInt16Type"; break;
	case kCFNumberSInt32Type: typeName = "kCFNumberSInt32Type"; break;
	case kCFNumberSInt64Type: typeName = "kCFNumberSInt64Type"; break;
	case kCFNumberSInt128Type: typeName = "kCFNumberSInt128Type"; break;
	}
	CFStringAppendFormat(mstr, NULL, CFSTR("%s, type = %s}"), buffer, typeName);
    }
    return mstr;
}

// This function separated out from __CFNumberCopyFormattingDescription() so the plist creation can use it as well.

static CFStringRef __CFNumberCreateFormattingDescriptionAsFloat64(CFAllocatorRef allocator, CFTypeRef cf) {
    Float64 d;
    CFNumberGetValue((CFNumberRef)cf, kCFNumberFloat64Type, &d);
    if (isnan(d)) {
	return (CFStringRef)CFRetain(CFSTR("nan"));
    }
    if (isinf(d)) {
	return (CFStringRef)CFRetain((0.0 < d) ? CFSTR("+infinity") : CFSTR("-infinity"));
    }
    if (0.0 == d) {
	return (CFStringRef)CFRetain(CFSTR("0.0"));
    }
    // if %g is used here, need to use DBL_DIG + 2 on Mac OS X, but %f needs +1
    return CFStringCreateWithFormat(allocator, NULL, CFSTR("%.*g"), DBL_DIG + 2, d);
}

CF_PRIVATE CFStringRef __CFNumberCopyFormattingDescriptionAsFloat64(CFTypeRef cf) {
    CFStringRef result = __CFNumberCreateFormattingDescriptionAsFloat64(kCFAllocatorSystemDefault, cf);
    return result;
}

CF_PRIVATE CFStringRef __CFNumberCreateFormattingDescription(CFAllocatorRef allocator, CFTypeRef cf, CFDictionaryRef formatOptions) {
    CFNumberRef number = (CFNumberRef)cf;
    CFNumberType type = __CFNumberGetType(number);
    if (__CFNumberTypeTable[type].floatBit) {
        return __CFNumberCreateFormattingDescriptionAsFloat64(allocator, number);
    }
    CFSInt128Struct i;
    __CFNumberGetValue(number, kCFNumberSInt128Type, &i);
    char buffer[128];
    emit128(buffer, &i, false);
    return CFStringCreateWithFormat(allocator, NULL, CFSTR("%s"), buffer);
}

static CFStringRef __CFNumberCopyFormattingDescription_new(CFTypeRef cf, CFDictionaryRef formatOptions) {
    CFNumberRef number = (CFNumberRef)cf;
    CFNumberType type = __CFNumberGetType(number);
    if (__CFNumberTypeTable[type].floatBit) {
        return __CFNumberCopyFormattingDescriptionAsFloat64(number);
    }
    CFSInt128Struct i;
    __CFNumberGetValue(number, kCFNumberSInt128Type, &i);
    char buffer[128];
    emit128(buffer, &i, false);
    return CFStringCreateWithFormat(kCFAllocatorSystemDefault, NULL, CFSTR("%s"), buffer);
}

CF_PRIVATE CFStringRef __CFNumberCopyFormattingDescription(CFTypeRef cf, CFDictionaryRef formatOptions) {
    CFStringRef result = __CFNumberCopyFormattingDescription_new(cf, formatOptions);
    return result;
}


static Boolean __CFNumberEqual(CFTypeRef cf1, CFTypeRef cf2) {
    Boolean b = CFNumberCompare((CFNumberRef)cf1, (CFNumberRef)cf2, 0) == kCFCompareEqualTo;
    return b;
}

static CFHashCode __CFNumberHash(CFTypeRef cf) {
    CFHashCode h;
    CFNumberRef number = (CFNumberRef)cf;
    switch (__CFNumberGetType(number)) {
	case kCFNumberSInt8Type:
	case kCFNumberSInt16Type:
	case kCFNumberSInt32Type: {
	    SInt32 i;
	    __CFNumberGetValue(number, kCFNumberSInt32Type, &i);
	    h = _CFHashInt(i);
	    break;
	}
	default: {
	    Float64 d;
	    __CFNumberGetValue(number, kCFNumberFloat64Type, &d);
	    h = _CFHashDouble((double)d);
	    break;
	}
    }
    return h;
}


enum {
  kCFNumberCachingEnabled = 0,
  kCFNumberCachingDisabled = 1,
  kCFNumberCachingFullyDisabled = 2
};
static char __CFNumberCaching = kCFNumberCachingEnabled;

const CFRuntimeClass __CFNumberClass = {
    0,
    "CFNumber",
    NULL,      // init
    NULL,      // copy
    NULL,
    __CFNumberEqual,
    __CFNumberHash,
    __CFNumberCopyFormattingDescription,
    __CFNumberCopyDescription
};


CFTypeID CFNumberGetTypeID(void) {
    // TODO: Move other work out of here
    static dispatch_once_t initOnce;
    dispatch_once(&initOnce, ^{
        

        const char *caching = getenv("CFNumberDisableCache");	// "all" to disable caching and tagging; anything else to disable caching; nothing to leave both enabled
        if (caching) __CFNumberCaching = (!strcmp(caching, "all")) ? kCFNumberCachingFullyDisabled : kCFNumberCachingDisabled;	// initial state above is kCFNumberCachingEnabled
    });
    return _kCFRuntimeIDCFNumber;
}

#define MinCachedInt (-1)
#define MaxCachedInt (12)
#define NotToBeCached (MinCachedInt - 1)
static CFNumberRef __CFNumberCache[MaxCachedInt - MinCachedInt + 1] = {NULL};	// Storing CFNumberRefs for range MinCachedInt..MaxCachedInt

static inline void __CFNumberInit(CFNumberRef result, CFNumberType type, const void *valuePtr) {
    __CFAssertIsValidNumberType(type);
    
    uint64_t value;
    switch (__CFNumberTypeTable[type].canonicalType) {
        case kCFNumberSInt8Type:   value = (uint64_t)(int64_t)*(int8_t *)valuePtr; goto smallVal;
        case kCFNumberSInt16Type:  value = (uint64_t)(int64_t)*(int16_t *)valuePtr; goto smallVal;
        case kCFNumberSInt32Type:  value = (uint64_t)(int64_t)*(int32_t *)valuePtr; goto smallVal;
        smallVal: memmove((void *)&result->_bits._64.bits, &value, 8); break;
        case kCFNumberSInt64Type:  memmove((void *)&result->_bits._64.bits, valuePtr, 8); break;
        case kCFNumberSInt128Type: memmove((void *)&result->_bits._64.bits, valuePtr, 16); break;
        case kCFNumberFloat32Type: memmove((void *)&result->_bits._64.bits, valuePtr, 4); break;
        case kCFNumberFloat64Type: memmove((void *)&result->_bits._64.bits, valuePtr, 8); break;
    }
}

static inline void _CFNumberInit(CFNumberRef result, CFNumberType type, const void *valuePtr) {
    __CFNumberInit(result, type, valuePtr);
}

void _CFNumberInitBool(CFNumberRef result, Boolean value) {
    _CFNumberInit(result, kCFNumberCharType, &value);
}

void _CFNumberInitInt8(CFNumberRef result, int8_t value) {
    _CFNumberInit(result, kCFNumberCharType, &value);
}

void _CFNumberInitUInt8(CFNumberRef result, uint8_t value) {
    _CFNumberInit(result, kCFNumberCharType, &value);
}

void _CFNumberInitInt16(CFNumberRef result, int16_t value) {
    _CFNumberInit(result, kCFNumberShortType, &value);
}

void _CFNumberInitUInt16(CFNumberRef result, uint16_t value) {
    _CFNumberInit(result, kCFNumberShortType, &value);
}

void _CFNumberInitInt32(CFNumberRef result, int32_t value) {
    _CFNumberInit(result, kCFNumberIntType, &value);
}

void _CFNumberInitUInt32(CFNumberRef result, uint32_t value) {
    _CFNumberInit(result, kCFNumberIntType, &value);
}

void _CFNumberInitInt(CFNumberRef result, long value) {
    _CFNumberInit(result, kCFNumberLongType, &value);
}

void _CFNumberInitUInt(CFNumberRef result, unsigned long value) {
    _CFNumberInit(result, kCFNumberLongType, &value);
}

void _CFNumberInitInt64(CFNumberRef result, int64_t value) {
    _CFNumberInit(result, kCFNumberLongLongType, &value);
}

void _CFNumberInitUInt64(CFNumberRef result, uint64_t value) {
    _CFNumberInit(result, kCFNumberLongLongType, &value);
}

void _CFNumberInitFloat(CFNumberRef result, float value) {
    _CFNumberInit(result, kCFNumberFloatType, &value);
}

void _CFNumberInitDouble(CFNumberRef result, double value) {
    _CFNumberInit(result, kCFNumberDoubleType, &value);
}

static CFNumberRef _CFNumberCreate(CFAllocatorRef allocator, CFNumberType type, const void *valuePtr) {
    __CFAssertIsValidNumberType(type);
//printf("+ [%p] CFNumberCreate(%p, %d, %p)\n", pthread_self(), allocator, type, valuePtr);

    if (!allocator) allocator = __CFGetDefaultAllocator();


    // Look for cases where we can return a cached instance.
    // We only use cached objects if the allocator is the system
    // default allocator, except for the special floating point
    // constant objects, where we return the cached object
    // regardless of allocator, since that is what has always
    // been done (and now must for compatibility).
    int64_t valToBeCached = NotToBeCached;
    if (__CFNumberTypeTable[type].floatBit) {
        CFNumberRef cached = NULL;
        if (0 == __CFNumberTypeTable[type].storageBit) {
            Float32Bits f = *(Float32Bits *)valuePtr;
            if (f.bits == BITSFORFLOATZERO) cached = kCFNumberFloat32Zero;
            else if (f.bits == BITSFORFLOATONE) cached = kCFNumberFloat32One;
            else if (isnan(f.floatValue)) cached = kCFNumberNaN;
            else if (isinf(f.floatValue)) cached = (f.floatValue < 0.0) ? kCFNumberNegativeInfinity : kCFNumberPositiveInfinity;


        } else {
            Float64Bits d = *(Float64Bits *)valuePtr;
            if (d.bits == BITSFORDOUBLEZERO) cached = kCFNumberFloat64Zero;
            else if (d.bits == BITSFORDOUBLEONE) cached = kCFNumberFloat64One;
            else if (isnan(d.floatValue)) cached = kCFNumberNaN;
            else if (isinf(d.floatValue)) cached = (d.floatValue < 0.0) ? kCFNumberNegativeInfinity : kCFNumberPositiveInfinity;
        }
        if (cached) return (CFNumberRef)CFRetain(cached);
    } else if (_CFAllocatorIsSystemDefault(allocator) && (__CFNumberCaching == kCFNumberCachingEnabled)) {
        switch (__CFNumberTypeTable[type].canonicalType) {
        case kCFNumberSInt8Type:   {int8_t  val = *(int8_t *)valuePtr;  if (MinCachedInt <= val && val <= MaxCachedInt) valToBeCached = (int64_t)val; break;}
        case kCFNumberSInt16Type:  {int16_t val = *(int16_t *)valuePtr; if (MinCachedInt <= val && val <= MaxCachedInt) valToBeCached = (int64_t)val; break;}
        case kCFNumberSInt32Type:  {int32_t val = *(int32_t *)valuePtr; if (MinCachedInt <= val && val <= MaxCachedInt) valToBeCached = (int64_t)val; break;}
        case kCFNumberSInt64Type:  {int64_t val = *(int64_t *)valuePtr; if (MinCachedInt <= val && val <= MaxCachedInt) valToBeCached = (int64_t)val; break;}
        }
        if (NotToBeCached != valToBeCached) {
            CFNumberRef cached = __CFNumberCache[valToBeCached - MinCachedInt];        // Atomic to access the value in the cache
            if (NULL != cached) return (CFNumberRef)CFRetain(cached);
        }
    }

    CFIndex size = 8 + ((!__CFNumberTypeTable[type].floatBit && __CFNumberTypeTable[type].storageBit) ? 8 : 0);
    CFNumberRef result = (CFNumberRef)_CFRuntimeCreateInstance(allocator, CFNumberGetTypeID(), size, NULL);
    if (NULL == result) {
	return NULL;
    }
    
    __CFRuntimeSetNumberType(result, (uint8_t)__CFNumberTypeTable[type].canonicalType);
    
    
    // should be initialized BEFORE ever caching it!
    __CFNumberInit(result, type, valuePtr);

    // for a value to be cached, we already have the value handy
    if (NotToBeCached != valToBeCached) {
	memmove((void *)&result->_bits._64.bits, &valToBeCached, 8);
	// Put this in the cache unless the cache is already filled (by another thread).  If we do put it in the cache, retain it an extra time for the cache.
	// Note that we don't bother freeing this result and returning the cached value if the cache was filled, since cached CFNumbers are not guaranteed unique.
	// Barrier assures that the number that is placed in the cache is properly formed.
	CFNumberType origType = __CFNumberGetType(result);
	// Force all cached numbers to have the same type, so that the type does not
	// depend on the order and original type in/with which the numbers are created.
	// Forcing the type AFTER it was cached would cause a race condition with other
	// threads pulling the number object out of the cache and using it.
        __CFRuntimeSetNumberType(result, (uint8_t)kCFNumberSInt32Type);
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated"
	if (OSAtomicCompareAndSwapPtrBarrier(NULL, (void *)result, (void *volatile *)&__CFNumberCache[valToBeCached - MinCachedInt])) {
#pragma GCC diagnostic pop
	    CFRetain(result);
	} else {
	    // Did not cache the number object, put original type back.
            __CFRuntimeSetNumberType(result, origType);
	}
	return result;
    }

    return result;
}

CFNumberRef CFNumberCreate(CFAllocatorRef allocator, CFNumberType type, const void *valuePtr) {
    return _CFNumberCreate(allocator, type, valuePtr);
}

CFNumberType CFNumberGetType(CFNumberRef number) {
    CF_SWIFT_FUNCDISPATCHV(_kCFRuntimeIDCFNumber, CFNumberType, (CFSwiftRef)number, NSNumber._cfNumberGetType);
    CFNumberType type;
#if DEPLOYMENT_RUNTIME_OBJC
    if (CF_IS_OBJC(_kCFRuntimeIDCFNumber, (const void *)number)) {
        type = (CFNumberType)[(NSNumber *)number _cfNumberType];
    } else {
#endif
         __CFAssertIsNumber(number);
        type = __CFNumberGetType(number);
#if DEPLOYMENT_RUNTIME_OBJC
    }
#endif
    if (kCFNumberSInt128Type == type) type = kCFNumberSInt64Type; // must hide this type, since it is not public
    return type;
}

CF_EXPORT CFNumberType _CFNumberGetType2(CFNumberRef number) {
    CF_OBJC_FUNCDISPATCHV(_kCFRuntimeIDCFNumber, CFNumberType, (NSNumber *)number, _cfNumberType);
    __CFAssertIsNumber(number);
    return __CFNumberGetType(number);
}

CFIndex CFNumberGetByteSize(CFNumberRef number) {
    __CFAssertIsNumber(number);
    CFIndex r = 1 << __CFNumberTypeTable[CFNumberGetType(number)].lgByteSize;
    return r;
}

Boolean CFNumberIsFloatType(CFNumberRef number) {
    __CFAssertIsNumber(number);
    Boolean r = __CFNumberTypeTable[CFNumberGetType(number)].floatBit;
    return r;
}

Boolean CFNumberGetValue(CFNumberRef number, CFNumberType type, void *valuePtr) {
//printf("+ [%p] CFNumberGetValue(%p, %d, %p)\n", pthread_self(), number, type, valuePtr);

    CF_OBJC_FUNCDISPATCHV(_kCFRuntimeIDCFNumber, Boolean, (NSNumber *)number, _getValue:(void *)valuePtr forType:(CFNumberType)__CFNumberTypeTable[type].canonicalType);
    CF_SWIFT_FUNCDISPATCHV(_kCFRuntimeIDCFNumber, Boolean, (CFSwiftRef)number, NSNumber._getValue, valuePtr, (CFNumberType)__CFNumberTypeTable[type].canonicalType);
    __CFAssertIsNumber(number);
    __CFAssertIsValidNumberType(type);
    uint8_t localMemory[128];
    Boolean r = __CFNumberGetValueCompat(number, type, valuePtr ? valuePtr : localMemory);
    return r;
}

static CFComparisonResult CFNumberCompare_new(CFNumberRef number1, CFNumberRef number2, void *context) {
    CF_OBJC_FUNCDISPATCHV(_kCFRuntimeIDCFNumber, CFComparisonResult, (NSNumber *)number1, compare:(NSNumber *)number2);
    CF_OBJC_FUNCDISPATCHV(_kCFRuntimeIDCFNumber, CFComparisonResult, (NSNumber *)number2, _reverseCompare:(NSNumber *)number1);
    __CFAssertIsNumber(number1);
    __CFAssertIsNumber(number2);

    CFNumberType type1 = __CFNumberGetType(number1);
    CFNumberType type2 = __CFNumberGetType(number2);
    // Both numbers are integers
    if (!__CFNumberTypeTable[type1].floatBit && !__CFNumberTypeTable[type2].floatBit) {
        CFSInt128Struct i1, i2;
        __CFNumberGetValue(number1, kCFNumberSInt128Type, &i1);
        __CFNumberGetValue(number2, kCFNumberSInt128Type, &i2);
        return cmp128(&i1, &i2);
    }
    // Both numbers are floats
    if (__CFNumberTypeTable[type1].floatBit && __CFNumberTypeTable[type2].floatBit) {
	Float64 d1, d2;
        __CFNumberGetValue(number1, kCFNumberFloat64Type, &d1);
        __CFNumberGetValue(number2, kCFNumberFloat64Type, &d2);
	double s1 = copysign(1.0, d1);
	double s2 = copysign(1.0, d2);
	if (isnan(d1) && isnan(d2)) return kCFCompareEqualTo;
	if (isnan(d1)) return (s2 < 0.0) ? kCFCompareGreaterThan : kCFCompareLessThan;
	if (isnan(d2)) return (s1 < 0.0) ? kCFCompareLessThan : kCFCompareGreaterThan;
	// at this point, we know we don't have any NaNs
	if (s1 < s2) return kCFCompareLessThan;
	if (s2 < s1) return kCFCompareGreaterThan;
	// at this point, we know the signs are the same; do not combine these tests
	if (d1 < d2) return kCFCompareLessThan;
	if (d2 < d1) return kCFCompareGreaterThan;
        return kCFCompareEqualTo;
    }
    // One float, one integer; swap if necessary so number1 is the float
    Boolean swapResult = false;
    if (__CFNumberTypeTable[type2].floatBit) {
        CFNumberRef tmp = number1;
	number1 = number2;
	number2 = tmp;
	swapResult = true;
    }
    // At large integer values, the precision of double is quite low
    // e.g. all values roughly 2^127 +- 2^73 are represented by 1 double, 2^127.
    // If we just used double compare, that would make the 2^73 largest 128-bit
    // integers look equal, so we have to use integer comparison when possible.
    Float64 d1, d2;
    __CFNumberGetValue(number1, kCFNumberFloat64Type, &d1);
    // if the double value is really big, cannot be equal to integer
    // nan d1 will not compare true here
    if (d1 < FLOAT_NEGATIVE_2_TO_THE_127) {
	return !swapResult ? kCFCompareLessThan : kCFCompareGreaterThan;
    }
    if (FLOAT_POSITIVE_2_TO_THE_127 <= d1) {
	return !swapResult ? kCFCompareGreaterThan : kCFCompareLessThan;
    }
    CFSInt128Struct i1, i2;
    __CFNumberGetValue(number1, kCFNumberSInt128Type, &i1);
    __CFNumberGetValue(number2, kCFNumberSInt128Type, &i2);
    CFComparisonResult res = cmp128(&i1, &i2);
    if (kCFCompareEqualTo != res) {
	return !swapResult ? res : -res;
    }
    // now things are equal, but perhaps due to rounding or nan
    if (isnan(d1)) {
	if (isNeg128(&i2)) {
	    return !swapResult ? kCFCompareGreaterThan : kCFCompareLessThan;
	}
	// nan compares less than positive 0 too
	return !swapResult ? kCFCompareLessThan : kCFCompareGreaterThan;
    }
    // at this point, we know we don't have NaN
    double s1 = copysign(1.0, d1);
    double s2 = isNeg128(&i2) ? -1.0 : 1.0;
    if (s1 < s2) return !swapResult ? kCFCompareLessThan : kCFCompareGreaterThan;
    if (s2 < s1) return !swapResult ? kCFCompareGreaterThan : kCFCompareLessThan;
    // at this point, we know the signs are the same; do not combine these tests
    __CFNumberGetValue(number2, kCFNumberFloat64Type, &d2);
    if (d1 < d2) return !swapResult ? kCFCompareLessThan : kCFCompareGreaterThan;
    if (d2 < d1) return !swapResult ? kCFCompareGreaterThan : kCFCompareLessThan;
    return kCFCompareEqualTo;
}

CFComparisonResult CFNumberCompare(CFNumberRef number1, CFNumberRef number2, void *context) {
    CFComparisonResult r = CFNumberCompare_new(number1, number2, context);
    return r;
}



#undef __CFAssertIsBoolean
#undef __CFAssertIsNumber
#undef __CFAssertIsValidNumberType
#undef BITSFORDOUBLENAN
#undef BITSFORDOUBLEPOSINF
#undef BITSFORDOUBLENEGINF
#undef MinCachedInt
#undef MaxCachedInt
#undef NotToBeCached