1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
|
/* CFStringUtilities.c
Copyright (c) 1999-2019, Apple Inc. and the Swift project authors
Portions Copyright (c) 2014-2019, Apple Inc. and the Swift project authors
Licensed under Apache License v2.0 with Runtime Library Exception
See http://swift.org/LICENSE.txt for license information
See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
Responsibility: Foundation Team
*/
#include "CFInternal.h"
#include "CFStringEncodingConverterExt.h"
#include "CFUniChar.h"
#include "CFStringEncodingExt.h"
#include "CFStringEncodingConverterPriv.h"
#include "CFStringEncodingDatabase.h"
#include "CFICUConverters.h"
#include "CFString_Internal.h"
#include <limits.h>
#include <stdlib.h>
#if TARGET_OS_MAC || TARGET_OS_WIN32 || TARGET_OS_LINUX || TARGET_OS_WASI
#include <_foundation_unicode/ucol.h>
#include <_foundation_unicode/ucoleitr.h>
#endif
#include <string.h>
#if TARGET_OS_WIN32
#include <tchar.h>
#endif
Boolean CFStringIsEncodingAvailable(CFStringEncoding theEncoding) {
switch (theEncoding) {
case kCFStringEncodingASCII: // Built-in encodings
case kCFStringEncodingMacRoman:
case kCFStringEncodingUTF8:
case kCFStringEncodingNonLossyASCII:
case kCFStringEncodingWindowsLatin1:
case kCFStringEncodingNextStepLatin:
case kCFStringEncodingUTF16:
case kCFStringEncodingUTF16BE:
case kCFStringEncodingUTF16LE:
case kCFStringEncodingUTF32:
case kCFStringEncodingUTF32BE:
case kCFStringEncodingUTF32LE:
return true;
default:
return CFStringEncodingIsValidEncoding(theEncoding);
}
}
const CFStringEncoding* CFStringGetListOfAvailableEncodings() {
return (const CFStringEncoding *)CFStringEncodingListOfAvailableEncodings();
}
CFStringRef CFStringGetNameOfEncoding(CFStringEncoding theEncoding) {
static CFMutableDictionaryRef mappingTable = NULL;
static os_unfair_lock mappingTableLock = OS_UNFAIR_LOCK_INIT;
CFStringRef theName = NULL;
os_unfair_lock_lock(&mappingTableLock);
if (mappingTable) {
// Once added, the value is not removed, so no need to add an additional retain here (plus this function is a 'get').
theName = (CFStringRef)CFDictionaryGetValue(mappingTable, (const void*)(uintptr_t)theEncoding);
}
os_unfair_lock_unlock(&mappingTableLock);
if (!theName) {
const char *encodingName = __CFStringEncodingGetName(theEncoding);
if (encodingName) {
theName = CFStringCreateWithCString(kCFAllocatorSystemDefault, encodingName, kCFStringEncodingASCII);
}
if (theName) {
os_unfair_lock_lock(&mappingTableLock);
CFStringRef result = NULL;
if (!mappingTable) {
mappingTable = CFDictionaryCreateMutable(kCFAllocatorSystemDefault, 0, (const CFDictionaryKeyCallBacks *)NULL, &kCFTypeDictionaryValueCallBacks);
} else { // Check to see if this got in the dictionary in the meantime
result = (CFStringRef)CFDictionaryGetValue(mappingTable, (const void*)(uintptr_t)theEncoding);
}
if (!result) { // If not, add it in
CFDictionaryAddValue(mappingTable, (const void*)(uintptr_t)theEncoding, (const void*)theName);
os_unfair_lock_unlock(&mappingTableLock);
CFRelease(theName);
} else { // Otherwise use the one already in there
os_unfair_lock_unlock(&mappingTableLock);
CFRelease(theName);
theName = result;
}
}
}
return theName;
}
CFStringEncoding CFStringConvertIANACharSetNameToEncoding(CFStringRef charsetName) {
CFStringEncoding encoding = kCFStringEncodingInvalidId;
#define BUFFER_SIZE (100)
char buffer[BUFFER_SIZE];
const char *name = CFStringGetCStringPtr(charsetName, __CFStringGetEightBitStringEncoding());
if (NULL == name) {
if (false == CFStringGetCString(charsetName, buffer, BUFFER_SIZE, __CFStringGetEightBitStringEncoding())) return kCFStringEncodingInvalidId;
name = buffer;
}
encoding = __CFStringEncodingGetFromCanonicalName(name);
#if TARGET_OS_MAC || TARGET_OS_WIN32 || TARGET_OS_LINUX || TARGET_OS_WASI
if (kCFStringEncodingInvalidId == encoding) encoding = __CFStringEncodingGetFromICUName(name);
#endif
// handling Java name variant for MS codepages
if ((kCFStringEncodingInvalidId == encoding) && !strncasecmp(name, "ms950", strlen("ms950"))) { // <rdar://problem/12903398> “MS950” is not recognized
encoding = __CFStringEncodingGetFromCanonicalName("cp950");
}
return encoding;
}
CFStringRef CFStringConvertEncodingToIANACharSetName(CFStringEncoding encoding) {
CFStringRef name = NULL;
CFIndex value = encoding;
static CFMutableDictionaryRef mappingTable = NULL;
static CFLock_t lock = CFLockInit;
__CFLock(&lock);
name = ((NULL == mappingTable) ? NULL : (CFStringRef)CFDictionaryGetValue(mappingTable, (const void*)value));
if (NULL == name) {
#define STACK_BUFFER_SIZE (100)
char buffer[STACK_BUFFER_SIZE];
if (__CFStringEncodingGetCanonicalName(encoding, buffer, STACK_BUFFER_SIZE)) name = CFStringCreateWithCString(NULL, buffer, kCFStringEncodingASCII);
if (NULL != name) {
CFIndex value = encoding;
if (NULL == mappingTable) mappingTable = CFDictionaryCreateMutable(NULL, 0, NULL, &kCFTypeDictionaryValueCallBacks);
CFDictionaryAddValue(mappingTable, (const void*)value, (const void*)name);
CFRelease(name);
}
}
__CFUnlock(&lock);
return name;
}
CF_ENUM(CFStringEncoding) {
NSASCIIStringEncoding = 1, /* 0..127 only */
NSNEXTSTEPStringEncoding = 2,
NSJapaneseEUCStringEncoding = 3,
NSUTF8StringEncoding = 4,
NSISOLatin1StringEncoding = 5,
NSSymbolStringEncoding = 6,
NSNonLossyASCIIStringEncoding = 7,
NSShiftJISStringEncoding = 8,
NSISOLatin2StringEncoding = 9,
NSUnicodeStringEncoding = 10,
NSWindowsCP1251StringEncoding = 11, /* Cyrillic; same as AdobeStandardCyrillic */
NSWindowsCP1252StringEncoding = 12, /* WinLatin1 */
NSWindowsCP1253StringEncoding = 13, /* Greek */
NSWindowsCP1254StringEncoding = 14, /* Turkish */
NSWindowsCP1250StringEncoding = 15, /* WinLatin2 */
NSISO2022JPStringEncoding = 21, /* ISO 2022 Japanese encoding for e-mail */
NSMacOSRomanStringEncoding = 30,
NSProprietaryStringEncoding = 65536 /* Installation-specific encoding */
};
#define NSENCODING_MASK ((CFStringEncoding)1 << 31)
unsigned long CFStringConvertEncodingToNSStringEncoding(CFStringEncoding theEncoding) {
//These two are frequently used in situations that are otherwise very fast (e.g. tagged strings), so check them first
if (theEncoding == kCFStringEncodingUTF8) return NSUTF8StringEncoding;
if (theEncoding == kCFStringEncodingASCII) return NSASCIIStringEncoding;
switch (theEncoding & 0xFFF) {
case kCFStringEncodingUnicode:
if (theEncoding == kCFStringEncodingUTF16) return NSUnicodeStringEncoding;
//UTF8 handled above
break;
case kCFStringEncodingWindowsLatin1: return NSWindowsCP1252StringEncoding;
case kCFStringEncodingMacRoman: return NSMacOSRomanStringEncoding;
//ASCII handled above
case kCFStringEncodingDOSJapanese: return NSShiftJISStringEncoding;
case kCFStringEncodingWindowsCyrillic: return NSWindowsCP1251StringEncoding;
case kCFStringEncodingWindowsGreek: return NSWindowsCP1253StringEncoding;
case kCFStringEncodingWindowsLatin5: return NSWindowsCP1254StringEncoding;
case kCFStringEncodingWindowsLatin2: return NSWindowsCP1250StringEncoding;
case kCFStringEncodingISOLatin1: return NSISOLatin1StringEncoding;
case kCFStringEncodingNonLossyASCII: return NSNonLossyASCIIStringEncoding;
case kCFStringEncodingEUC_JP: return NSJapaneseEUCStringEncoding;
case kCFStringEncodingMacSymbol: return NSSymbolStringEncoding;
case kCFStringEncodingISOLatin2: return NSISOLatin2StringEncoding;
case kCFStringEncodingISO_2022_JP: return NSISO2022JPStringEncoding;
case kCFStringEncodingNextStepLatin: return NSNEXTSTEPStringEncoding;
}
return NSENCODING_MASK | theEncoding;
}
CFStringEncoding CFStringConvertNSStringEncodingToEncoding(unsigned long theEncoding) {
const uint16_t encodings[] = {
kCFStringEncodingASCII,
kCFStringEncodingNextStepLatin,
kCFStringEncodingEUC_JP,
0,
kCFStringEncodingISOLatin1,
kCFStringEncodingMacSymbol,
kCFStringEncodingNonLossyASCII,
kCFStringEncodingDOSJapanese,
kCFStringEncodingISOLatin2,
kCFStringEncodingUTF16,
kCFStringEncodingWindowsCyrillic,
kCFStringEncodingWindowsLatin1,
kCFStringEncodingWindowsGreek,
kCFStringEncodingWindowsLatin5,
kCFStringEncodingWindowsLatin2
};
if (NSUTF8StringEncoding == theEncoding) return kCFStringEncodingUTF8;
if ((theEncoding > 0) && (theEncoding <= NSWindowsCP1250StringEncoding)) return encodings[theEncoding - 1];
switch (theEncoding) {
case NSMacOSRomanStringEncoding: return kCFStringEncodingMacRoman;
case NSISO2022JPStringEncoding: return kCFStringEncodingISO_2022_JP;
default:
return ((theEncoding & NSENCODING_MASK) ? theEncoding & ~NSENCODING_MASK : kCFStringEncodingInvalidId);
}
}
UInt32 CFStringConvertEncodingToWindowsCodepage(CFStringEncoding theEncoding) {
uint16_t codepage = __CFStringEncodingGetWindowsCodePage(theEncoding);
return ((0 == codepage) ? kCFStringEncodingInvalidId : codepage);
}
CFStringEncoding CFStringConvertWindowsCodepageToEncoding(UInt32 theEncoding) {
return __CFStringEncodingGetFromWindowsCodePage(theEncoding);
}
CFStringEncoding CFStringGetMostCompatibleMacStringEncoding(CFStringEncoding encoding) {
CFStringEncoding macEncoding = __CFStringEncodingGetMostCompatibleMacScript(encoding);
return macEncoding;
}
#define kCFStringCompareAllocationIncrement (128)
#if TARGET_OS_MAC || TARGET_OS_WIN32 || TARGET_OS_LINUX || TARGET_OS_WASI
// -------------------------------------------------------------------------------------------------
// CompareSpecials - ignore case & diacritic differences
//
// Decomposed have 2nd-4th chars of type Mn or Mc, or in range 1160-11FF (jamo)
// Fullwidth & halfwidth are in range FF00-FFEF
// Parenthesized & circled are in range 3200-32FF
// -------------------------------------------------------------------------------------------------
enum {
kUpperCaseWeightMin = 0x80 | 0x0F,
kUpperCaseWeightMax = 0x80 | 0x17,
kUpperToLowerDelta = 0x80 | 0x0A, // 0x0A = 0x0F - 0x05
kMaskPrimarySecondary = 0xFFFFFF00,
kMaskPrimaryOnly = 0xFFFF0000,
kMaskSecondaryOnly = 0x0000FF00,
kMaskCaseTertiary = 0x000000FF // 2 hi bits case, 6 lo bits tertiary
};
static SInt32 __CompareSpecials(const UCollator *collator, CFOptionFlags options, const UniChar *text1Ptr, UniCharCount text1Length, const UniChar *text2Ptr, UniCharCount text2Length) {
UErrorCode icuStatus = U_ZERO_ERROR;
SInt32 orderWidth = 0;
SInt32 orderCompos = 0;
UCollationElements * collElems1 = ucol_openElements(collator, (const UChar *)text1Ptr, text1Length, &icuStatus);
UCollationElements * collElems2 = ucol_openElements(collator, (const UChar *)text2Ptr, text2Length, &icuStatus);
if (U_SUCCESS(icuStatus)) {
int32_t startOffset1 = 0;
int32_t startOffset2 = 0;
while (true) {
int32_t elemOrder1, elemOrder2;
int32_t offset1, offset2;
elemOrder1 = ucol_next(collElems1, &icuStatus);
elemOrder2 = ucol_next(collElems2, &icuStatus);
if ( U_FAILURE(icuStatus) || elemOrder1 == (int32_t)UCOL_NULLORDER || elemOrder2 == (int32_t)UCOL_NULLORDER ) {
break;
}
offset1 = ucol_getOffset(collElems1);
offset2 = ucol_getOffset(collElems2);
if ( (elemOrder1 & kMaskPrimarySecondary) == (elemOrder2 & kMaskPrimarySecondary) ) {
if ( (elemOrder1 & kMaskPrimaryOnly) != 0 ) {
// keys may differ in case, width, circling, etc.
int32_t tertiary1 = (elemOrder1 & kMaskCaseTertiary);
int32_t tertiary2 = (elemOrder2 & kMaskCaseTertiary);
// fold upper to lower case
if (tertiary1 >= kUpperCaseWeightMin && tertiary1 <= kUpperCaseWeightMax) {
tertiary1 -= kUpperToLowerDelta;
}
if (tertiary2 >= kUpperCaseWeightMin && tertiary2 <= kUpperCaseWeightMax) {
tertiary2 -= kUpperToLowerDelta;
}
// now compare
if (tertiary1 != tertiary2) {
orderWidth = (tertiary1 < tertiary2)? -1: 1;
break;
}
} else if ( (elemOrder1 & kMaskSecondaryOnly) != 0 ) {
// primary weights are both zero, but secondaries are not.
if ( orderCompos == 0 && (options & kCFCompareNonliteral) == 0 ) {
// We have a code element which is a diacritic.
// It may have come from a composed char or a combining char.
// If it came from a combining char (longer element length) it sorts first.
// This is only an approximation to what the Mac OS 9 code did, but this is an
// unusual case anyway.
int32_t elem1Length = offset1 - startOffset1;
int32_t elem2Length = offset2 - startOffset2;
if (elem1Length != elem2Length) {
orderCompos = (elem1Length > elem2Length)? -1: 1;
}
}
}
}
startOffset1 = offset1;
startOffset2 = offset2;
}
ucol_closeElements(collElems1);
ucol_closeElements(collElems2);
}
return (orderWidth != 0)? orderWidth: orderCompos;
}
static SInt32 __CompareCodePoints(const UniChar *text1Ptr, UniCharCount text1Length, const UniChar *text2Ptr, UniCharCount text2Length ) {
const UniChar * text1P = text1Ptr;
const UniChar * text2P = text2Ptr;
UInt32 textLimit = (text1Length <= text2Length)? text1Length: text2Length;
UInt32 textCounter;
SInt32 orderResult = 0;
// Loop through either string...the first difference differentiates this.
for (textCounter = 0; textCounter < textLimit && *text1P == *text2P; textCounter++) {
text1P++;
text2P++;
}
if (textCounter < textLimit) {
// code point difference
orderResult = (*text1P < *text2P) ? -1 : 1;
} else if (text1Length != text2Length) {
// one string has extra stuff at end
orderResult = (text1Length < text2Length) ? -1 : 1;
}
return orderResult;
}
static UCollator *__CFStringCreateCollator(CFLocaleRef compareLocale) {
CFStringRef canonLocaleCFStr = (CFStringRef)CFLocaleGetValue(compareLocale, __kCFLocaleCollatorID);
char icuLocaleStr[128] = {0};
CFStringGetCString(canonLocaleCFStr, icuLocaleStr, sizeof(icuLocaleStr), kCFStringEncodingASCII);
UErrorCode icuStatus = U_ZERO_ERROR;
UCollator * collator = ucol_open(icuLocaleStr, &icuStatus);
ucol_setAttribute(collator, UCOL_NORMALIZATION_MODE, UCOL_OFF, &icuStatus);
ucol_setAttribute(collator, UCOL_ALTERNATE_HANDLING, UCOL_NON_IGNORABLE, &icuStatus);
ucol_setAttribute(collator, UCOL_STRENGTH, UCOL_PRIMARY, &icuStatus);
ucol_setAttribute(collator, UCOL_CASE_LEVEL, UCOL_OFF, &icuStatus);
ucol_setAttribute(collator, UCOL_NUMERIC_COLLATION, UCOL_OFF, &icuStatus);
return collator;
}
#define kCFMaxCachedDefaultCollators (8)
static UCollator *__CFDefaultCollators[kCFMaxCachedDefaultCollators];
static CFIndex __CFDefaultCollatorsCount = 0;
static const void *__CFDefaultCollatorLocale = NULL;
static os_unfair_lock __CFDefaultCollatorLock = OS_UNFAIR_LOCK_INIT;
static UCollator *__CFStringCopyDefaultCollator(CFLocaleRef compareLocale) {
CFLocaleRef currentLocale = NULL;
UCollator * collator = NULL;
os_unfair_lock_lock_with_options(&__CFDefaultCollatorLock, OS_UNFAIR_LOCK_DATA_SYNCHRONIZATION);
if (compareLocale != __CFDefaultCollatorLocale) {
currentLocale = CFLocaleCopyCurrent();
if (compareLocale != currentLocale) {
CFRelease(currentLocale);
os_unfair_lock_unlock(&__CFDefaultCollatorLock);
return NULL;
}
}
if ((NULL != currentLocale) && (__CFDefaultCollatorLocale != currentLocale)) {
while (__CFDefaultCollatorsCount > 0) ucol_close(__CFDefaultCollators[--__CFDefaultCollatorsCount]);
__CFDefaultCollatorLocale = CFRetain(currentLocale);
}
if (__CFDefaultCollatorsCount > 0) collator = __CFDefaultCollators[--__CFDefaultCollatorsCount];
os_unfair_lock_unlock(&__CFDefaultCollatorLock);
if (NULL == collator) {
collator = __CFStringCreateCollator(compareLocale);
}
if (NULL != currentLocale) CFRelease(currentLocale);
return collator;
}
#if TARGET_OS_MAC || TARGET_OS_WIN32 || TARGET_OS_LINUX || TARGET_OS_WASI
static void __collatorFinalize(UCollator *collator) {
CFLocaleRef locale = _CFGetTSD(__CFTSDKeyCollatorLocale);
_CFSetTSD(__CFTSDKeyCollatorUCollator, NULL, NULL);
_CFSetTSD(__CFTSDKeyCollatorLocale, NULL, NULL);
os_unfair_lock_lock_with_options(&__CFDefaultCollatorLock, OS_UNFAIR_LOCK_DATA_SYNCHRONIZATION);
if ((__CFDefaultCollatorLocale == locale) && (__CFDefaultCollatorsCount < kCFMaxCachedDefaultCollators)) {
__CFDefaultCollators[__CFDefaultCollatorsCount++] = collator;
collator = NULL;
}
os_unfair_lock_unlock(&__CFDefaultCollatorLock);
if (NULL != collator) ucol_close(collator);
#ifndef __clang_analyzer__
// This release is unbalanced from perspective of analyzer, but it is retained when __CFTSDKeyCollatorLocale is set
if (locale) CFRelease(locale);
#endif
}
#endif
// -------------------------------------------------------------------------------------------------
// __CompareTextDefault
//
// A primary difference is denoted by values 2/-2 in orderP. Other differences are indicated with a -1/1.
// A negative value indicates that text1 sorts before text2.
// -------------------------------------------------------------------------------------------------
static OSStatus __CompareTextDefault(UCollator *collator, CFOptionFlags options, const UniChar *text1Ptr, UniCharCount text1Length, const UniChar *text2Ptr, UniCharCount text2Length, Boolean *equivalentP, SInt32 *orderP) {
// collator must have default settings restored on exit from this function
*equivalentP = true;
*orderP = 0;
if (options & kCFCompareNumerically) {
UErrorCode icuStatus = U_ZERO_ERROR;
ucol_setAttribute(collator, UCOL_NUMERIC_COLLATION, UCOL_ON, &icuStatus);
}
// Most string differences are Primary. Do a primary check first, then if there
// are no differences do a comparison with the options in the collator.
UCollationResult icuResult = ucol_strcoll(collator, (const UChar *)text1Ptr, text1Length, (const UChar *)text2Ptr, text2Length);
if (icuResult != UCOL_EQUAL) {
*orderP = (icuResult == UCOL_LESS) ? -2 : 2;
}
if (*orderP == 0) {
UErrorCode icuStatus = U_ZERO_ERROR;
ucol_setAttribute(collator, UCOL_NORMALIZATION_MODE, UCOL_ON, &icuStatus);
ucol_setAttribute(collator, UCOL_STRENGTH, (options & kCFCompareDiacriticInsensitive) ? UCOL_PRIMARY : UCOL_SECONDARY, &icuStatus);
ucol_setAttribute(collator, UCOL_CASE_LEVEL, (options & kCFCompareCaseInsensitive) ? UCOL_OFF : UCOL_ON, &icuStatus);
if (!U_SUCCESS(icuStatus)) {
icuStatus = U_ZERO_ERROR;
ucol_setAttribute(collator, UCOL_NORMALIZATION_MODE, UCOL_OFF, &icuStatus);
ucol_setAttribute(collator, UCOL_STRENGTH, UCOL_PRIMARY, &icuStatus);
ucol_setAttribute(collator, UCOL_CASE_LEVEL, UCOL_OFF, &icuStatus);
ucol_setAttribute(collator, UCOL_NUMERIC_COLLATION, UCOL_OFF, &icuStatus);
return 666;
}
// We don't have a primary difference. Recompare with standard collator.
icuResult = ucol_strcoll(collator, (const UChar *)text1Ptr, text1Length, (const UChar *)text2Ptr, text2Length);
if (icuResult != UCOL_EQUAL) {
*orderP = (icuResult == UCOL_LESS) ? -1 : 1;
}
icuStatus = U_ZERO_ERROR;
ucol_setAttribute(collator, UCOL_NORMALIZATION_MODE, UCOL_OFF, &icuStatus);
ucol_setAttribute(collator, UCOL_STRENGTH, UCOL_PRIMARY, &icuStatus);
ucol_setAttribute(collator, UCOL_CASE_LEVEL, UCOL_OFF, &icuStatus);
}
if (*orderP == 0 && (options & kCFCompareNonliteral) == 0) {
*orderP = __CompareSpecials(collator, options, text1Ptr, text1Length, text2Ptr, text2Length);
}
*equivalentP = (*orderP == 0);
// If strings are equivalent but we care about order and have not yet checked
// to the level of code point order, then do some more checks for order
if (*orderP == 0) {
UErrorCode icuStatus = U_ZERO_ERROR;
// First try to see if ICU can find any differences above code point level
ucol_setAttribute(collator, UCOL_NORMALIZATION_MODE, UCOL_ON, &icuStatus);
ucol_setAttribute(collator, UCOL_STRENGTH, UCOL_TERTIARY, &icuStatus);
ucol_setAttribute(collator, UCOL_CASE_LEVEL, UCOL_ON, &icuStatus);
if (!U_SUCCESS(icuStatus)) {
icuStatus = U_ZERO_ERROR;
ucol_setAttribute(collator, UCOL_NORMALIZATION_MODE, UCOL_OFF, &icuStatus);
ucol_setAttribute(collator, UCOL_STRENGTH, UCOL_PRIMARY, &icuStatus);
ucol_setAttribute(collator, UCOL_CASE_LEVEL, UCOL_OFF, &icuStatus);
ucol_setAttribute(collator, UCOL_NUMERIC_COLLATION, UCOL_OFF, &icuStatus);
return 666;
}
icuResult = ucol_strcoll(collator, (const UChar *)text1Ptr, text1Length, (const UChar *)text2Ptr, text2Length);
if (icuResult != UCOL_EQUAL) {
*orderP = (icuResult == UCOL_LESS) ? -1 : 1;
} else {
// no ICU differences above code point level, compare code points
*orderP = __CompareCodePoints( text1Ptr, text1Length, text2Ptr, text2Length );
}
icuStatus = U_ZERO_ERROR;
ucol_setAttribute(collator, UCOL_NORMALIZATION_MODE, UCOL_OFF, &icuStatus);
ucol_setAttribute(collator, UCOL_STRENGTH, UCOL_PRIMARY, &icuStatus);
ucol_setAttribute(collator, UCOL_CASE_LEVEL, UCOL_OFF, &icuStatus);
}
if (options & kCFCompareNumerically) {
UErrorCode icuStatus = U_ZERO_ERROR;
ucol_setAttribute(collator, UCOL_NUMERIC_COLLATION, UCOL_OFF, &icuStatus);
}
return 0; // noErr
}
#endif // TARGET_OS_MAC || TARGET_OS_WIN32 || TARGET_OS_LINUX
static inline CFIndex __extendLocationBackward(CFIndex location, CFStringInlineBuffer *str, const uint8_t *nonBaseBMP, const uint8_t *punctBMP) {
while (location > 0) {
UTF32Char ch = CFStringGetCharacterFromInlineBuffer(str, location);
UTF32Char otherChar;
if (CFUniCharIsSurrogateLowCharacter(ch) && CFUniCharIsSurrogateHighCharacter((otherChar = CFStringGetCharacterFromInlineBuffer(str, location - 1)))) {
ch = CFUniCharGetLongCharacterForSurrogatePair(ch, otherChar);
uint8_t planeNo = (ch >> 16);
if ((planeNo > 1) || (!CFUniCharIsMemberOfBitmap(ch, CFUniCharGetBitmapPtrForPlane(kCFUniCharNonBaseCharacterSet, planeNo)) && !CFUniCharIsMemberOfBitmap(ch, CFUniCharGetBitmapPtrForPlane(kCFUniCharPunctuationCharacterSet, planeNo)))) break;
location -= 2;
} else {
if ((!CFUniCharIsMemberOfBitmap(ch, nonBaseBMP) && !CFUniCharIsMemberOfBitmap(ch, punctBMP)) || ((ch >= 0x2E80) && (ch < 0xAC00))) break;
--location;
}
}
return location;
}
static inline CFIndex __extendLocationForward(CFIndex location, CFStringInlineBuffer *str, const uint8_t *alnumBMP, const uint8_t *punctBMP, const uint8_t *controlBMP, CFIndex strMax) {
do {
UTF32Char ch = CFStringGetCharacterFromInlineBuffer(str, location);
UTF32Char otherChar;
if (CFUniCharIsSurrogateHighCharacter(ch) && CFUniCharIsSurrogateLowCharacter((otherChar = CFStringGetCharacterFromInlineBuffer(str, location + 1)))) {
ch = CFUniCharGetLongCharacterForSurrogatePair(ch, otherChar);
location += 2;
uint8_t planeNo = (ch >> 16);
if (!CFUniCharIsMemberOfBitmap(ch, CFUniCharGetBitmapPtrForPlane(kCFUniCharAlphaNumericCharacterSet, planeNo)) && !CFUniCharIsMemberOfBitmap(ch, CFUniCharGetBitmapPtrForPlane(kCFUniCharPunctuationCharacterSet, planeNo)) && !CFUniCharIsMemberOfBitmap(ch, CFUniCharGetBitmapPtrForPlane(kCFUniCharControlAndFormatterCharacterSet, planeNo))) break;
} else {
++location;
if ((!CFUniCharIsMemberOfBitmap(ch, alnumBMP) && !CFUniCharIsMemberOfBitmap(ch, punctBMP) && !CFUniCharIsMemberOfBitmap(ch, controlBMP)) || ((ch >= 0x2E80) && (ch < 0xAC00))) break;
}
} while (location < strMax);
return location;
}
CF_PRIVATE CFComparisonResult _CFCompareStringsWithLocale(CFStringInlineBuffer *str1, CFRange str1Range, CFStringInlineBuffer *str2, CFRange str2Range, CFOptionFlags options, const void *compareLocale) {
const UniChar *characters1;
const UniChar *characters2;
CFComparisonResult compResult = kCFCompareEqualTo;
CFRange range1 = str1Range;
CFRange range2 = str2Range;
SInt32 order;
#if TARGET_OS_MAC || TARGET_OS_WIN32 || TARGET_OS_LINUX || TARGET_OS_WASI
Boolean isEqual;
bool forcedOrdering = ((options & kCFCompareForcedOrdering) ? true : false);
UCollator *collator = NULL;
#endif
static const uint8_t *alnumBMP = NULL;
static const uint8_t *nonBaseBMP = NULL;
static const uint8_t *punctBMP = NULL;
static const uint8_t *controlBMP = NULL;
if (NULL == alnumBMP) {
alnumBMP = CFUniCharGetBitmapPtrForPlane(kCFUniCharAlphaNumericCharacterSet, 0);
nonBaseBMP = CFUniCharGetBitmapPtrForPlane(kCFUniCharNonBaseCharacterSet, 0);
punctBMP = CFUniCharGetBitmapPtrForPlane(kCFUniCharPunctuationCharacterSet, 0);
controlBMP = CFUniCharGetBitmapPtrForPlane(kCFUniCharControlAndFormatterCharacterSet, 0);
}
// Determine the range of characters surrodiing the current index significant for localized comparison. The range is extended backward and forward as long as they are contextual. Contextual characters include all letters and punctuations. Since most control/format characters are ignorable in localized comparison, we also include them extending forward.
range1.location = str1Range.location;
range2.location = str2Range.location;
// go backward
// The characters upto the current index are already determined to be equal by the CFString's standard character folding algorithm. Extend as long as truly contextual (all letters and punctuations).
if (range1.location > 0) {
range1.location = __extendLocationBackward(range1.location - 1, str1, nonBaseBMP, punctBMP);
}
if (range2.location > 0) {
range2.location = __extendLocationBackward(range2.location - 1, str2, nonBaseBMP, punctBMP);
}
#if TARGET_OS_MAC || TARGET_OS_WIN32 || TARGET_OS_LINUX || TARGET_OS_WASI
// First we try to use the last one used on this thread, if the locale is the same,
// otherwise we try to check out a default one, or then we create one.
UCollator *threadCollator = _CFGetTSD(__CFTSDKeyCollatorUCollator);
CFLocaleRef threadLocale = _CFGetTSD(__CFTSDKeyCollatorLocale);
if (compareLocale == threadLocale) {
collator = threadCollator;
} else {
collator = __CFStringCopyDefaultCollator((CFLocaleRef)compareLocale);
if (NULL == collator) {
collator = __CFStringCreateCollator((CFLocaleRef)compareLocale);
}
}
#endif
characters1 = CFStringGetCharactersPtrFromInlineBuffer(str1, range1);
characters2 = CFStringGetCharactersPtrFromInlineBuffer(str2, range2);
if ((NULL != characters1) && (NULL != characters2)) { // do fast
range1.length = (str1Range.location + str1Range.length) - range1.location;
range2.length = (str2Range.location + str2Range.length) - range2.location;
#if TARGET_OS_MAC || TARGET_OS_WIN32 || TARGET_OS_LINUX || TARGET_OS_WASI
if ((NULL != collator) && (__CompareTextDefault(collator, options, characters1, range1.length, characters2, range2.length, &isEqual, &order) == 0 /* noErr */)) {
compResult = ((isEqual && !forcedOrdering) ? kCFCompareEqualTo : ((order < 0) ? kCFCompareLessThan : kCFCompareGreaterThan));
} else
#endif
{
compResult = ((memcmp(characters1, characters2, sizeof(UniChar) * __CFMin(range1.length, range2.length)) < 0) ? kCFCompareLessThan : kCFCompareGreaterThan);
}
} else {
UniChar *buffer1 = NULL;
UniChar *buffer2 = NULL;
UTF16Char sBuffer1[kCFStringCompareAllocationIncrement];
UTF16Char sBuffer2[kCFStringCompareAllocationIncrement];
CFIndex buffer1Len = 0, buffer2Len = 0;
CFIndex str1Max = str1Range.location + str1Range.length;
CFIndex str2Max = str2Range.location + str2Range.length;
CFIndex bufferSize;
// Extend forward and compare until the result is deterministic. The result is indeterministic if the differences are weak and can be resolved by character folding. For example, comparision between "abc" and "ABC" is considered to be indeterministic.
do {
if (str1Range.location < str1Max) {
str1Range.location = __extendLocationForward(str1Range.location, str1, alnumBMP, punctBMP, controlBMP, str1Max);
range1.length = (str1Range.location - range1.location);
characters1 = CFStringGetCharactersPtrFromInlineBuffer(str1, range1);
if (NULL == characters1) {
if ((0 > buffer1Len) || (range1.length > kCFStringCompareAllocationIncrement)) {
if (buffer1Len < range1.length) {
bufferSize = range1.length + (kCFStringCompareAllocationIncrement - (range1.length % kCFStringCompareAllocationIncrement));
if (0 == buffer1Len) {
buffer1 = (UniChar *)CFAllocatorAllocate(kCFAllocatorSystemDefault, sizeof(UTF16Char) * bufferSize, 0);
if (!buffer1) {
__CFStringHandleOutOfMemory(NULL);
}
} else if (buffer1Len < range1.length) {
buffer1 = __CFSafelyReallocateWithAllocator(kCFAllocatorSystemDefault, buffer1, sizeof(UTF16Char) * bufferSize, 0, NULL);
}
buffer1Len = bufferSize;
}
} else {
buffer1 = sBuffer1;
}
CFStringGetCharactersFromInlineBuffer(str1, range1, buffer1);
characters1 = buffer1;
}
}
if (str2Range.location < str2Max) {
str2Range.location = __extendLocationForward(str2Range.location, str2, alnumBMP, punctBMP, controlBMP, str2Max);
range2.length = (str2Range.location - range2.location);
characters2 = CFStringGetCharactersPtrFromInlineBuffer(str2, range2);
if (NULL == characters2) {
if ((0 > buffer2Len) || (range2.length > kCFStringCompareAllocationIncrement)) {
if (buffer2Len < range2.length) {
bufferSize = range2.length + (kCFStringCompareAllocationIncrement - (range2.length % kCFStringCompareAllocationIncrement));
if (0 == buffer2Len) {
buffer2 = (UniChar *)CFAllocatorAllocate(kCFAllocatorSystemDefault, sizeof(UTF16Char) * bufferSize, 0);
if (!buffer2) {
__CFStringHandleOutOfMemory(NULL);
}
} else if (buffer2Len < range2.length) {
buffer2 = __CFSafelyReallocateWithAllocator(kCFAllocatorSystemDefault, buffer2, sizeof(UTF16Char) * bufferSize, 0, NULL);
}
buffer2Len = bufferSize;
}
} else {
buffer2 = sBuffer2;
}
CFStringGetCharactersFromInlineBuffer(str2, range2, buffer2);
characters2 = buffer2;
}
}
#if TARGET_OS_MAC || TARGET_OS_WIN32 || TARGET_OS_LINUX || TARGET_OS_WASI
if ((NULL != collator) && (__CompareTextDefault(collator, options, characters1, range1.length, characters2, range2.length, &isEqual, &order) == 0 /* noErr */)) {
if (isEqual) {
if (forcedOrdering && (kCFCompareEqualTo == compResult) && (0 != order)) compResult = ((order < 0) ? kCFCompareLessThan : kCFCompareGreaterThan);
order = 0;
}
} else
#endif
if ((NULL == characters1) || (NULL == characters2)) {
// We've reached here by producing invalid ranges for either string.
//
// If either range1 or range2 initially doesn't cover a valid portion of the corresponding characters buffer, CFStringGetCharactersPtrFromInlineBuffer will return NULL and we fall into this loop.
// Then, if either str1Range.location >= str1Max or str2Range.location >= str2Max (i.e. we got faulty input), then the matching range can't be advanced, and we won't attempt to allocate a new buffer.
// We'll then arrive here, and cannot reasonably perform the direct memcmp below.
HALT_MSG("Invalid string range produced for character buffer in _CFCompareStringsWithLocale.");
} else {
order = memcmp(characters1, characters2, sizeof(UTF16Char) * ((range1.length < range2.length) ? range1.length : range2.length));
if (0 == order) {
if (range1.length < range2.length) {
order = -2;
} else if (range2.length < range1.length) {
order = 2;
}
} else if (order < 0) {
--order;
} else if (order > 0) {
++order;
}
}
if ((order < -1) || (order > 1)) break; // the result is deterministic
if (0 == order) {
range1.location = str1Range.location;
range2.location = str2Range.location;
}
} while ((str1Range.location < str1Max) || (str2Range.location < str2Max));
if (0 != order) compResult = ((order < 0) ? kCFCompareLessThan : kCFCompareGreaterThan);
if (buffer1Len > 0) CFAllocatorDeallocate(kCFAllocatorSystemDefault, buffer1);
if (buffer2Len > 0) CFAllocatorDeallocate(kCFAllocatorSystemDefault, buffer2);
}
#if TARGET_OS_MAC || TARGET_OS_WIN32 || TARGET_OS_LINUX || TARGET_OS_WASI
if (collator == threadCollator) {
// do nothing, already cached
} else {
if (threadLocale) __collatorFinalize((UCollator *)_CFGetTSD(__CFTSDKeyCollatorUCollator)); // need to dealloc collators
_CFSetTSD(__CFTSDKeyCollatorUCollator, collator, (void *)__collatorFinalize);
#ifndef __clang_analyzer__
// This retain is unbalanced from perspective of analyzer, but it is released in __collatorFinalize
_CFSetTSD(__CFTSDKeyCollatorLocale, (void *)CFRetain(compareLocale), NULL);
#endif
}
#endif
return compResult;
}
|