1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
/* CFUnicodeDecomposition.c
Copyright (c) 1999-2019, Apple Inc. and the Swift project authors
Portions Copyright (c) 2014-2019, Apple Inc. and the Swift project authors
Licensed under Apache License v2.0 with Runtime Library Exception
See http://swift.org/LICENSE.txt for license information
See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
Responsibility: Foundation Team
*/
#include <string.h>
#include "CFBase.h"
#include "CFCharacterSet.h"
#include "CFUniChar.h"
#include "CFUnicodeDecomposition.h"
#include "CFInternal.h"
#include "CFUniCharPriv.h"
#include "CFUniCharPropertyDatabase.inc.h"
#include "CFUniCharDecompositionData.inc.h"
#include "CFUniCharCompatibilityDecompositionData.inc.h"
#include "CFUniCharBitmapData.inc.h"
// Canonical Decomposition
static const uint8_t *__CFUniCharDecomposableBitmapForBMP = (const uint8_t *)__CFUniCharCanonicalDecomposableCharacterSetBitmapPlane0;
static const uint8_t *__CFUniCharHFSPlusDecomposableBitmapForBMP = (const uint8_t *)__CFUniCharHfsPlusDecomposableCharacterSetBitmapPlane0;
static const uint8_t __CFUniCharCombiningPriorityTableNumPlane = __CFUniCharCombiningPriorityTableCount;
CF_INLINE bool __CFUniCharIsDecomposableCharacterWithFlag(UTF32Char character, bool isHFSPlus) {
return CFUniCharIsMemberOfBitmap(character, (character < 0x10000 ? (isHFSPlus ? __CFUniCharHFSPlusDecomposableBitmapForBMP : __CFUniCharDecomposableBitmapForBMP) : CFUniCharGetBitmapPtrForPlane(kCFUniCharCanonicalDecomposableCharacterSet, ((character >> 16) & 0xFF))));
}
CF_INLINE uint8_t __CFUniCharGetCombiningPropertyForCharacter(UTF32Char character) { return CFUniCharGetCombiningPropertyForCharacter(character, (((character) >> 16) < __CFUniCharCombiningPriorityTableNumPlane ? __CFUniCharCombiningPriorityTable[(character) >> 16] : NULL)); }
CF_INLINE bool __CFUniCharIsNonBaseCharacter(UTF32Char character) { return ((0 == __CFUniCharGetCombiningPropertyForCharacter(character)) ? false : true); } // the notion of non-base in normalization is characters with non-0 combining class
typedef struct {
uint32_t _key;
uint32_t _value;
} __CFUniCharDecomposeMappings;
static uint32_t __CFUniCharGetMappedValue(const __CFUniCharDecomposeMappings *theTable, uint32_t numElem, UTF32Char character) {
const __CFUniCharDecomposeMappings *p, *q, *divider;
#define READ_KEY(x) _CFUnalignedLoad32(((uint8_t *)x) + offsetof(__CFUniCharDecomposeMappings, _key))
#define READ_VALUE(x) _CFUnalignedLoad32(((uint8_t *)x) + offsetof(__CFUniCharDecomposeMappings, _value))
if ((character < READ_KEY(&theTable[0])) || (character > READ_KEY(&theTable[numElem-1]))) {
return 0;
}
p = theTable;
q = p + (numElem-1);
while (p <= q) {
divider = p + ((q - p) >> 1); /* divide by 2 */
if (character < READ_KEY(divider)) { q = divider - 1; }
else if (character > READ_KEY(divider)) { p = divider + 1; }
else { return READ_VALUE(divider); }
}
return 0;
#undef READ_KEY
#undef READ_VALUE
}
static void __CFUniCharPrioritySort(UTF32Char *characters, CFIndex length) {
UTF32Char *end = characters + length;
while ((characters < end) && (0 == __CFUniCharGetCombiningPropertyForCharacter(*characters))) ++characters;
if ((end - characters) > 1) {
uint32_t p1, p2;
UTF32Char *ch1, *ch2;
bool changes = true;
do {
changes = false;
ch1 = characters; ch2 = characters + 1;
p2 = __CFUniCharGetCombiningPropertyForCharacter(*ch1);
while (ch2 < end) {
p1 = p2; p2 = __CFUniCharGetCombiningPropertyForCharacter(*ch2);
if (p1 > p2) {
UTF32Char tmp = *ch1; *ch1 = *ch2; *ch2 = tmp;
changes = true;
}
++ch1; ++ch2;
}
} while (changes);
}
}
static CFIndex __CFUniCharRecursivelyDecomposeCharacter(UTF32Char character, UTF32Char *convertedChars, CFIndex maxBufferLength) {
uint32_t value = __CFUniCharGetMappedValue((const __CFUniCharDecomposeMappings *)__CFUniCharDecompositionTable, __CFUniCharDecompositionTableLength, character);
CFIndex length = CFUniCharConvertFlagToCount(value);
UTF32Char firstChar = value & 0xFFFFFF;
const UTF32Char * firstMappings = (length > 1 ? __CFUniCharMultipleDecompositionTable + firstChar : &firstChar);
CFIndex usedLength = 0;
if (maxBufferLength < length) return 0;
UTF32Char *mappings = (UTF32Char *)firstMappings;
if (value & kCFUniCharRecursiveDecompositionFlag) {
usedLength = __CFUniCharRecursivelyDecomposeCharacter(*mappings, convertedChars, maxBufferLength - length);
--length; // Decrement for the first char
if (!usedLength || usedLength + length > maxBufferLength) return 0;
++mappings;
convertedChars += usedLength;
}
usedLength += length;
while (length--) *(convertedChars++) = _CFUnalignedLoad32(mappings++);
return usedLength;
}
#define HANGUL_SBASE 0xAC00
#define HANGUL_LBASE 0x1100
#define HANGUL_VBASE 0x1161
#define HANGUL_TBASE 0x11A7
#define HANGUL_SCOUNT 11172
#define HANGUL_LCOUNT 19
#define HANGUL_VCOUNT 21
#define HANGUL_TCOUNT 28
#define HANGUL_NCOUNT (HANGUL_VCOUNT * HANGUL_TCOUNT)
CFIndex CFUniCharDecomposeCharacter(UTF32Char character, UTF32Char *convertedChars, CFIndex maxBufferLength) {
if (character >= HANGUL_SBASE && character <= (HANGUL_SBASE + HANGUL_SCOUNT)) {
CFIndex length;
character -= HANGUL_SBASE;
length = (character % HANGUL_TCOUNT ? 3 : 2);
if (maxBufferLength < length) return 0;
*(convertedChars++) = character / HANGUL_NCOUNT + HANGUL_LBASE;
*(convertedChars++) = (character % HANGUL_NCOUNT) / HANGUL_TCOUNT + HANGUL_VBASE;
if (length > 2) *convertedChars = (character % HANGUL_TCOUNT) + HANGUL_TBASE;
return length;
} else {
return __CFUniCharRecursivelyDecomposeCharacter(character, convertedChars, maxBufferLength);
}
}
CF_INLINE bool __CFProcessReorderBuffer(UTF32Char *buffer, CFIndex length, void **dst, CFIndex dstLength, CFIndex *filledLength, uint32_t dstFormat) {
if (length > 1) __CFUniCharPrioritySort(buffer, length);
return CFUniCharFillDestinationBuffer(buffer, length, dst, dstLength, filledLength, dstFormat);
}
#define MAX_BUFFER_LENGTH (32)
bool CFUniCharDecomposeWithErrorLocation(const UTF16Char *src, CFIndex length, CFIndex *consumedLength, void *dst, CFIndex maxLength, CFIndex *filledLength, bool needToReorder, uint32_t dstFormat, bool isHFSPlus, CFIndex *charIndex) {
CFIndex usedLength = 0;
const UTF16Char * const originalSrc = src;
CFIndex originalLength = length;
UTF32Char buffer[MAX_BUFFER_LENGTH];
UTF32Char *decompBuffer = buffer;
CFIndex decompBufferSize = MAX_BUFFER_LENGTH;
CFIndex decompBufferLen = 0;
CFIndex segmentLength = 0;
UTF32Char currentChar;
// kCFNotFound indicates an insufficiently sized buffer, which is the default failure case.
if (charIndex) *charIndex = kCFNotFound;
while ((length - segmentLength) > 0) {
currentChar = *(src++);
if (currentChar < 0x80) {
if (decompBufferLen > 0) {
if (!__CFProcessReorderBuffer(decompBuffer, decompBufferLen, &dst, maxLength, &usedLength, dstFormat)) break;
length -= segmentLength;
segmentLength = 0;
decompBufferLen = 0;
}
if (maxLength > 0) {
if (usedLength >= maxLength) break;
switch (dstFormat) {
case kCFUniCharUTF8Format: *(uint8_t *)dst = currentChar; dst = (uint8_t *)dst + sizeof(uint8_t); break;
case kCFUniCharUTF16Format: *(UTF16Char *)dst = currentChar; dst = (uint8_t *)dst + sizeof(UTF16Char); break;
case kCFUniCharUTF32Format: *(UTF32Char *)dst = currentChar; dst = (uint8_t *)dst + sizeof(UTF32Char); break;
}
}
--length;
++usedLength;
} else {
if (CFUniCharIsSurrogateLowCharacter(currentChar)) { // Stray surrogate
if (dstFormat != kCFUniCharUTF16Format) {
if (charIndex) *charIndex = src - 1 - originalSrc;
break;
}
} else if (CFUniCharIsSurrogateHighCharacter(currentChar)) {
if (((length - segmentLength) > 1) && CFUniCharIsSurrogateLowCharacter(*src)) {
currentChar = CFUniCharGetLongCharacterForSurrogatePair(currentChar, *(src++));
} else {
if (dstFormat != kCFUniCharUTF16Format) {
if (charIndex) *charIndex = src - originalSrc;
break;
}
}
}
if (needToReorder && __CFUniCharIsNonBaseCharacter(currentChar)) {
if ((decompBufferLen + 1) >= decompBufferSize) {
UTF32Char *newBuffer;
decompBufferSize += MAX_BUFFER_LENGTH;
newBuffer = (UTF32Char *)CFAllocatorAllocate(kCFAllocatorSystemDefault, sizeof(UTF32Char) * decompBufferSize, 0);
memmove(newBuffer, decompBuffer, (decompBufferSize - MAX_BUFFER_LENGTH) * sizeof(UTF32Char));
if (decompBuffer != buffer) CFAllocatorDeallocate(kCFAllocatorSystemDefault, decompBuffer);
decompBuffer = newBuffer;
}
if (__CFUniCharIsDecomposableCharacterWithFlag(currentChar, isHFSPlus)) { // Vietnamese accent, etc.
decompBufferLen += CFUniCharDecomposeCharacter(currentChar, decompBuffer + decompBufferLen, decompBufferSize - decompBufferLen);
} else {
decompBuffer[decompBufferLen++] = currentChar;
}
} else {
if (decompBufferLen > 0) {
if (!__CFProcessReorderBuffer(decompBuffer, decompBufferLen, &dst, maxLength, &usedLength, dstFormat)) break;
length -= segmentLength;
segmentLength = 0;
}
if (__CFUniCharIsDecomposableCharacterWithFlag(currentChar, isHFSPlus)) {
decompBufferLen = CFUniCharDecomposeCharacter(currentChar, decompBuffer, MAX_BUFFER_LENGTH);
} else {
decompBufferLen = 1;
*decompBuffer = currentChar;
}
if (!needToReorder || (decompBufferLen == 1)) {
if (!CFUniCharFillDestinationBuffer(decompBuffer, decompBufferLen, &dst, maxLength, &usedLength, dstFormat)) break;
length -= ((currentChar > 0xFFFF) ? 2 : 1);
decompBufferLen = 0;
continue;
}
}
segmentLength += ((currentChar > 0xFFFF) ? 2 : 1);
}
}
if ((decompBufferLen > 0) && __CFProcessReorderBuffer(decompBuffer, decompBufferLen, &dst, maxLength, &usedLength, dstFormat)) length -= segmentLength;
if (decompBuffer != buffer) CFAllocatorDeallocate(kCFAllocatorSystemDefault, decompBuffer);
if (consumedLength) *consumedLength = originalLength - length;
if (filledLength) *filledLength = usedLength;
return ((length > 0) ? false : true);
}
bool CFUniCharDecompose(const UTF16Char *src, CFIndex length, CFIndex *consumedLength, void *dst, CFIndex maxLength, CFIndex *filledLength, bool needToReorder, uint32_t dstFormat, bool isHFSPlus) {
return CFUniCharDecomposeWithErrorLocation(src, length, consumedLength, dst, maxLength, filledLength, needToReorder, dstFormat, isHFSPlus, NULL);
}
#define MAX_COMP_DECOMP_LEN (32)
static CFIndex __CFUniCharRecursivelyCompatibilityDecomposeCharacter(UTF32Char character, UTF32Char *convertedChars) {
uint32_t value = __CFUniCharGetMappedValue((const __CFUniCharDecomposeMappings *)__CFUniCharCompatibilityDecompositionTable, __CFUniCharCompatibilityDecompositionTableLength, character);
CFIndex length = CFUniCharConvertFlagToCount(value);
UTF32Char firstChar = value & 0xFFFFFF;
const UTF32Char *mappings = (length > 1 ? __CFUniCharCompatibilityMultipleDecompositionTable + firstChar : &firstChar);
CFIndex usedLength = length;
UTF32Char currentChar;
CFIndex currentLength;
while (length-- > 0) {
currentChar = *(mappings++);
if (__CFUniCharIsDecomposableCharacterWithFlag(currentChar, false)) {
currentLength = __CFUniCharRecursivelyDecomposeCharacter(currentChar, convertedChars, MAX_COMP_DECOMP_LEN - length);
convertedChars += currentLength;
usedLength += (currentLength - 1);
} else if (CFUniCharIsMemberOf(currentChar, kCFUniCharCompatibilityDecomposableCharacterSet)) {
currentLength = __CFUniCharRecursivelyCompatibilityDecomposeCharacter(currentChar, convertedChars);
convertedChars += currentLength;
usedLength += (currentLength - 1);
} else {
*(convertedChars++) = currentChar;
}
}
return usedLength;
}
CF_INLINE void __CFUniCharMoveBufferFromEnd1(UTF32Char *convertedChars, CFIndex length, CFIndex delta) {
const UTF32Char *limit = convertedChars;
UTF32Char *dstP;
convertedChars += length;
dstP = convertedChars + delta;
while (convertedChars > limit) *(--dstP) = *(--convertedChars);
}
CFIndex CFUniCharCompatibilityDecompose(UTF32Char *convertedChars, CFIndex length, CFIndex maxBufferLength) {
UTF32Char currentChar;
UTF32Char buffer[MAX_COMP_DECOMP_LEN];
const UTF32Char *bufferP;
const UTF32Char *limit = convertedChars + length;
CFIndex filledLength;
while (convertedChars < limit) {
currentChar = *convertedChars;
if (CFUniCharIsMemberOf(currentChar, kCFUniCharCompatibilityDecomposableCharacterSet)) {
filledLength = __CFUniCharRecursivelyCompatibilityDecomposeCharacter(currentChar, buffer);
if (filledLength + length - 1 > maxBufferLength) return 0;
if (filledLength > 1) __CFUniCharMoveBufferFromEnd1(convertedChars + 1, limit - convertedChars - 1, filledLength - 1);
bufferP = buffer;
length += (filledLength - 1);
while (filledLength-- > 0) *(convertedChars++) = *(bufferP++);
} else {
++convertedChars;
}
}
return length;
}
CF_EXPORT void CFUniCharPrioritySort(UTF32Char *characters, CFIndex length) {
__CFUniCharPrioritySort(characters, length);
}
#undef MAX_BUFFER_LENGTH
#undef MAX_COMP_DECOMP_LEN
#undef HANGUL_SBASE
#undef HANGUL_LBASE
#undef HANGUL_VBASE
#undef HANGUL_TBASE
#undef HANGUL_SCOUNT
#undef HANGUL_LCOUNT
#undef HANGUL_VCOUNT
#undef HANGUL_TCOUNT
#undef HANGUL_NCOUNT
|