1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
|
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#if DEPLOYMENT_RUNTIME_SWIFT
#else
@_exported import Foundation // Clang module
import _SwiftFoundationOverlayShims
#endif
extension IndexSet.Index {
public static func ==(lhs: IndexSet.Index, rhs: IndexSet.Index) -> Bool {
return lhs.value == rhs.value
}
public static func <(lhs: IndexSet.Index, rhs: IndexSet.Index) -> Bool {
return lhs.value < rhs.value
}
public static func <=(lhs: IndexSet.Index, rhs: IndexSet.Index) -> Bool {
return lhs.value <= rhs.value
}
public static func >(lhs: IndexSet.Index, rhs: IndexSet.Index) -> Bool {
return lhs.value > rhs.value
}
public static func >=(lhs: IndexSet.Index, rhs: IndexSet.Index) -> Bool {
return lhs.value >= rhs.value
}
}
extension IndexSet.RangeView {
public static func ==(lhs: IndexSet.RangeView, rhs: IndexSet.RangeView) -> Bool {
return lhs.startIndex == rhs.startIndex && lhs.endIndex == rhs.endIndex && lhs.indexSet == rhs.indexSet
}
}
/// Manages a `Set` of integer values, which are commonly used as an index type in Cocoa API.
///
/// The range of valid integer values is 0..<INT_MAX-1. Anything outside this range is an error.
public struct IndexSet : ReferenceConvertible, Equatable, BidirectionalCollection, SetAlgebra, Sendable {
/// An view of the contents of an IndexSet, organized by range.
///
/// For example, if an IndexSet is composed of:
/// `[1..<5]` and `[7..<10]` and `[13]`
/// then calling `next()` on this view's iterator will produce 3 ranges before returning nil.
public struct RangeView : Equatable, BidirectionalCollection, Sendable {
public typealias Index = Int
public let startIndex: Index
public let endIndex: Index
fileprivate var indexSet: IndexSet
// Range of element values
private var intersectingRange : Range<IndexSet.Element>?
fileprivate init(indexSet : IndexSet, intersecting range : Range<IndexSet.Element>?) {
self.indexSet = indexSet
self.intersectingRange = range
if let r = range {
if r.lowerBound == r.upperBound {
startIndex = 0
endIndex = 0
} else {
let minIndex = indexSet._indexOfRange(containing: r.lowerBound)
let maxIndex = indexSet._indexOfRange(containing: r.upperBound)
switch (minIndex, maxIndex) {
case (nil, nil):
startIndex = 0
endIndex = 0
case (nil, let max?):
// Start is before our first range
startIndex = 0
endIndex = max + 1
case (let min?, nil):
// End is after our last range
startIndex = min
endIndex = indexSet._rangeCount
case (let min?, let max?):
startIndex = min
endIndex = max + 1
}
}
} else {
startIndex = 0
endIndex = indexSet._rangeCount
}
}
public func makeIterator() -> IndexingIterator<RangeView> {
return IndexingIterator(_elements: self)
}
public subscript(index : Index) -> Range<IndexSet.Element> {
let indexSetRange = indexSet._range(at: index)
if let intersectingRange = intersectingRange {
return Swift.max(intersectingRange.lowerBound, indexSetRange.lowerBound)..<Swift.min(intersectingRange.upperBound, indexSetRange.upperBound)
} else {
return indexSetRange.lowerBound..<indexSetRange.upperBound
}
}
public subscript(bounds: Range<Index>) -> Slice<RangeView> {
return Slice(base: self, bounds: bounds)
}
public func index(after i: Index) -> Index {
return i + 1
}
public func index(before i: Index) -> Index {
return i - 1
}
}
/// The mechanism for accessing the integers stored in an IndexSet.
public struct Index : CustomStringConvertible, Comparable, Sendable {
fileprivate var value: IndexSet.Element
fileprivate var extent: Range<IndexSet.Element>
fileprivate var rangeIndex: Int
fileprivate let rangeCount: Int
fileprivate init(value: Int, extent: Range<Int>, rangeIndex: Int, rangeCount: Int) {
self.value = value
self.extent = extent
self.rangeCount = rangeCount
self.rangeIndex = rangeIndex
}
public var description: String {
return "index \(value) in a range of \(extent) [range #\(rangeIndex + 1)/\(rangeCount)]"
}
}
public typealias ReferenceType = NSIndexSet
public typealias Element = Int
@usableFromInline
internal var _handle: _MutablePairHandle<NSIndexSet, NSMutableIndexSet>
/// Initialize an `IndexSet` with a range of integers.
public init(integersIn range: Range<Element>) {
_handle = _MutablePairHandle(NSIndexSet(indexesIn: _toNSRange(range)), copying: false)
}
/// Initialize an `IndexSet` with a range of integers.
public init<R: RangeExpression>(integersIn range: R) where R.Bound == Element {
self.init(integersIn: range.relative(to: 0..<Int.max))
}
/// Initialize an `IndexSet` with a single integer.
public init(integer: Element) {
_handle = _MutablePairHandle(NSIndexSet(index: integer), copying: false)
}
/// Initialize an empty `IndexSet`.
public init() {
_handle = _MutablePairHandle(NSIndexSet(), copying: false)
}
public func hash(into hasher: inout Hasher) {
hasher.combine(_handle.map { $0 })
}
/// Returns the number of integers in `self`.
public var count: Int {
return _handle.map { $0.count }
}
public func makeIterator() -> IndexingIterator<IndexSet> {
return IndexingIterator(_elements: self)
}
/// Returns a `Range`-based view of the entire contents of `self`.
///
/// - seealso: rangeView(of:)
public var rangeView: RangeView {
return RangeView(indexSet: self, intersecting: nil)
}
/// Returns a `Range`-based view of `self`.
///
/// - parameter range: A subrange of `self` to view.
public func rangeView(of range : Range<Element>) -> RangeView {
return RangeView(indexSet: self, intersecting: range)
}
/// Returns a `Range`-based view of `self`.
///
/// - parameter range: A subrange of `self` to view.
public func rangeView<R: RangeExpression>(of range : R) -> RangeView where R.Bound == Element {
return self.rangeView(of: range.relative(to: 0..<Int.max))
}
private func _indexOfRange(containing integer : Element) -> RangeView.Index? {
let result = _handle.map {
__NSIndexSetIndexOfRangeContainingIndex($0, integer)
}
if result == NSNotFound {
return nil
} else {
return Int(result)
}
}
private func _range(at index: RangeView.Index) -> Range<Element> {
return _handle.map {
var location: Int = 0
var length: Int = 0
__NSIndexSetRangeAtIndex($0, index, &location, &length)
return Int(location)..<Int(location)+Int(length)
}
}
private var _rangeCount : Int {
return _handle.map {
Int(__NSIndexSetRangeCount($0))
}
}
public var startIndex: Index {
let rangeCount = _rangeCount
if rangeCount > 0 {
// If this winds up being NSNotFound, that's ok because then endIndex is also NSNotFound, and empty collections have startIndex == endIndex
let extent = _range(at: 0)
return Index(value: extent.lowerBound, extent: extent, rangeIndex: 0, rangeCount: _rangeCount)
} else {
return Index(value: 0, extent: 0..<0, rangeIndex: -1, rangeCount: rangeCount)
}
}
public var endIndex: Index {
let rangeCount = _rangeCount
let rangeIndex = rangeCount - 1
let extent: Range<Int>
let value: Int
if rangeCount > 0 {
extent = _range(at: rangeCount - 1)
value = extent.upperBound // "1 past the end" position is the last range, 1 + the end of that range's extent
} else {
extent = 0..<0
value = 0
}
return Index(value: value, extent: extent, rangeIndex: rangeIndex, rangeCount: rangeCount)
}
public subscript(index : Index) -> Element {
return index.value
}
public subscript(bounds: Range<Index>) -> Slice<IndexSet> {
return Slice(base: self, bounds: bounds)
}
// We adopt the default implementation of subscript(range: Range<Index>) from MutableCollection
private func _toOptional(_ x : Int) -> Int? {
if x == NSNotFound { return nil } else { return x }
}
/// Returns the first integer in `self`, or nil if `self` is empty.
public var first: Element? {
return _handle.map { _toOptional($0.firstIndex) }
}
/// Returns the last integer in `self`, or nil if `self` is empty.
public var last: Element? {
return _handle.map { _toOptional($0.lastIndex) }
}
/// Returns an integer contained in `self` which is greater than `integer`, or `nil` if a result could not be found.
public func integerGreaterThan(_ integer: Element) -> Element? {
return _handle.map { _toOptional($0.indexGreaterThanIndex(integer)) }
}
/// Returns an integer contained in `self` which is less than `integer`, or `nil` if a result could not be found.
public func integerLessThan(_ integer: Element) -> Element? {
return _handle.map { _toOptional($0.indexLessThanIndex(integer)) }
}
/// Returns an integer contained in `self` which is greater than or equal to `integer`, or `nil` if a result could not be found.
public func integerGreaterThanOrEqualTo(_ integer: Element) -> Element? {
return _handle.map { _toOptional($0.indexGreaterThanOrEqual(to: integer)) }
}
/// Returns an integer contained in `self` which is less than or equal to `integer`, or `nil` if a result could not be found.
public func integerLessThanOrEqualTo(_ integer: Element) -> Element? {
return _handle.map { _toOptional($0.indexLessThanOrEqual(to: integer)) }
}
/// Return a `Range<IndexSet.Index>` which can be used to subscript the index set.
///
/// The resulting range is the range of the intersection of the integers in `range` with the index set. The resulting range will be `isEmpty` if the intersection is empty.
///
/// - parameter range: The range of integers to include.
public func indexRange(in range: Range<Element>) -> Range<Index> {
guard !range.isEmpty, let first = first, let last = last else {
let i = _index(ofInteger: 0)
return i..<i
}
if range.lowerBound > last || (range.upperBound - 1) < first {
let i = _index(ofInteger: 0)
return i..<i
}
if let start = integerGreaterThanOrEqualTo(range.lowerBound), let end = integerLessThanOrEqualTo(range.upperBound - 1) {
let resultFirst = _index(ofInteger: start)
let resultLast = _index(ofInteger: end)
return resultFirst..<index(after: resultLast)
} else {
let i = _index(ofInteger: 0)
return i..<i
}
}
/// Return a `Range<IndexSet.Index>` which can be used to subscript the index set.
///
/// The resulting range is the range of the intersection of the integers in `range` with the index set.
///
/// - parameter range: The range of integers to include.
public func indexRange<R: RangeExpression>(in range: R) -> Range<Index> where R.Bound == Element {
return self.indexRange(in: range.relative(to: 0..<Int.max))
}
/// Returns the count of integers in `self` that intersect `range`.
public func count(in range: Range<Element>) -> Int {
return _handle.map { $0.countOfIndexes(in: _toNSRange(range)) }
}
/// Returns the count of integers in `self` that intersect `range`.
public func count<R: RangeExpression>(in range: R) -> Int where R.Bound == Element {
return self.count(in: range.relative(to: 0..<Int.max))
}
/// Returns `true` if `self` contains `integer`.
public func contains(_ integer: Element) -> Bool {
return _handle.map { $0.contains(integer) }
}
/// Returns `true` if `self` contains all of the integers in `range`.
public func contains(integersIn range: Range<Element>) -> Bool {
return _handle.map { $0.contains(in: _toNSRange(range)) }
}
/// Returns `true` if `self` contains all of the integers in `range`.
public func contains<R: RangeExpression>(integersIn range: R) -> Bool where R.Bound == Element {
return self.contains(integersIn: range.relative(to: 0..<Int.max))
}
/// Returns `true` if `self` contains all of the integers in `indexSet`.
public func contains(integersIn indexSet: IndexSet) -> Bool {
return _handle.map { $0.contains(indexSet) }
}
/// Returns `true` if `self` intersects any of the integers in `range`.
public func intersects(integersIn range: Range<Element>) -> Bool {
return _handle.map { $0.intersects(in: _toNSRange(range)) }
}
/// Returns `true` if `self` intersects any of the integers in `range`.
public func intersects<R: RangeExpression>(integersIn range: R) -> Bool where R.Bound == Element {
return self.intersects(integersIn: range.relative(to: 0..<Int.max))
}
// MARK: -
// Collection
public func index(after i: Index) -> Index {
if i.value + 1 == i.extent.upperBound {
// Move to the next range
if i.rangeIndex + 1 == i.rangeCount {
// We have no more to go; return a 'past the end' index
return Index(value: i.value + 1, extent: i.extent, rangeIndex: i.rangeIndex, rangeCount: i.rangeCount)
} else {
let rangeIndex = i.rangeIndex + 1
let rangeCount = i.rangeCount
let extent = _range(at: rangeIndex)
let value = extent.lowerBound
return Index(value: value, extent: extent, rangeIndex: rangeIndex, rangeCount: rangeCount)
}
} else {
// Move to the next value in this range
return Index(value: i.value + 1, extent: i.extent, rangeIndex: i.rangeIndex, rangeCount: i.rangeCount)
}
}
public func formIndex(after i: inout Index) {
if i.value + 1 == i.extent.upperBound {
// Move to the next range
if i.rangeIndex + 1 == i.rangeCount {
// We have no more to go; return a 'past the end' index
i.value += 1
} else {
i.rangeIndex += 1
i.extent = _range(at: i.rangeIndex)
i.value = i.extent.lowerBound
}
} else {
// Move to the next value in this range
i.value += 1
}
}
public func index(before i: Index) -> Index {
if i.value == i.extent.lowerBound {
// Move to the next range
if i.rangeIndex == 0 {
// We have no more to go
return Index(value: i.value, extent: i.extent, rangeIndex: i.rangeIndex, rangeCount: i.rangeCount)
} else {
let rangeIndex = i.rangeIndex - 1
let rangeCount = i.rangeCount
let extent = _range(at: rangeIndex)
let value = extent.upperBound - 1
return Index(value: value, extent: extent, rangeIndex: rangeIndex, rangeCount: rangeCount)
}
} else {
// Move to the previous value in this range
return Index(value: i.value - 1, extent: i.extent, rangeIndex: i.rangeIndex, rangeCount: i.rangeCount)
}
}
public func formIndex(before i: inout Index) {
if i.value == i.extent.lowerBound {
// Move to the next range
if i.rangeIndex == 0 {
// We have no more to go
} else {
i.rangeIndex -= 1
i.extent = _range(at: i.rangeIndex)
i.value = i.extent.upperBound - 1
}
} else {
// Move to the previous value in this range
i.value -= 1
}
}
private func _index(ofInteger integer: Element) -> Index {
let rangeCount = _rangeCount
let value = integer
if let rangeIndex = _indexOfRange(containing: integer) {
let extent = _range(at: rangeIndex)
let rangeIndex = rangeIndex
return Index(value: value, extent: extent, rangeIndex: rangeIndex, rangeCount: rangeCount)
} else {
let rangeIndex = 0
return Index(value: value, extent: 0..<0, rangeIndex: rangeIndex, rangeCount: rangeCount)
}
}
// MARK: -
// MARK: SetAlgebra
/// Union the `IndexSet` with `other`.
public mutating func formUnion(_ other: IndexSet) {
self = self.union(other)
}
/// Union the `IndexSet` with `other`.
public func union(_ other: IndexSet) -> IndexSet {
var result: IndexSet
var dense: IndexSet
// Prepare to make a copy of the more sparse IndexSet to prefer copy over repeated inserts
if self.rangeView.count > other.rangeView.count {
result = self
dense = other
} else {
result = other
dense = self
}
// Insert each range from the less sparse IndexSet
dense.rangeView.forEach {
result.insert(integersIn: $0)
}
return result
}
/// Exclusive or the `IndexSet` with `other`.
public func symmetricDifference(_ other: IndexSet) -> IndexSet {
var result = IndexSet()
var boundaryIterator = IndexSetBoundaryIterator(self, other)
var flag = false
var start = 0
while let i = boundaryIterator.next() {
if !flag {
// Start a range if one set contains but not the other.
if self.contains(i) != other.contains(i) {
flag = true
start = i
}
} else {
// End a range if both sets contain or both sets do not contain.
if self.contains(i) == other.contains(i) {
flag = false
result.insert(integersIn: start..<i)
}
}
// We never have to worry about having flag set to false after exiting this loop because the last boundary is guaranteed to be past the end of ranges in both index sets
}
return result
}
/// Exclusive or the `IndexSet` with `other`.
public mutating func formSymmetricDifference(_ other: IndexSet) {
self = self.symmetricDifference(other)
}
/// Intersect the `IndexSet` with `other`.
public func intersection(_ other: IndexSet) -> IndexSet {
var result = IndexSet()
var boundaryIterator = IndexSetBoundaryIterator(self, other)
var flag = false
var start = 0
while let i = boundaryIterator.next() {
if !flag {
// If both sets contain then start a range.
if self.contains(i) && other.contains(i) {
flag = true
start = i
}
} else {
// If both sets do not contain then end a range.
if !self.contains(i) || !other.contains(i) {
flag = false
result.insert(integersIn: start..<i)
}
}
}
return result
}
/// Intersect the `IndexSet` with `other`.
public mutating func formIntersection(_ other: IndexSet) {
self = self.intersection(other)
}
/// Insert an integer into the `IndexSet`.
@discardableResult
public mutating func insert(_ integer: Element) -> (inserted: Bool, memberAfterInsert: Element) {
_applyMutation { $0.add(integer) }
// TODO: figure out how to return the truth here
return (true, integer)
}
/// Insert an integer into the `IndexSet`.
@discardableResult
public mutating func update(with integer: Element) -> Element? {
_applyMutation { $0.add(integer) }
// TODO: figure out how to return the truth here
return integer
}
/// Remove an integer from the `IndexSet`.
@discardableResult
public mutating func remove(_ integer: Element) -> Element? {
// TODO: Add method to NSIndexSet to do this in one call
let result : Element? = contains(integer) ? integer : nil
_applyMutation { $0.remove(integer) }
return result
}
// MARK: -
/// Remove all values from the `IndexSet`.
public mutating func removeAll() {
_applyMutation { $0.removeAllIndexes() }
}
/// Insert a range of integers into the `IndexSet`.
public mutating func insert(integersIn range: Range<Element>) {
_applyMutation { $0.add(in: _toNSRange(range)) }
}
/// Insert a range of integers into the `IndexSet`.
public mutating func insert<R: RangeExpression>(integersIn range: R) where R.Bound == Element {
self.insert(integersIn: range.relative(to: 0..<Int.max))
}
/// Remove a range of integers from the `IndexSet`.
public mutating func remove(integersIn range: Range<Element>) {
_applyMutation { $0.remove(in: _toNSRange(range)) }
}
/// Remove a range of integers from the `IndexSet`.
public mutating func remove(integersIn range: ClosedRange<Element>) {
self.remove(integersIn: Range(range))
}
/// Returns `true` if self contains no values.
public var isEmpty : Bool {
return self.count == 0
}
/// Returns an IndexSet filtered according to the result of `includeInteger`.
///
/// - parameter range: A range of integers. For each integer in the range that intersects the integers in the IndexSet, then the `includeInteger` predicate will be invoked.
/// - parameter includeInteger: The predicate which decides if an integer will be included in the result or not.
public func filteredIndexSet(in range : Range<Element>, includeInteger: (Element) throws -> Bool) rethrows -> IndexSet {
let r : NSRange = _toNSRange(range)
return try _handle.map {
var error: Error?
let result = $0.indexes(in: r, options: [], passingTest: { (i, stop) -> Bool in
do {
let include = try includeInteger(i)
return include
} catch let e {
error = e
stop.pointee = true
return false
}
}) as IndexSet
if let e = error {
throw e
} else {
return result
}
}
}
/// Returns an IndexSet filtered according to the result of `includeInteger`.
///
/// - parameter range: A range of integers. For each integer in the range that intersects the integers in the IndexSet, then the `includeInteger` predicate will be invoked.
/// - parameter includeInteger: The predicate which decides if an integer will be included in the result or not.
public func filteredIndexSet(in range : ClosedRange<Element>, includeInteger: (Element) throws -> Bool) rethrows -> IndexSet {
return try self.filteredIndexSet(in: Range(range), includeInteger: includeInteger)
}
/// Returns an IndexSet filtered according to the result of `includeInteger`.
///
/// - parameter includeInteger: The predicate which decides if an integer will be included in the result or not.
public func filteredIndexSet(includeInteger: (Element) throws -> Bool) rethrows -> IndexSet {
return try self.filteredIndexSet(in: 0..<NSNotFound-1, includeInteger: includeInteger)
}
/// For a positive delta, shifts the indexes in [index, INT_MAX] to the right, thereby inserting an "empty space" [index, delta], for a negative delta, shifts the indexes in [index, INT_MAX] to the left, thereby deleting the indexes in the range [index - delta, delta].
public mutating func shift(startingAt integer: Element, by delta: Int) {
_applyMutation { $0.shiftIndexesStarting(at: integer, by: delta) }
}
// Temporary boxing function, until we can get a native Swift type for NSIndexSet
@inline(__always)
mutating func _applyMutation<ReturnType>(_ whatToDo : (NSMutableIndexSet) throws -> ReturnType) rethrows -> ReturnType {
// This check is done twice because: <rdar://problem/24939065> Value kept live for too long causing uniqueness check to fail
var unique = true
switch _handle._pointer {
case .Default:
break
case .Mutable:
unique = isKnownUniquelyReferenced(&_handle)
}
switch _handle._pointer {
case .Default(let i):
// We need to become mutable; by creating a new box we also become unique
let copy = i.mutableCopy() as! NSMutableIndexSet
// Be sure to set the _handle before calling out; otherwise references to the struct in the closure may be looking at the old _handle
_handle = _MutablePairHandle(copy, copying: false)
let result = try whatToDo(copy)
return result
case .Mutable(let m):
// Only create a new box if we are not uniquely referenced
if !unique {
let copy = m.mutableCopy() as! NSMutableIndexSet
_handle = _MutablePairHandle(copy, copying: false)
let result = try whatToDo(copy)
return result
} else {
return try whatToDo(m)
}
}
}
// MARK: - Bridging Support
fileprivate var reference: NSIndexSet {
return _handle.reference
}
fileprivate init(reference: NSIndexSet) {
_handle = _MutablePairHandle(reference)
}
}
extension IndexSet : CustomStringConvertible, CustomDebugStringConvertible, CustomReflectable {
public var description: String {
return "\(count) indexes"
}
public var debugDescription: String {
return "\(count) indexes"
}
public var customMirror: Mirror {
var c: [(label: String?, value: Any)] = []
c.append((label: "ranges", value: Array(rangeView)))
return Mirror(self, children: c, displayStyle: .struct)
}
}
/// Iterate two index sets on the boundaries of their ranges. This is where all of the interesting stuff happens for exclusive or, intersect, etc.
private struct IndexSetBoundaryIterator : IteratorProtocol {
typealias Element = IndexSet.Element
private var i1: IndexSet.RangeView.Iterator
private var i2: IndexSet.RangeView.Iterator
private var i1Range: Range<Element>?
private var i2Range: Range<Element>?
private var i1UsedLower: Bool
private var i2UsedLower: Bool
fileprivate init(_ is1: IndexSet, _ is2: IndexSet) {
i1 = is1.rangeView.makeIterator()
i2 = is2.rangeView.makeIterator()
i1Range = i1.next()
i2Range = i2.next()
// A sort of cheap iterator on [i1Range.lowerBound, i1Range.upperBound]
i1UsedLower = false
i2UsedLower = false
}
fileprivate mutating func next() -> Element? {
if i1Range == nil && i2Range == nil {
return nil
}
let nextIn1: Element
if let r = i1Range {
nextIn1 = i1UsedLower ? r.upperBound : r.lowerBound
} else {
nextIn1 = Int.max
}
let nextIn2: Element
if let r = i2Range {
nextIn2 = i2UsedLower ? r.upperBound : r.lowerBound
} else {
nextIn2 = Int.max
}
var result: Element
if nextIn1 <= nextIn2 {
// 1 has the next element, or they are the same.
result = nextIn1
if i1UsedLower { i1Range = i1.next() }
// We need to iterate both the value from is1 and is2 in the == case.
if result == nextIn2 {
if i2UsedLower { i2Range = i2.next() }
i2UsedLower = !i2UsedLower
}
i1UsedLower = !i1UsedLower
} else {
// 2 has the next element
result = nextIn2
if i2UsedLower { i2Range = i2.next() }
i2UsedLower = !i2UsedLower
}
return result
}
}
extension IndexSet {
public static func ==(lhs: IndexSet, rhs: IndexSet) -> Bool {
return lhs._handle.map { $0.isEqual(to: rhs) }
}
}
private func _toNSRange(_ r: Range<IndexSet.Element>) -> NSRange {
return NSRange(location: r.lowerBound, length: r.upperBound - r.lowerBound)
}
extension IndexSet : _ObjectiveCBridgeable {
public static func _getObjectiveCType() -> Any.Type {
return NSIndexSet.self
}
@_semantics("convertToObjectiveC")
public func _bridgeToObjectiveC() -> NSIndexSet {
return reference
}
public static func _forceBridgeFromObjectiveC(_ x: NSIndexSet, result: inout IndexSet?) {
result = IndexSet(reference: x)
}
public static func _conditionallyBridgeFromObjectiveC(_ x: NSIndexSet, result: inout IndexSet?) -> Bool {
result = IndexSet(reference: x)
return true
}
public static func _unconditionallyBridgeFromObjectiveC(_ source: NSIndexSet?) -> IndexSet {
guard let src = source else { return IndexSet() }
return IndexSet(reference: src)
}
}
extension NSIndexSet : _HasCustomAnyHashableRepresentation {
// Must be @nonobjc to avoid infinite recursion during bridging.
@nonobjc
public func _toCustomAnyHashable() -> AnyHashable? {
return AnyHashable(IndexSet(reference: self))
}
}
// MARK: Protocol
@available(*, unavailable)
extension _MutablePair : Sendable { }
// TODO: This protocol should be replaced with a native Swift object like the other Foundation bridged types. However, NSIndexSet does not have an abstract zero-storage base class like NSCharacterSet, NSData, and NSAttributedString. Therefore the same trick of laying it out with Swift ref counting does not work.and
/// Holds either the immutable or mutable version of a Foundation type.
///
/// In many cases, the immutable type has optimizations which make it preferred when we know we do not need mutation.
@usableFromInline
internal enum _MutablePair<ImmutableType, MutableType> {
case Default(ImmutableType)
case Mutable(MutableType)
}
/// A class type which acts as a handle (pointer-to-pointer) to a Foundation reference type which has both an immutable and mutable class (e.g., NSData, NSMutableData).
///
/// a.k.a. Box
@usableFromInline
internal final class _MutablePairHandle<ImmutableType : NSObject, MutableType : NSObject> : @unchecked Sendable
where ImmutableType : NSMutableCopying, MutableType : NSMutableCopying {
@usableFromInline
internal var _pointer: _MutablePair<ImmutableType, MutableType>
/// Initialize with an immutable reference instance.
///
/// - parameter immutable: The thing to stash.
/// - parameter copying: Should be true unless you just created the instance (or called copy) and want to transfer ownership to this handle.
init(_ immutable: ImmutableType, copying: Bool = true) {
if copying {
self._pointer = _MutablePair.Default(immutable.copy() as! ImmutableType)
} else {
self._pointer = _MutablePair.Default(immutable)
}
}
/// Initialize with a mutable reference instance.
///
/// - parameter mutable: The thing to stash.
/// - parameter copying: Should be true unless you just created the instance (or called copy) and want to transfer ownership to this handle.
init(_ mutable: MutableType, copying: Bool = true) {
if copying {
self._pointer = _MutablePair.Mutable(mutable.mutableCopy() as! MutableType)
} else {
self._pointer = _MutablePair.Mutable(mutable)
}
}
/// Apply a closure to the reference type, regardless if it is mutable or immutable.
@inline(__always)
func map<ReturnType>(_ whatToDo: (ImmutableType) throws -> ReturnType) rethrows -> ReturnType {
switch _pointer {
case .Default(let i):
return try whatToDo(i)
case .Mutable(let m):
// TODO: It should be possible to reflect the constraint that MutableType is a subtype of ImmutableType in the generics for the class, but I haven't figured out how yet. For now, cheat and unsafe bit cast.
return try whatToDo(unsafeDowncast(m, to: ImmutableType.self))
}
}
var reference: ImmutableType {
switch _pointer {
case .Default(let i):
return i
case .Mutable(let m):
// TODO: It should be possible to reflect the constraint that MutableType is a subtype of ImmutableType in the generics for the class, but I haven't figured out how yet. For now, cheat and unsafe bit cast.
return unsafeDowncast(m, to: ImmutableType.self)
}
}
}
extension IndexSet : Codable {
private enum CodingKeys : Int, CodingKey {
case indexes
}
private enum RangeCodingKeys : Int, CodingKey {
case location
case length
}
public init(from decoder: Decoder) throws {
let container = try decoder.container(keyedBy: CodingKeys.self)
var indexesContainer = try container.nestedUnkeyedContainer(forKey: .indexes)
self.init()
while !indexesContainer.isAtEnd {
let rangeContainer = try indexesContainer.nestedContainer(keyedBy: RangeCodingKeys.self)
let startIndex = try rangeContainer.decode(Int.self, forKey: .location)
let count = try rangeContainer.decode(Int.self, forKey: .length)
self.insert(integersIn: startIndex ..< (startIndex + count))
}
}
public func encode(to encoder: Encoder) throws {
var container = encoder.container(keyedBy: CodingKeys.self)
var indexesContainer = container.nestedUnkeyedContainer(forKey: .indexes)
for range in self.rangeView {
var rangeContainer = indexesContainer.nestedContainer(keyedBy: RangeCodingKeys.self)
try rangeContainer.encode(range.startIndex, forKey: .location)
try rangeContainer.encode(range.count, forKey: .length)
}
}
}
|