1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
// Implementation note: This file is included in both the framework and the test bundle, in order for us to be able to test it directly. Once @testable support works for Linux we may be able to use it from the framework instead.
internal struct _ProgressFraction : Equatable, CustomDebugStringConvertible {
var completed : Int64
var total : Int64
private(set) var overflowed : Bool
init() {
completed = 0
total = 0
overflowed = false
}
init(double: Double, overflow: Bool = false) {
if double == 0 {
self.completed = 0
self.total = 1
} else if double == 1 {
self.completed = 1
self.total = 1
}
(self.completed, self.total) = _ProgressFraction._fromDouble(double)
self.overflowed = overflow
}
init(completed: Int64, total: Int64) {
self.completed = completed
self.total = total
self.overflowed = false
}
// ----
internal mutating func simplify() {
if self.total == 0 {
return
}
(self.completed, self.total) = _ProgressFraction._simplify(completed, total)
}
internal func simplified() -> _ProgressFraction {
let simplified = _ProgressFraction._simplify(completed, total)
return _ProgressFraction(completed: simplified.0, total: simplified.1)
}
static private func _math(lhs: _ProgressFraction, rhs: _ProgressFraction, whichOperator: (_ lhs : Double, _ rhs : Double) -> Double, whichOverflow : (_ lhs: Int64, _ rhs: Int64) -> (Int64, overflow: Bool)) -> _ProgressFraction {
// Mathematically, it is nonsense to add or subtract something with a denominator of 0. However, for the purposes of implementing Progress' fractions, we just assume that a zero-denominator fraction is "weightless" and return the other value. We still need to check for the case where they are both nonsense though.
precondition(!(lhs.total == 0 && rhs.total == 0), "Attempt to add or subtract invalid fraction")
guard lhs.total != 0 else {
return rhs
}
guard rhs.total != 0 else {
return lhs
}
guard !lhs.overflowed && !rhs.overflowed else {
// If either has overflowed already, we preserve that
return _ProgressFraction(double: whichOperator(lhs.fractionCompleted, rhs.fractionCompleted), overflow: true)
}
if let lcm = _leastCommonMultiple(lhs.total, rhs.total) {
let result = whichOverflow(lhs.completed * (lcm / lhs.total), rhs.completed * (lcm / rhs.total))
if result.overflow {
return _ProgressFraction(double: whichOperator(lhs.fractionCompleted, rhs.fractionCompleted), overflow: true)
} else {
return _ProgressFraction(completed: result.0, total: lcm)
}
} else {
// Overflow - simplify and then try again
let lhsSimplified = lhs.simplified()
let rhsSimplified = rhs.simplified()
if let lcm = _leastCommonMultiple(lhsSimplified.total, rhsSimplified.total) {
let result = whichOverflow(lhsSimplified.completed * (lcm / lhsSimplified.total), rhsSimplified.completed * (lcm / rhsSimplified.total))
if result.overflow {
// Use original lhs/rhs here
return _ProgressFraction(double: whichOperator(lhs.fractionCompleted, rhs.fractionCompleted), overflow: true)
} else {
return _ProgressFraction(completed: result.0, total: lcm)
}
} else {
// Still overflow
return _ProgressFraction(double: whichOperator(lhs.fractionCompleted, rhs.fractionCompleted), overflow: true)
}
}
}
static internal func +(lhs: _ProgressFraction, rhs: _ProgressFraction) -> _ProgressFraction {
return _math(lhs: lhs, rhs: rhs, whichOperator: +, whichOverflow: { $0.addingReportingOverflow($1) })
}
static internal func -(lhs: _ProgressFraction, rhs: _ProgressFraction) -> _ProgressFraction {
return _math(lhs: lhs, rhs: rhs, whichOperator: -, whichOverflow: { $0.subtractingReportingOverflow($1) })
}
static internal func *(lhs: _ProgressFraction, rhs: _ProgressFraction) -> _ProgressFraction {
guard !lhs.overflowed && !rhs.overflowed else {
// If either has overflowed already, we preserve that
return _ProgressFraction(double: rhs.fractionCompleted * rhs.fractionCompleted, overflow: true)
}
let newCompleted = lhs.completed.multipliedReportingOverflow(by: rhs.completed)
let newTotal = lhs.total.multipliedReportingOverflow(by: rhs.total)
if newCompleted.overflow || newTotal.overflow {
// Try simplifying, then do it again
let lhsSimplified = lhs.simplified()
let rhsSimplified = rhs.simplified()
let newCompletedSimplified = lhsSimplified.completed.multipliedReportingOverflow(by: rhsSimplified.completed)
let newTotalSimplified = lhsSimplified.total.multipliedReportingOverflow(by: rhsSimplified.total)
if newCompletedSimplified.overflow || newTotalSimplified.overflow {
// Still overflow
return _ProgressFraction(double: lhs.fractionCompleted * rhs.fractionCompleted, overflow: true)
} else {
return _ProgressFraction(completed: newCompletedSimplified.0, total: newTotalSimplified.0)
}
} else {
return _ProgressFraction(completed: newCompleted.0, total: newTotal.0)
}
}
static internal func /(lhs: _ProgressFraction, rhs: Int64) -> _ProgressFraction {
guard !lhs.overflowed else {
// If lhs has overflowed, we preserve that
return _ProgressFraction(double: lhs.fractionCompleted / Double(rhs), overflow: true)
}
let newTotal = lhs.total.multipliedReportingOverflow(by: rhs)
if newTotal.overflow {
let simplified = lhs.simplified()
let newTotalSimplified = simplified.total.multipliedReportingOverflow(by: rhs)
if newTotalSimplified.overflow {
// Still overflow
return _ProgressFraction(double: lhs.fractionCompleted / Double(rhs), overflow: true)
} else {
return _ProgressFraction(completed: lhs.completed, total: newTotalSimplified.0)
}
} else {
return _ProgressFraction(completed: lhs.completed, total: newTotal.0)
}
}
static internal func ==(lhs: _ProgressFraction, rhs: _ProgressFraction) -> Bool {
if lhs.isNaN || rhs.isNaN {
// NaN fractions are never equal
return false
} else if lhs.completed == rhs.completed && lhs.total == rhs.total {
return true
} else if lhs.total == rhs.total {
// Direct comparison of numerator
return lhs.completed == rhs.completed
} else if lhs.completed == 0 && rhs.completed == 0 {
return true
} else if lhs.completed == lhs.total && rhs.completed == rhs.total {
// Both finished (1)
return true
} else if (lhs.completed == 0 && rhs.completed != 0) || (lhs.completed != 0 && rhs.completed == 0) {
// One 0, one not 0
return false
} else {
// Cross-multiply
let left = lhs.completed.multipliedReportingOverflow(by: rhs.total)
let right = lhs.total.multipliedReportingOverflow(by: rhs.completed)
if !left.overflow && !right.overflow {
if left.0 == right.0 {
return true
}
} else {
// Try simplifying then cross multiply again
let lhsSimplified = lhs.simplified()
let rhsSimplified = rhs.simplified()
let leftSimplified = lhsSimplified.completed.multipliedReportingOverflow(by: rhsSimplified.total)
let rightSimplified = lhsSimplified.total.multipliedReportingOverflow(by: rhsSimplified.completed)
if !leftSimplified.overflow && !rightSimplified.overflow {
if leftSimplified.0 == rightSimplified.0 {
return true
}
} else {
// Ok... fallback to doubles. This doesn't use an epsilon
return lhs.fractionCompleted == rhs.fractionCompleted
}
}
}
return false
}
// ----
internal var isIndeterminate : Bool {
return completed < 0 || total < 0 || (completed == 0 && total == 0)
}
internal var isFinished : Bool {
return ((completed >= total) && completed > 0 && total > 0) || (completed > 0 && total == 0)
}
internal var fractionCompleted : Double {
if isIndeterminate {
// Return something predictable
return 0.0
} else if total == 0 {
// When there is nothing to do, you're always done
return 1.0
} else {
return Double(completed) / Double(total)
}
}
internal var isNaN : Bool {
return total == 0
}
internal var debugDescription : String {
return "\(completed) / \(total) (\(fractionCompleted))"
}
// ----
private static func _fromDouble(_ d : Double) -> (Int64, Int64) {
// This simplistic algorithm could someday be replaced with something better.
// Basically - how many 1/Nths is this double?
// And we choose to use 131072 for N
let denominator : Int64 = 131072
let numerator = Int64(d / (1.0 / Double(denominator)))
return (numerator, denominator)
}
private static func _greatestCommonDivisor(_ inA : Int64, _ inB : Int64) -> Int64 {
// This is Euclid's algorithm. There are faster ones, like Knuth, but this is the simplest one for now.
var a = inA
var b = inB
repeat {
let tmp = b
b = a % b
a = tmp
} while (b != 0)
return a
}
private static func _leastCommonMultiple(_ a : Int64, _ b : Int64) -> Int64? {
// This division always results in an integer value because gcd(a,b) is a divisor of a.
// lcm(a,b) == (|a|/gcd(a,b))*b == (|b|/gcd(a,b))*a
let result = (a / _greatestCommonDivisor(a, b)).multipliedReportingOverflow(by: b)
if result.overflow {
return nil
} else {
return result.0
}
}
private static func _simplify(_ n : Int64, _ d : Int64) -> (Int64, Int64) {
let gcd = _greatestCommonDivisor(n, d)
return (n / gcd, d / gcd)
}
}
|