File: tls_cbc.c

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (514 lines) | stat: -rw-r--r-- 19,836 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
/* ====================================================================
 * Copyright (c) 2012 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com). */

#include <assert.h>
#include <string.h>

#include <CCryptoBoringSSL_digest.h>
#include <CCryptoBoringSSL_nid.h>
#include <CCryptoBoringSSL_sha.h>

#include "../internal.h"
#include "internal.h"
#include "../fipsmodule/cipher/internal.h"


int EVP_tls_cbc_remove_padding(crypto_word_t *out_padding_ok, size_t *out_len,
                               const uint8_t *in, size_t in_len,
                               size_t block_size, size_t mac_size) {
  const size_t overhead = 1 /* padding length byte */ + mac_size;

  // These lengths are all public so we can test them in non-constant time.
  if (overhead > in_len) {
    return 0;
  }

  size_t padding_length = in[in_len - 1];

  crypto_word_t good = constant_time_ge_w(in_len, overhead + padding_length);
  // The padding consists of a length byte at the end of the record and
  // then that many bytes of padding, all with the same value as the
  // length byte. Thus, with the length byte included, there are i+1
  // bytes of padding.
  //
  // We can't check just |padding_length+1| bytes because that leaks
  // decrypted information. Therefore we always have to check the maximum
  // amount of padding possible. (Again, the length of the record is
  // public information so we can use it.)
  size_t to_check = 256;  // maximum amount of padding, inc length byte.
  if (to_check > in_len) {
    to_check = in_len;
  }

  for (size_t i = 0; i < to_check; i++) {
    uint8_t mask = constant_time_ge_8(padding_length, i);
    uint8_t b = in[in_len - 1 - i];
    // The final |padding_length+1| bytes should all have the value
    // |padding_length|. Therefore the XOR should be zero.
    good &= ~(mask & (padding_length ^ b));
  }

  // If any of the final |padding_length+1| bytes had the wrong value,
  // one or more of the lower eight bits of |good| will be cleared.
  good = constant_time_eq_w(0xff, good & 0xff);

  // Always treat |padding_length| as zero on error. If, assuming block size of
  // 16, a padding of [<15 arbitrary bytes> 15] treated |padding_length| as 16
  // and returned -1, distinguishing good MAC and bad padding from bad MAC and
  // bad padding would give POODLE's padding oracle.
  padding_length = good & (padding_length + 1);
  *out_len = in_len - padding_length;
  *out_padding_ok = good;
  return 1;
}

void EVP_tls_cbc_copy_mac(uint8_t *out, size_t md_size, const uint8_t *in,
                          size_t in_len, size_t orig_len) {
  uint8_t rotated_mac1[EVP_MAX_MD_SIZE], rotated_mac2[EVP_MAX_MD_SIZE];
  uint8_t *rotated_mac = rotated_mac1;
  uint8_t *rotated_mac_tmp = rotated_mac2;

  // mac_end is the index of |in| just after the end of the MAC.
  size_t mac_end = in_len;
  size_t mac_start = mac_end - md_size;

  assert(orig_len >= in_len);
  assert(in_len >= md_size);
  assert(md_size <= EVP_MAX_MD_SIZE);
  assert(md_size > 0);

  // scan_start contains the number of bytes that we can ignore because
  // the MAC's position can only vary by 255 bytes.
  size_t scan_start = 0;
  // This information is public so it's safe to branch based on it.
  if (orig_len > md_size + 255 + 1) {
    scan_start = orig_len - (md_size + 255 + 1);
  }

  size_t rotate_offset = 0;
  uint8_t mac_started = 0;
  OPENSSL_memset(rotated_mac, 0, md_size);
  for (size_t i = scan_start, j = 0; i < orig_len; i++, j++) {
    if (j >= md_size) {
      j -= md_size;
    }
    crypto_word_t is_mac_start = constant_time_eq_w(i, mac_start);
    mac_started |= is_mac_start;
    uint8_t mac_ended = constant_time_ge_8(i, mac_end);
    rotated_mac[j] |= in[i] & mac_started & ~mac_ended;
    // Save the offset that |mac_start| is mapped to.
    rotate_offset |= j & is_mac_start;
  }

  // Now rotate the MAC. We rotate in log(md_size) steps, one for each bit
  // position.
  for (size_t offset = 1; offset < md_size; offset <<= 1, rotate_offset >>= 1) {
    // Rotate by |offset| iff the corresponding bit is set in
    // |rotate_offset|, placing the result in |rotated_mac_tmp|.
    const uint8_t skip_rotate = (rotate_offset & 1) - 1;
    for (size_t i = 0, j = offset; i < md_size; i++, j++) {
      if (j >= md_size) {
        j -= md_size;
      }
      rotated_mac_tmp[i] =
          constant_time_select_8(skip_rotate, rotated_mac[i], rotated_mac[j]);
    }

    // Swap pointers so |rotated_mac| contains the (possibly) rotated value.
    // Note the number of iterations and thus the identity of these pointers is
    // public information.
    uint8_t *tmp = rotated_mac;
    rotated_mac = rotated_mac_tmp;
    rotated_mac_tmp = tmp;
  }

  OPENSSL_memcpy(out, rotated_mac, md_size);
}

int EVP_sha1_final_with_secret_suffix(SHA_CTX *ctx,
                                      uint8_t out[SHA_DIGEST_LENGTH],
                                      const uint8_t *in, size_t len,
                                      size_t max_len) {
  // Bound the input length so |total_bits| below fits in four bytes. This is
  // redundant with TLS record size limits. This also ensures |input_idx| below
  // does not overflow.
  size_t max_len_bits = max_len << 3;
  if (ctx->Nh != 0 ||
      (max_len_bits >> 3) != max_len ||  // Overflow
      ctx->Nl + max_len_bits < max_len_bits ||
      ctx->Nl + max_len_bits > UINT32_MAX) {
    return 0;
  }

  // We need to hash the following into |ctx|:
  //
  // - ctx->data[:ctx->num]
  // - in[:len]
  // - A 0x80 byte
  // - However many zero bytes are needed to pad up to a block.
  // - Eight bytes of length.
  size_t num_blocks = (ctx->num + len + 1 + 8 + SHA_CBLOCK - 1) >> 6;
  size_t last_block = num_blocks - 1;
  size_t max_blocks = (ctx->num + max_len + 1 + 8 + SHA_CBLOCK - 1) >> 6;

  // The bounds above imply |total_bits| fits in four bytes.
  size_t total_bits = ctx->Nl + (len << 3);
  uint8_t length_bytes[4];
  length_bytes[0] = (uint8_t)(total_bits >> 24);
  length_bytes[1] = (uint8_t)(total_bits >> 16);
  length_bytes[2] = (uint8_t)(total_bits >> 8);
  length_bytes[3] = (uint8_t)total_bits;

  // We now construct and process each expected block in constant-time.
  uint8_t block[SHA_CBLOCK] = {0};
  uint32_t result[5] = {0};
  // input_idx is the index into |in| corresponding to the current block.
  // However, we allow this index to overflow beyond |max_len|, to simplify the
  // 0x80 byte.
  size_t input_idx = 0;
  for (size_t i = 0; i < max_blocks; i++) {
    // Fill |block| with data from the partial block in |ctx| and |in|. We copy
    // as if we were hashing up to |max_len| and then zero the excess later.
    size_t block_start = 0;
    if (i == 0) {
      OPENSSL_memcpy(block, ctx->data, ctx->num);
      block_start = ctx->num;
    }
    if (input_idx < max_len) {
      size_t to_copy = SHA_CBLOCK - block_start;
      if (to_copy > max_len - input_idx) {
        to_copy = max_len - input_idx;
      }
      OPENSSL_memcpy(block + block_start, in + input_idx, to_copy);
    }

    // Zero any bytes beyond |len| and add the 0x80 byte.
    for (size_t j = block_start; j < SHA_CBLOCK; j++) {
      // input[idx] corresponds to block[j].
      size_t idx = input_idx + j - block_start;
      // The barriers on |len| are not strictly necessary. However, without
      // them, GCC compiles this code by incorporating |len| into the loop
      // counter and subtracting it out later. This is still constant-time, but
      // it frustrates attempts to validate this.
      uint8_t is_in_bounds = constant_time_lt_8(idx, value_barrier_w(len));
      uint8_t is_padding_byte = constant_time_eq_8(idx, value_barrier_w(len));
      block[j] &= is_in_bounds;
      block[j] |= 0x80 & is_padding_byte;
    }

    input_idx += SHA_CBLOCK - block_start;

    // Fill in the length if this is the last block.
    crypto_word_t is_last_block = constant_time_eq_w(i, last_block);
    for (size_t j = 0; j < 4; j++) {
      block[SHA_CBLOCK - 4 + j] |= is_last_block & length_bytes[j];
    }

    // Process the block and save the hash state if it is the final value.
    SHA1_Transform(ctx, block);
    for (size_t j = 0; j < 5; j++) {
      result[j] |= is_last_block & ctx->h[j];
    }
  }

  // Write the output.
  for (size_t i = 0; i < 5; i++) {
    CRYPTO_store_u32_be(out + 4 * i, result[i]);
  }
  return 1;
}

int EVP_sha256_final_with_secret_suffix(SHA256_CTX *ctx,
                                        uint8_t out[SHA256_DIGEST_LENGTH],
                                        const uint8_t *in, size_t len,
                                        size_t max_len) {
  // Bound the input length so |total_bits| below fits in four bytes. This is
  // redundant with TLS record size limits. This also ensures |input_idx| below
  // does not overflow.
  size_t max_len_bits = max_len << 3;
  if (ctx->Nh != 0 ||
      (max_len_bits >> 3) != max_len ||  // Overflow
      ctx->Nl + max_len_bits < max_len_bits ||
      ctx->Nl + max_len_bits > UINT32_MAX) {
    return 0;
  }

  // We need to hash the following into |ctx|:
  //
  // - ctx->data[:ctx->num]
  // - in[:len]
  // - A 0x80 byte
  // - However many zero bytes are needed to pad up to a block.
  // - Eight bytes of length.
  size_t num_blocks = (ctx->num + len + 1 + 8 + SHA256_CBLOCK - 1) >> 6;
  size_t last_block = num_blocks - 1;
  size_t max_blocks = (ctx->num + max_len + 1 + 8 + SHA256_CBLOCK - 1) >> 6;

  // The bounds above imply |total_bits| fits in four bytes.
  size_t total_bits = ctx->Nl + (len << 3);
  uint8_t length_bytes[4];
  length_bytes[0] = (uint8_t)(total_bits >> 24);
  length_bytes[1] = (uint8_t)(total_bits >> 16);
  length_bytes[2] = (uint8_t)(total_bits >> 8);
  length_bytes[3] = (uint8_t)total_bits;

  // We now construct and process each expected block in constant-time.
  uint8_t block[SHA256_CBLOCK] = {0};
  uint32_t result[8] = {0};
  // input_idx is the index into |in| corresponding to the current block.
  // However, we allow this index to overflow beyond |max_len|, to simplify the
  // 0x80 byte.
  size_t input_idx = 0;
  for (size_t i = 0; i < max_blocks; i++) {
    // Fill |block| with data from the partial block in |ctx| and |in|. We copy
    // as if we were hashing up to |max_len| and then zero the excess later.
    size_t block_start = 0;
    if (i == 0) {
      OPENSSL_memcpy(block, ctx->data, ctx->num);
      block_start = ctx->num;
    }
    if (input_idx < max_len) {
      size_t to_copy = SHA256_CBLOCK - block_start;
      if (to_copy > max_len - input_idx) {
        to_copy = max_len - input_idx;
      }
      OPENSSL_memcpy(block + block_start, in + input_idx, to_copy);
    }

    // Zero any bytes beyond |len| and add the 0x80 byte.
    for (size_t j = block_start; j < SHA256_CBLOCK; j++) {
      // input[idx] corresponds to block[j].
      size_t idx = input_idx + j - block_start;
      // The barriers on |len| are not strictly necessary. However, without
      // them, GCC compiles this code by incorporating |len| into the loop
      // counter and subtracting it out later. This is still constant-time, but
      // it frustrates attempts to validate this.
      uint8_t is_in_bounds = constant_time_lt_8(idx, value_barrier_w(len));
      uint8_t is_padding_byte = constant_time_eq_8(idx, value_barrier_w(len));
      block[j] &= is_in_bounds;
      block[j] |= 0x80 & is_padding_byte;
    }

    input_idx += SHA256_CBLOCK - block_start;

    // Fill in the length if this is the last block.
    crypto_word_t is_last_block = constant_time_eq_w(i, last_block);
    for (size_t j = 0; j < 4; j++) {
      block[SHA256_CBLOCK - 4 + j] |= is_last_block & length_bytes[j];
    }

    // Process the block and save the hash state if it is the final value.
    SHA256_Transform(ctx, block);
    for (size_t j = 0; j < 8; j++) {
      result[j] |= is_last_block & ctx->h[j];
    }
  }

  // Write the output.
  for (size_t i = 0; i < 8; i++) {
    CRYPTO_store_u32_be(out + 4 * i, result[i]);
  }
  return 1;
}

int EVP_tls_cbc_record_digest_supported(const EVP_MD *md) {
  switch (EVP_MD_type(md)) {
    case NID_sha1:
    case NID_sha256:
      return 1;
    default:
      return 0;
  }
}

static int tls_cbc_digest_record_sha1(uint8_t *md_out, size_t *md_out_size,
                                      const uint8_t header[13],
                                      const uint8_t *data, size_t data_size,
                                      size_t data_plus_mac_plus_padding_size,
                                      const uint8_t *mac_secret,
                                      unsigned mac_secret_length) {
  if (mac_secret_length > SHA_CBLOCK) {
    // HMAC pads small keys with zeros and hashes large keys down. This function
    // should never reach the large key case.
    assert(0);
    return 0;
  }

  // Compute the initial HMAC block.
  uint8_t hmac_pad[SHA_CBLOCK];
  OPENSSL_memset(hmac_pad, 0, sizeof(hmac_pad));
  OPENSSL_memcpy(hmac_pad, mac_secret, mac_secret_length);
  for (size_t i = 0; i < SHA_CBLOCK; i++) {
    hmac_pad[i] ^= 0x36;
  }

  SHA_CTX ctx;
  SHA1_Init(&ctx);
  SHA1_Update(&ctx, hmac_pad, SHA_CBLOCK);
  SHA1_Update(&ctx, header, 13);

  // There are at most 256 bytes of padding, so we can compute the public
  // minimum length for |data_size|.
  size_t min_data_size = 0;
  if (data_plus_mac_plus_padding_size > SHA_DIGEST_LENGTH + 256) {
    min_data_size = data_plus_mac_plus_padding_size - SHA_DIGEST_LENGTH - 256;
  }

  // Hash the public minimum length directly. This reduces the number of blocks
  // that must be computed in constant-time.
  SHA1_Update(&ctx, data, min_data_size);

  // Hash the remaining data without leaking |data_size|.
  uint8_t mac_out[SHA_DIGEST_LENGTH];
  if (!EVP_sha1_final_with_secret_suffix(
          &ctx, mac_out, data + min_data_size, data_size - min_data_size,
          data_plus_mac_plus_padding_size - min_data_size)) {
    return 0;
  }

  // Complete the HMAC in the standard manner.
  SHA1_Init(&ctx);
  for (size_t i = 0; i < SHA_CBLOCK; i++) {
    hmac_pad[i] ^= 0x6a;
  }

  SHA1_Update(&ctx, hmac_pad, SHA_CBLOCK);
  SHA1_Update(&ctx, mac_out, SHA_DIGEST_LENGTH);
  SHA1_Final(md_out, &ctx);
  *md_out_size = SHA_DIGEST_LENGTH;
  return 1;
}

static int tls_cbc_digest_record_sha256(uint8_t *md_out, size_t *md_out_size,
                                        const uint8_t header[13],
                                        const uint8_t *data, size_t data_size,
                                        size_t data_plus_mac_plus_padding_size,
                                        const uint8_t *mac_secret,
                                        unsigned mac_secret_length) {
  if (mac_secret_length > SHA256_CBLOCK) {
    // HMAC pads small keys with zeros and hashes large keys down. This function
    // should never reach the large key case.
    assert(0);
    return 0;
  }

  // Compute the initial HMAC block.
  uint8_t hmac_pad[SHA256_CBLOCK];
  OPENSSL_memset(hmac_pad, 0, sizeof(hmac_pad));
  OPENSSL_memcpy(hmac_pad, mac_secret, mac_secret_length);
  for (size_t i = 0; i < SHA256_CBLOCK; i++) {
    hmac_pad[i] ^= 0x36;
  }

  SHA256_CTX ctx;
  SHA256_Init(&ctx);
  SHA256_Update(&ctx, hmac_pad, SHA256_CBLOCK);
  SHA256_Update(&ctx, header, 13);

  // There are at most 256 bytes of padding, so we can compute the public
  // minimum length for |data_size|.
  size_t min_data_size = 0;
  if (data_plus_mac_plus_padding_size > SHA256_DIGEST_LENGTH + 256) {
    min_data_size =
        data_plus_mac_plus_padding_size - SHA256_DIGEST_LENGTH - 256;
  }

  // Hash the public minimum length directly. This reduces the number of blocks
  // that must be computed in constant-time.
  SHA256_Update(&ctx, data, min_data_size);

  // Hash the remaining data without leaking |data_size|.
  uint8_t mac_out[SHA256_DIGEST_LENGTH];
  if (!EVP_sha256_final_with_secret_suffix(
          &ctx, mac_out, data + min_data_size, data_size - min_data_size,
          data_plus_mac_plus_padding_size - min_data_size)) {
    return 0;
  }

  // Complete the HMAC in the standard manner.
  SHA256_Init(&ctx);
  for (size_t i = 0; i < SHA256_CBLOCK; i++) {
    hmac_pad[i] ^= 0x6a;
  }

  SHA256_Update(&ctx, hmac_pad, SHA256_CBLOCK);
  SHA256_Update(&ctx, mac_out, SHA256_DIGEST_LENGTH);
  SHA256_Final(md_out, &ctx);
  *md_out_size = SHA256_DIGEST_LENGTH;
  return 1;
}

int EVP_tls_cbc_digest_record(const EVP_MD *md, uint8_t *md_out,
                              size_t *md_out_size, const uint8_t header[13],
                              const uint8_t *data, size_t data_size,
                              size_t data_plus_mac_plus_padding_size,
                              const uint8_t *mac_secret,
                              unsigned mac_secret_length) {
  switch (EVP_MD_type(md)) {
    case NID_sha1:
      return tls_cbc_digest_record_sha1(
          md_out, md_out_size, header, data, data_size,
          data_plus_mac_plus_padding_size, mac_secret, mac_secret_length);

    case NID_sha256:
      return tls_cbc_digest_record_sha256(
          md_out, md_out_size, header, data, data_size,
          data_plus_mac_plus_padding_size, mac_secret, mac_secret_length);

    default:
      // EVP_tls_cbc_record_digest_supported should have been called first to
      // check that the hash function is supported.
      assert(0);
      *md_out_size = 0;
      return 0;
  }
}