1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
|
/* Copyright (c) 2020, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <CCryptoBoringSSL_ec.h>
#include <CCryptoBoringSSL_digest.h>
#include <CCryptoBoringSSL_err.h>
#include <CCryptoBoringSSL_nid.h>
#include <assert.h>
#include "internal.h"
#include "../fipsmodule/bn/internal.h"
#include "../fipsmodule/ec/internal.h"
#include "../internal.h"
// This file implements hash-to-curve, as described in
// draft-irtf-cfrg-hash-to-curve-16.
//
// This hash-to-curve implementation is written generically with the
// expectation that we will eventually wish to support other curves. If it
// becomes a performance bottleneck, some possible optimizations by
// specializing it to the curve:
//
// - Rather than using a generic |felem_exp|, specialize the exponentation to
// c2 with a faster addition chain.
//
// - |felem_mul| and |felem_sqr| are indirect calls to generic Montgomery
// code. Given the few curves, we could specialize
// |map_to_curve_simple_swu|. But doing this reasonably without duplicating
// code in C is difficult. (C++ templates would be useful here.)
//
// - P-521's Z and c2 have small power-of-two absolute values. We could save
// two multiplications in SSWU. (Other curves have reasonable values of Z
// and inconvenient c2.) This is unlikely to be worthwhile without C++
// templates to make specializing more convenient.
// expand_message_xmd implements the operation described in section 5.3.1 of
// draft-irtf-cfrg-hash-to-curve-16. It returns one on success and zero on
// error.
static int expand_message_xmd(const EVP_MD *md, uint8_t *out, size_t out_len,
const uint8_t *msg, size_t msg_len,
const uint8_t *dst, size_t dst_len) {
// See https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve/issues/352
if (dst_len == 0) {
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
int ret = 0;
const size_t block_size = EVP_MD_block_size(md);
const size_t md_size = EVP_MD_size(md);
EVP_MD_CTX ctx;
EVP_MD_CTX_init(&ctx);
// Long DSTs are hashed down to size. See section 5.3.3.
static_assert(EVP_MAX_MD_SIZE < 256, "hashed DST still too large");
uint8_t dst_buf[EVP_MAX_MD_SIZE];
if (dst_len >= 256) {
static const char kPrefix[] = "H2C-OVERSIZE-DST-";
if (!EVP_DigestInit_ex(&ctx, md, NULL) ||
!EVP_DigestUpdate(&ctx, kPrefix, sizeof(kPrefix) - 1) ||
!EVP_DigestUpdate(&ctx, dst, dst_len) ||
!EVP_DigestFinal_ex(&ctx, dst_buf, NULL)) {
goto err;
}
dst = dst_buf;
dst_len = md_size;
}
uint8_t dst_len_u8 = (uint8_t)dst_len;
// Compute b_0.
static const uint8_t kZeros[EVP_MAX_MD_BLOCK_SIZE] = {0};
// If |out_len| exceeds 16 bits then |i| will wrap below causing an error to
// be returned. This depends on the static assert above.
uint8_t l_i_b_str_zero[3] = {out_len >> 8, out_len, 0};
uint8_t b_0[EVP_MAX_MD_SIZE];
if (!EVP_DigestInit_ex(&ctx, md, NULL) ||
!EVP_DigestUpdate(&ctx, kZeros, block_size) ||
!EVP_DigestUpdate(&ctx, msg, msg_len) ||
!EVP_DigestUpdate(&ctx, l_i_b_str_zero, sizeof(l_i_b_str_zero)) ||
!EVP_DigestUpdate(&ctx, dst, dst_len) ||
!EVP_DigestUpdate(&ctx, &dst_len_u8, 1) ||
!EVP_DigestFinal_ex(&ctx, b_0, NULL)) {
goto err;
}
uint8_t b_i[EVP_MAX_MD_SIZE];
uint8_t i = 1;
while (out_len > 0) {
if (i == 0) {
// Input was too large.
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
goto err;
}
if (i > 1) {
for (size_t j = 0; j < md_size; j++) {
b_i[j] ^= b_0[j];
}
} else {
OPENSSL_memcpy(b_i, b_0, md_size);
}
if (!EVP_DigestInit_ex(&ctx, md, NULL) ||
!EVP_DigestUpdate(&ctx, b_i, md_size) ||
!EVP_DigestUpdate(&ctx, &i, 1) ||
!EVP_DigestUpdate(&ctx, dst, dst_len) ||
!EVP_DigestUpdate(&ctx, &dst_len_u8, 1) ||
!EVP_DigestFinal_ex(&ctx, b_i, NULL)) {
goto err;
}
size_t todo = out_len >= md_size ? md_size : out_len;
OPENSSL_memcpy(out, b_i, todo);
out += todo;
out_len -= todo;
i++;
}
ret = 1;
err:
EVP_MD_CTX_cleanup(&ctx);
return ret;
}
// num_bytes_to_derive determines the number of bytes to derive when hashing to
// a number modulo |modulus|. See the hash_to_field operation defined in
// section 5.2 of draft-irtf-cfrg-hash-to-curve-16.
static int num_bytes_to_derive(size_t *out, const BIGNUM *modulus, unsigned k) {
size_t bits = BN_num_bits(modulus);
size_t L = (bits + k + 7) / 8;
// We require 2^(8*L) < 2^(2*bits - 2) <= n^2 so to fit in bounds for
// |felem_reduce| and |ec_scalar_reduce|. All defined hash-to-curve suites
// define |k| to be well under this bound. (|k| is usually around half of
// |p_bits|.)
if (L * 8 >= 2 * bits - 2 ||
L > 2 * EC_MAX_BYTES) {
assert(0);
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
return 0;
}
*out = L;
return 1;
}
// big_endian_to_words decodes |in| as a big-endian integer and writes the
// result to |out|. |num_words| must be large enough to contain the output.
static void big_endian_to_words(BN_ULONG *out, size_t num_words,
const uint8_t *in, size_t len) {
assert(len <= num_words * sizeof(BN_ULONG));
// Ensure any excess bytes are zeroed.
OPENSSL_memset(out, 0, num_words * sizeof(BN_ULONG));
uint8_t *out_u8 = (uint8_t *)out;
for (size_t i = 0; i < len; i++) {
out_u8[len - 1 - i] = in[i];
}
}
// hash_to_field implements the operation described in section 5.2
// of draft-irtf-cfrg-hash-to-curve-16, with count = 2. |k| is the security
// factor.
static int hash_to_field2(const EC_GROUP *group, const EVP_MD *md,
EC_FELEM *out1, EC_FELEM *out2, const uint8_t *dst,
size_t dst_len, unsigned k, const uint8_t *msg,
size_t msg_len) {
size_t L;
uint8_t buf[4 * EC_MAX_BYTES];
if (!num_bytes_to_derive(&L, &group->field.N, k) ||
!expand_message_xmd(md, buf, 2 * L, msg, msg_len, dst, dst_len)) {
return 0;
}
BN_ULONG words[2 * EC_MAX_WORDS];
size_t num_words = 2 * group->field.N.width;
big_endian_to_words(words, num_words, buf, L);
group->meth->felem_reduce(group, out1, words, num_words);
big_endian_to_words(words, num_words, buf + L, L);
group->meth->felem_reduce(group, out2, words, num_words);
return 1;
}
// hash_to_scalar behaves like |hash_to_field2| but returns a value modulo the
// group order rather than a field element. |k| is the security factor.
static int hash_to_scalar(const EC_GROUP *group, const EVP_MD *md,
EC_SCALAR *out, const uint8_t *dst, size_t dst_len,
unsigned k, const uint8_t *msg, size_t msg_len) {
const BIGNUM *order = EC_GROUP_get0_order(group);
size_t L;
uint8_t buf[EC_MAX_BYTES * 2];
if (!num_bytes_to_derive(&L, order, k) ||
!expand_message_xmd(md, buf, L, msg, msg_len, dst, dst_len)) {
return 0;
}
BN_ULONG words[2 * EC_MAX_WORDS];
size_t num_words = 2 * order->width;
big_endian_to_words(words, num_words, buf, L);
ec_scalar_reduce(group, out, words, num_words);
return 1;
}
static inline void mul_A(const EC_GROUP *group, EC_FELEM *out,
const EC_FELEM *in) {
assert(group->a_is_minus3);
EC_FELEM tmp;
ec_felem_add(group, &tmp, in, in); // tmp = 2*in
ec_felem_add(group, &tmp, &tmp, &tmp); // tmp = 4*in
ec_felem_sub(group, out, in, &tmp); // out = -3*in
}
// sgn0 implements the operation described in section 4.1.2 of
// draft-irtf-cfrg-hash-to-curve-16.
static BN_ULONG sgn0(const EC_GROUP *group, const EC_FELEM *a) {
uint8_t buf[EC_MAX_BYTES];
size_t len;
ec_felem_to_bytes(group, buf, &len, a);
return buf[len - 1] & 1;
}
OPENSSL_UNUSED static int is_3mod4(const EC_GROUP *group) {
return group->field.N.width > 0 && (group->field.N.d[0] & 3) == 3;
}
// sqrt_ratio_3mod4 implements the operation described in appendix F.2.1.2
// of draft-irtf-cfrg-hash-to-curve-16.
static BN_ULONG sqrt_ratio_3mod4(const EC_GROUP *group, const EC_FELEM *Z,
const BN_ULONG *c1, size_t num_c1,
const EC_FELEM *c2, EC_FELEM *out_y,
const EC_FELEM *u, const EC_FELEM *v) {
assert(is_3mod4(group));
void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
const EC_FELEM *b) = group->meth->felem_mul;
void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) =
group->meth->felem_sqr;
EC_FELEM tv1, tv2, tv3, y1, y2;
felem_sqr(group, &tv1, v); // 1. tv1 = v^2
felem_mul(group, &tv2, u, v); // 2. tv2 = u * v
felem_mul(group, &tv1, &tv1, &tv2); // 3. tv1 = tv1 * tv2
group->meth->felem_exp(group, &y1, &tv1, c1, num_c1); // 4. y1 = tv1^c1
felem_mul(group, &y1, &y1, &tv2); // 5. y1 = y1 * tv2
felem_mul(group, &y2, &y1, c2); // 6. y2 = y1 * c2
felem_sqr(group, &tv3, &y1); // 7. tv3 = y1^2
felem_mul(group, &tv3, &tv3, v); // 8. tv3 = tv3 * v
// 9. isQR = tv3 == u
// 10. y = CMOV(y2, y1, isQR)
// 11. return (isQR, y)
//
// Note the specification's CMOV function and our |ec_felem_select| have the
// opposite argument order.
ec_felem_sub(group, &tv1, &tv3, u);
const BN_ULONG isQR = ~ec_felem_non_zero_mask(group, &tv1);
ec_felem_select(group, out_y, isQR, &y1, &y2);
return isQR;
}
// map_to_curve_simple_swu implements the operation described in section 6.6.2
// of draft-irtf-cfrg-hash-to-curve-16, using the straight-line implementation
// in appendix F.2.
static void map_to_curve_simple_swu(const EC_GROUP *group, const EC_FELEM *Z,
const BN_ULONG *c1, size_t num_c1,
const EC_FELEM *c2, EC_JACOBIAN *out,
const EC_FELEM *u) {
// This function requires the prime be 3 mod 4, and that A = -3.
assert(is_3mod4(group));
assert(group->a_is_minus3);
void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
const EC_FELEM *b) = group->meth->felem_mul;
void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) =
group->meth->felem_sqr;
EC_FELEM tv1, tv2, tv3, tv4, tv5, tv6, x, y, y1;
felem_sqr(group, &tv1, u); // 1. tv1 = u^2
felem_mul(group, &tv1, Z, &tv1); // 2. tv1 = Z * tv1
felem_sqr(group, &tv2, &tv1); // 3. tv2 = tv1^2
ec_felem_add(group, &tv2, &tv2, &tv1); // 4. tv2 = tv2 + tv1
ec_felem_add(group, &tv3, &tv2, ec_felem_one(group)); // 5. tv3 = tv2 + 1
felem_mul(group, &tv3, &group->b, &tv3); // 6. tv3 = B * tv3
// 7. tv4 = CMOV(Z, -tv2, tv2 != 0)
const BN_ULONG tv2_non_zero = ec_felem_non_zero_mask(group, &tv2);
ec_felem_neg(group, &tv4, &tv2);
ec_felem_select(group, &tv4, tv2_non_zero, &tv4, Z);
mul_A(group, &tv4, &tv4); // 8. tv4 = A * tv4
felem_sqr(group, &tv2, &tv3); // 9. tv2 = tv3^2
felem_sqr(group, &tv6, &tv4); // 10. tv6 = tv4^2
mul_A(group, &tv5, &tv6); // 11. tv5 = A * tv6
ec_felem_add(group, &tv2, &tv2, &tv5); // 12. tv2 = tv2 + tv5
felem_mul(group, &tv2, &tv2, &tv3); // 13. tv2 = tv2 * tv3
felem_mul(group, &tv6, &tv6, &tv4); // 14. tv6 = tv6 * tv4
felem_mul(group, &tv5, &group->b, &tv6); // 15. tv5 = B * tv6
ec_felem_add(group, &tv2, &tv2, &tv5); // 16. tv2 = tv2 + tv5
felem_mul(group, &x, &tv1, &tv3); // 17. x = tv1 * tv3
// 18. (is_gx1_square, y1) = sqrt_ratio(tv2, tv6)
const BN_ULONG is_gx1_square =
sqrt_ratio_3mod4(group, Z, c1, num_c1, c2, &y1, &tv2, &tv6);
felem_mul(group, &y, &tv1, u); // 19. y = tv1 * u
felem_mul(group, &y, &y, &y1); // 20. y = y * y1
// 21. x = CMOV(x, tv3, is_gx1_square)
ec_felem_select(group, &x, is_gx1_square, &tv3, &x);
// 22. y = CMOV(y, y1, is_gx1_square)
ec_felem_select(group, &y, is_gx1_square, &y1, &y);
// 23. e1 = sgn0(u) == sgn0(y)
BN_ULONG sgn0_u = sgn0(group, u);
BN_ULONG sgn0_y = sgn0(group, &y);
BN_ULONG not_e1 = sgn0_u ^ sgn0_y;
not_e1 = ((BN_ULONG)0) - not_e1;
// 24. y = CMOV(-y, y, e1)
ec_felem_neg(group, &tv1, &y);
ec_felem_select(group, &y, not_e1, &tv1, &y);
// 25. x = x / tv4
//
// Our output is in projective coordinates, so rather than inverting |tv4|
// now, represent (x / tv4, y) as (x * tv4, y * tv4^3, tv4). This is much more
// efficient if the caller will do further computation on the output. (If the
// caller will immediately convert to affine coordinates, it is slightly less
// efficient, but only by a few field multiplications.)
felem_mul(group, &out->X, &x, &tv4);
felem_mul(group, &out->Y, &y, &tv6);
out->Z = tv4;
}
static int hash_to_curve(const EC_GROUP *group, const EVP_MD *md,
const EC_FELEM *Z, const EC_FELEM *c2, unsigned k,
EC_JACOBIAN *out, const uint8_t *dst, size_t dst_len,
const uint8_t *msg, size_t msg_len) {
EC_FELEM u0, u1;
if (!hash_to_field2(group, md, &u0, &u1, dst, dst_len, k, msg, msg_len)) {
return 0;
}
// Compute |c1| = (p - 3) / 4.
BN_ULONG c1[EC_MAX_WORDS];
size_t num_c1 = group->field.N.width;
if (!bn_copy_words(c1, num_c1, &group->field.N)) {
return 0;
}
bn_rshift_words(c1, c1, /*shift=*/2, /*num=*/num_c1);
EC_JACOBIAN Q0, Q1;
map_to_curve_simple_swu(group, Z, c1, num_c1, c2, &Q0, &u0);
map_to_curve_simple_swu(group, Z, c1, num_c1, c2, &Q1, &u1);
group->meth->add(group, out, &Q0, &Q1); // R = Q0 + Q1
// All our curves have cofactor one, so |clear_cofactor| is a no-op.
return 1;
}
static int felem_from_u8(const EC_GROUP *group, EC_FELEM *out, uint8_t a) {
uint8_t bytes[EC_MAX_BYTES] = {0};
size_t len = BN_num_bytes(&group->field.N);
bytes[len - 1] = a;
return ec_felem_from_bytes(group, out, bytes, len);
}
// kP256Sqrt10 is sqrt(10) in P-256's field. It was computed as follows in
// python3:
//
// p = 2**256 - 2**224 + 2**192 + 2**96 - 1
// c2 = pow(10, (p+1)//4, p)
// assert pow(c2, 2, p) == 10
// ", ".join("0x%02x" % b for b in c2.to_bytes(256//8, 'big'))
static const uint8_t kP256Sqrt10[] = {
0xda, 0x53, 0x8e, 0x3b, 0xe1, 0xd8, 0x9b, 0x99, 0xc9, 0x78, 0xfc,
0x67, 0x51, 0x80, 0xaa, 0xb2, 0x7b, 0x8d, 0x1f, 0xf8, 0x4c, 0x55,
0xd5, 0xb6, 0x2c, 0xcd, 0x34, 0x27, 0xe4, 0x33, 0xc4, 0x7f};
// kP384Sqrt12 is sqrt(12) in P-384's field. It was computed as follows in
// python3:
//
// p = 2**384 - 2**128 - 2**96 + 2**32 - 1
// c2 = pow(12, (p+1)//4, p)
// assert pow(c2, 2, p) == 12
// ", ".join("0x%02x" % b for b in c2.to_bytes(384//8, 'big'))
static const uint8_t kP384Sqrt12[] = {
0x2a, 0xcc, 0xb4, 0xa6, 0x56, 0xb0, 0x24, 0x9c, 0x71, 0xf0, 0x50, 0x0e,
0x83, 0xda, 0x2f, 0xdd, 0x7f, 0x98, 0xe3, 0x83, 0xd6, 0x8b, 0x53, 0x87,
0x1f, 0x87, 0x2f, 0xcb, 0x9c, 0xcb, 0x80, 0xc5, 0x3c, 0x0d, 0xe1, 0xf8,
0xa8, 0x0f, 0x7e, 0x19, 0x14, 0xe2, 0xec, 0x69, 0xf5, 0xa6, 0x26, 0xb3};
int ec_hash_to_curve_p256_xmd_sha256_sswu(const EC_GROUP *group,
EC_JACOBIAN *out, const uint8_t *dst,
size_t dst_len, const uint8_t *msg,
size_t msg_len) {
// See section 8.3 of draft-irtf-cfrg-hash-to-curve-16.
if (EC_GROUP_get_curve_name(group) != NID_X9_62_prime256v1) {
OPENSSL_PUT_ERROR(EC, EC_R_GROUP_MISMATCH);
return 0;
}
// Z = -10, c2 = sqrt(10)
EC_FELEM Z, c2;
if (!felem_from_u8(group, &Z, 10) ||
!ec_felem_from_bytes(group, &c2, kP256Sqrt10, sizeof(kP256Sqrt10))) {
return 0;
}
ec_felem_neg(group, &Z, &Z);
return hash_to_curve(group, EVP_sha256(), &Z, &c2, /*k=*/128, out, dst,
dst_len, msg, msg_len);
}
int EC_hash_to_curve_p256_xmd_sha256_sswu(const EC_GROUP *group, EC_POINT *out,
const uint8_t *dst, size_t dst_len,
const uint8_t *msg, size_t msg_len) {
if (EC_GROUP_cmp(group, out->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
return ec_hash_to_curve_p256_xmd_sha256_sswu(group, &out->raw, dst, dst_len,
msg, msg_len);
}
int ec_hash_to_curve_p384_xmd_sha384_sswu(const EC_GROUP *group,
EC_JACOBIAN *out, const uint8_t *dst,
size_t dst_len, const uint8_t *msg,
size_t msg_len) {
// See section 8.3 of draft-irtf-cfrg-hash-to-curve-16.
if (EC_GROUP_get_curve_name(group) != NID_secp384r1) {
OPENSSL_PUT_ERROR(EC, EC_R_GROUP_MISMATCH);
return 0;
}
// Z = -12, c2 = sqrt(12)
EC_FELEM Z, c2;
if (!felem_from_u8(group, &Z, 12) ||
!ec_felem_from_bytes(group, &c2, kP384Sqrt12, sizeof(kP384Sqrt12))) {
return 0;
}
ec_felem_neg(group, &Z, &Z);
return hash_to_curve(group, EVP_sha384(), &Z, &c2, /*k=*/192, out, dst,
dst_len, msg, msg_len);
}
int EC_hash_to_curve_p384_xmd_sha384_sswu(const EC_GROUP *group, EC_POINT *out,
const uint8_t *dst, size_t dst_len,
const uint8_t *msg, size_t msg_len) {
if (EC_GROUP_cmp(group, out->group, NULL) != 0) {
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
return ec_hash_to_curve_p384_xmd_sha384_sswu(group, &out->raw, dst, dst_len,
msg, msg_len);
}
int ec_hash_to_scalar_p384_xmd_sha384(
const EC_GROUP *group, EC_SCALAR *out, const uint8_t *dst, size_t dst_len,
const uint8_t *msg, size_t msg_len) {
if (EC_GROUP_get_curve_name(group) != NID_secp384r1) {
OPENSSL_PUT_ERROR(EC, EC_R_GROUP_MISMATCH);
return 0;
}
return hash_to_scalar(group, EVP_sha384(), out, dst, dst_len, /*k=*/192, msg,
msg_len);
}
int ec_hash_to_curve_p384_xmd_sha512_sswu_draft07(
const EC_GROUP *group, EC_JACOBIAN *out, const uint8_t *dst,
size_t dst_len, const uint8_t *msg, size_t msg_len) {
// See section 8.3 of draft-irtf-cfrg-hash-to-curve-07.
if (EC_GROUP_get_curve_name(group) != NID_secp384r1) {
OPENSSL_PUT_ERROR(EC, EC_R_GROUP_MISMATCH);
return 0;
}
// Z = -12, c2 = sqrt(12)
EC_FELEM Z, c2;
if (!felem_from_u8(group, &Z, 12) ||
!ec_felem_from_bytes(group, &c2, kP384Sqrt12, sizeof(kP384Sqrt12))) {
return 0;
}
ec_felem_neg(group, &Z, &Z);
return hash_to_curve(group, EVP_sha512(), &Z, &c2, /*k=*/192, out, dst,
dst_len, msg, msg_len);
}
int ec_hash_to_scalar_p384_xmd_sha512_draft07(
const EC_GROUP *group, EC_SCALAR *out, const uint8_t *dst, size_t dst_len,
const uint8_t *msg, size_t msg_len) {
if (EC_GROUP_get_curve_name(group) != NID_secp384r1) {
OPENSSL_PUT_ERROR(EC, EC_R_GROUP_MISMATCH);
return 0;
}
return hash_to_scalar(group, EVP_sha512(), out, dst, dst_len, /*k=*/192, msg,
msg_len);
}
|