1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
|
#define BORINGSSL_PREFIX CCryptoBoringSSL
#if defined(__aarch64__) && defined(__APPLE__)
// This file is generated from a similarly-named Perl script in the BoringSSL
// source tree. Do not edit by hand.
#include <CCryptoBoringSSL_asm_base.h>
#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_AARCH64) && defined(__APPLE__)
#include <CCryptoBoringSSL_arm_arch.h>
.text
.globl _bn_mul_mont
.private_extern _bn_mul_mont
.align 5
_bn_mul_mont:
AARCH64_SIGN_LINK_REGISTER
tst x5,#7
b.eq __bn_sqr8x_mont
tst x5,#3
b.eq __bn_mul4x_mont
Lmul_mont:
stp x29,x30,[sp,#-64]!
add x29,sp,#0
stp x19,x20,[sp,#16]
stp x21,x22,[sp,#32]
stp x23,x24,[sp,#48]
ldr x9,[x2],#8 // bp[0]
sub x22,sp,x5,lsl#3
ldp x7,x8,[x1],#16 // ap[0..1]
lsl x5,x5,#3
ldr x4,[x4] // *n0
and x22,x22,#-16 // ABI says so
ldp x13,x14,[x3],#16 // np[0..1]
mul x6,x7,x9 // ap[0]*bp[0]
sub x21,x5,#16 // j=num-2
umulh x7,x7,x9
mul x10,x8,x9 // ap[1]*bp[0]
umulh x11,x8,x9
mul x15,x6,x4 // "tp[0]"*n0
mov sp,x22 // alloca
// (*) mul x12,x13,x15 // np[0]*m1
umulh x13,x13,x15
mul x16,x14,x15 // np[1]*m1
// (*) adds x12,x12,x6 // discarded
// (*) As for removal of first multiplication and addition
// instructions. The outcome of first addition is
// guaranteed to be zero, which leaves two computationally
// significant outcomes: it either carries or not. Then
// question is when does it carry? Is there alternative
// way to deduce it? If you follow operations, you can
// observe that condition for carry is quite simple:
// x6 being non-zero. So that carry can be calculated
// by adding -1 to x6. That's what next instruction does.
subs xzr,x6,#1 // (*)
umulh x17,x14,x15
adc x13,x13,xzr
cbz x21,L1st_skip
L1st:
ldr x8,[x1],#8
adds x6,x10,x7
sub x21,x21,#8 // j--
adc x7,x11,xzr
ldr x14,[x3],#8
adds x12,x16,x13
mul x10,x8,x9 // ap[j]*bp[0]
adc x13,x17,xzr
umulh x11,x8,x9
adds x12,x12,x6
mul x16,x14,x15 // np[j]*m1
adc x13,x13,xzr
umulh x17,x14,x15
str x12,[x22],#8 // tp[j-1]
cbnz x21,L1st
L1st_skip:
adds x6,x10,x7
sub x1,x1,x5 // rewind x1
adc x7,x11,xzr
adds x12,x16,x13
sub x3,x3,x5 // rewind x3
adc x13,x17,xzr
adds x12,x12,x6
sub x20,x5,#8 // i=num-1
adcs x13,x13,x7
adc x19,xzr,xzr // upmost overflow bit
stp x12,x13,[x22]
Louter:
ldr x9,[x2],#8 // bp[i]
ldp x7,x8,[x1],#16
ldr x23,[sp] // tp[0]
add x22,sp,#8
mul x6,x7,x9 // ap[0]*bp[i]
sub x21,x5,#16 // j=num-2
umulh x7,x7,x9
ldp x13,x14,[x3],#16
mul x10,x8,x9 // ap[1]*bp[i]
adds x6,x6,x23
umulh x11,x8,x9
adc x7,x7,xzr
mul x15,x6,x4
sub x20,x20,#8 // i--
// (*) mul x12,x13,x15 // np[0]*m1
umulh x13,x13,x15
mul x16,x14,x15 // np[1]*m1
// (*) adds x12,x12,x6
subs xzr,x6,#1 // (*)
umulh x17,x14,x15
cbz x21,Linner_skip
Linner:
ldr x8,[x1],#8
adc x13,x13,xzr
ldr x23,[x22],#8 // tp[j]
adds x6,x10,x7
sub x21,x21,#8 // j--
adc x7,x11,xzr
adds x12,x16,x13
ldr x14,[x3],#8
adc x13,x17,xzr
mul x10,x8,x9 // ap[j]*bp[i]
adds x6,x6,x23
umulh x11,x8,x9
adc x7,x7,xzr
mul x16,x14,x15 // np[j]*m1
adds x12,x12,x6
umulh x17,x14,x15
str x12,[x22,#-16] // tp[j-1]
cbnz x21,Linner
Linner_skip:
ldr x23,[x22],#8 // tp[j]
adc x13,x13,xzr
adds x6,x10,x7
sub x1,x1,x5 // rewind x1
adc x7,x11,xzr
adds x12,x16,x13
sub x3,x3,x5 // rewind x3
adcs x13,x17,x19
adc x19,xzr,xzr
adds x6,x6,x23
adc x7,x7,xzr
adds x12,x12,x6
adcs x13,x13,x7
adc x19,x19,xzr // upmost overflow bit
stp x12,x13,[x22,#-16]
cbnz x20,Louter
// Final step. We see if result is larger than modulus, and
// if it is, subtract the modulus. But comparison implies
// subtraction. So we subtract modulus, see if it borrowed,
// and conditionally copy original value.
ldr x23,[sp] // tp[0]
add x22,sp,#8
ldr x14,[x3],#8 // np[0]
subs x21,x5,#8 // j=num-1 and clear borrow
mov x1,x0
Lsub:
sbcs x8,x23,x14 // tp[j]-np[j]
ldr x23,[x22],#8
sub x21,x21,#8 // j--
ldr x14,[x3],#8
str x8,[x1],#8 // rp[j]=tp[j]-np[j]
cbnz x21,Lsub
sbcs x8,x23,x14
sbcs x19,x19,xzr // did it borrow?
str x8,[x1],#8 // rp[num-1]
ldr x23,[sp] // tp[0]
add x22,sp,#8
ldr x8,[x0],#8 // rp[0]
sub x5,x5,#8 // num--
nop
Lcond_copy:
sub x5,x5,#8 // num--
csel x14,x23,x8,lo // did it borrow?
ldr x23,[x22],#8
ldr x8,[x0],#8
str xzr,[x22,#-16] // wipe tp
str x14,[x0,#-16]
cbnz x5,Lcond_copy
csel x14,x23,x8,lo
str xzr,[x22,#-8] // wipe tp
str x14,[x0,#-8]
ldp x19,x20,[x29,#16]
mov sp,x29
ldp x21,x22,[x29,#32]
mov x0,#1
ldp x23,x24,[x29,#48]
ldr x29,[sp],#64
AARCH64_VALIDATE_LINK_REGISTER
ret
.align 5
__bn_sqr8x_mont:
// Not adding AARCH64_SIGN_LINK_REGISTER here because __bn_sqr8x_mont is jumped to
// only from bn_mul_mont which has already signed the return address.
cmp x1,x2
b.ne __bn_mul4x_mont
Lsqr8x_mont:
stp x29,x30,[sp,#-128]!
add x29,sp,#0
stp x19,x20,[sp,#16]
stp x21,x22,[sp,#32]
stp x23,x24,[sp,#48]
stp x25,x26,[sp,#64]
stp x27,x28,[sp,#80]
stp x0,x3,[sp,#96] // offload rp and np
ldp x6,x7,[x1,#8*0]
ldp x8,x9,[x1,#8*2]
ldp x10,x11,[x1,#8*4]
ldp x12,x13,[x1,#8*6]
sub x2,sp,x5,lsl#4
lsl x5,x5,#3
ldr x4,[x4] // *n0
mov sp,x2 // alloca
sub x27,x5,#8*8
b Lsqr8x_zero_start
Lsqr8x_zero:
sub x27,x27,#8*8
stp xzr,xzr,[x2,#8*0]
stp xzr,xzr,[x2,#8*2]
stp xzr,xzr,[x2,#8*4]
stp xzr,xzr,[x2,#8*6]
Lsqr8x_zero_start:
stp xzr,xzr,[x2,#8*8]
stp xzr,xzr,[x2,#8*10]
stp xzr,xzr,[x2,#8*12]
stp xzr,xzr,[x2,#8*14]
add x2,x2,#8*16
cbnz x27,Lsqr8x_zero
add x3,x1,x5
add x1,x1,#8*8
mov x19,xzr
mov x20,xzr
mov x21,xzr
mov x22,xzr
mov x23,xzr
mov x24,xzr
mov x25,xzr
mov x26,xzr
mov x2,sp
str x4,[x29,#112] // offload n0
// Multiply everything but a[i]*a[i]
.align 4
Lsqr8x_outer_loop:
// a[1]a[0] (i)
// a[2]a[0]
// a[3]a[0]
// a[4]a[0]
// a[5]a[0]
// a[6]a[0]
// a[7]a[0]
// a[2]a[1] (ii)
// a[3]a[1]
// a[4]a[1]
// a[5]a[1]
// a[6]a[1]
// a[7]a[1]
// a[3]a[2] (iii)
// a[4]a[2]
// a[5]a[2]
// a[6]a[2]
// a[7]a[2]
// a[4]a[3] (iv)
// a[5]a[3]
// a[6]a[3]
// a[7]a[3]
// a[5]a[4] (v)
// a[6]a[4]
// a[7]a[4]
// a[6]a[5] (vi)
// a[7]a[5]
// a[7]a[6] (vii)
mul x14,x7,x6 // lo(a[1..7]*a[0]) (i)
mul x15,x8,x6
mul x16,x9,x6
mul x17,x10,x6
adds x20,x20,x14 // t[1]+lo(a[1]*a[0])
mul x14,x11,x6
adcs x21,x21,x15
mul x15,x12,x6
adcs x22,x22,x16
mul x16,x13,x6
adcs x23,x23,x17
umulh x17,x7,x6 // hi(a[1..7]*a[0])
adcs x24,x24,x14
umulh x14,x8,x6
adcs x25,x25,x15
umulh x15,x9,x6
adcs x26,x26,x16
umulh x16,x10,x6
stp x19,x20,[x2],#8*2 // t[0..1]
adc x19,xzr,xzr // t[8]
adds x21,x21,x17 // t[2]+lo(a[1]*a[0])
umulh x17,x11,x6
adcs x22,x22,x14
umulh x14,x12,x6
adcs x23,x23,x15
umulh x15,x13,x6
adcs x24,x24,x16
mul x16,x8,x7 // lo(a[2..7]*a[1]) (ii)
adcs x25,x25,x17
mul x17,x9,x7
adcs x26,x26,x14
mul x14,x10,x7
adc x19,x19,x15
mul x15,x11,x7
adds x22,x22,x16
mul x16,x12,x7
adcs x23,x23,x17
mul x17,x13,x7
adcs x24,x24,x14
umulh x14,x8,x7 // hi(a[2..7]*a[1])
adcs x25,x25,x15
umulh x15,x9,x7
adcs x26,x26,x16
umulh x16,x10,x7
adcs x19,x19,x17
umulh x17,x11,x7
stp x21,x22,[x2],#8*2 // t[2..3]
adc x20,xzr,xzr // t[9]
adds x23,x23,x14
umulh x14,x12,x7
adcs x24,x24,x15
umulh x15,x13,x7
adcs x25,x25,x16
mul x16,x9,x8 // lo(a[3..7]*a[2]) (iii)
adcs x26,x26,x17
mul x17,x10,x8
adcs x19,x19,x14
mul x14,x11,x8
adc x20,x20,x15
mul x15,x12,x8
adds x24,x24,x16
mul x16,x13,x8
adcs x25,x25,x17
umulh x17,x9,x8 // hi(a[3..7]*a[2])
adcs x26,x26,x14
umulh x14,x10,x8
adcs x19,x19,x15
umulh x15,x11,x8
adcs x20,x20,x16
umulh x16,x12,x8
stp x23,x24,[x2],#8*2 // t[4..5]
adc x21,xzr,xzr // t[10]
adds x25,x25,x17
umulh x17,x13,x8
adcs x26,x26,x14
mul x14,x10,x9 // lo(a[4..7]*a[3]) (iv)
adcs x19,x19,x15
mul x15,x11,x9
adcs x20,x20,x16
mul x16,x12,x9
adc x21,x21,x17
mul x17,x13,x9
adds x26,x26,x14
umulh x14,x10,x9 // hi(a[4..7]*a[3])
adcs x19,x19,x15
umulh x15,x11,x9
adcs x20,x20,x16
umulh x16,x12,x9
adcs x21,x21,x17
umulh x17,x13,x9
stp x25,x26,[x2],#8*2 // t[6..7]
adc x22,xzr,xzr // t[11]
adds x19,x19,x14
mul x14,x11,x10 // lo(a[5..7]*a[4]) (v)
adcs x20,x20,x15
mul x15,x12,x10
adcs x21,x21,x16
mul x16,x13,x10
adc x22,x22,x17
umulh x17,x11,x10 // hi(a[5..7]*a[4])
adds x20,x20,x14
umulh x14,x12,x10
adcs x21,x21,x15
umulh x15,x13,x10
adcs x22,x22,x16
mul x16,x12,x11 // lo(a[6..7]*a[5]) (vi)
adc x23,xzr,xzr // t[12]
adds x21,x21,x17
mul x17,x13,x11
adcs x22,x22,x14
umulh x14,x12,x11 // hi(a[6..7]*a[5])
adc x23,x23,x15
umulh x15,x13,x11
adds x22,x22,x16
mul x16,x13,x12 // lo(a[7]*a[6]) (vii)
adcs x23,x23,x17
umulh x17,x13,x12 // hi(a[7]*a[6])
adc x24,xzr,xzr // t[13]
adds x23,x23,x14
sub x27,x3,x1 // done yet?
adc x24,x24,x15
adds x24,x24,x16
sub x14,x3,x5 // rewinded ap
adc x25,xzr,xzr // t[14]
add x25,x25,x17
cbz x27,Lsqr8x_outer_break
mov x4,x6
ldp x6,x7,[x2,#8*0]
ldp x8,x9,[x2,#8*2]
ldp x10,x11,[x2,#8*4]
ldp x12,x13,[x2,#8*6]
adds x19,x19,x6
adcs x20,x20,x7
ldp x6,x7,[x1,#8*0]
adcs x21,x21,x8
adcs x22,x22,x9
ldp x8,x9,[x1,#8*2]
adcs x23,x23,x10
adcs x24,x24,x11
ldp x10,x11,[x1,#8*4]
adcs x25,x25,x12
mov x0,x1
adcs x26,xzr,x13
ldp x12,x13,[x1,#8*6]
add x1,x1,#8*8
//adc x28,xzr,xzr // moved below
mov x27,#-8*8
// a[8]a[0]
// a[9]a[0]
// a[a]a[0]
// a[b]a[0]
// a[c]a[0]
// a[d]a[0]
// a[e]a[0]
// a[f]a[0]
// a[8]a[1]
// a[f]a[1]........................
// a[8]a[2]
// a[f]a[2]........................
// a[8]a[3]
// a[f]a[3]........................
// a[8]a[4]
// a[f]a[4]........................
// a[8]a[5]
// a[f]a[5]........................
// a[8]a[6]
// a[f]a[6]........................
// a[8]a[7]
// a[f]a[7]........................
Lsqr8x_mul:
mul x14,x6,x4
adc x28,xzr,xzr // carry bit, modulo-scheduled
mul x15,x7,x4
add x27,x27,#8
mul x16,x8,x4
mul x17,x9,x4
adds x19,x19,x14
mul x14,x10,x4
adcs x20,x20,x15
mul x15,x11,x4
adcs x21,x21,x16
mul x16,x12,x4
adcs x22,x22,x17
mul x17,x13,x4
adcs x23,x23,x14
umulh x14,x6,x4
adcs x24,x24,x15
umulh x15,x7,x4
adcs x25,x25,x16
umulh x16,x8,x4
adcs x26,x26,x17
umulh x17,x9,x4
adc x28,x28,xzr
str x19,[x2],#8
adds x19,x20,x14
umulh x14,x10,x4
adcs x20,x21,x15
umulh x15,x11,x4
adcs x21,x22,x16
umulh x16,x12,x4
adcs x22,x23,x17
umulh x17,x13,x4
ldr x4,[x0,x27]
adcs x23,x24,x14
adcs x24,x25,x15
adcs x25,x26,x16
adcs x26,x28,x17
//adc x28,xzr,xzr // moved above
cbnz x27,Lsqr8x_mul
// note that carry flag is guaranteed
// to be zero at this point
cmp x1,x3 // done yet?
b.eq Lsqr8x_break
ldp x6,x7,[x2,#8*0]
ldp x8,x9,[x2,#8*2]
ldp x10,x11,[x2,#8*4]
ldp x12,x13,[x2,#8*6]
adds x19,x19,x6
ldr x4,[x0,#-8*8]
adcs x20,x20,x7
ldp x6,x7,[x1,#8*0]
adcs x21,x21,x8
adcs x22,x22,x9
ldp x8,x9,[x1,#8*2]
adcs x23,x23,x10
adcs x24,x24,x11
ldp x10,x11,[x1,#8*4]
adcs x25,x25,x12
mov x27,#-8*8
adcs x26,x26,x13
ldp x12,x13,[x1,#8*6]
add x1,x1,#8*8
//adc x28,xzr,xzr // moved above
b Lsqr8x_mul
.align 4
Lsqr8x_break:
ldp x6,x7,[x0,#8*0]
add x1,x0,#8*8
ldp x8,x9,[x0,#8*2]
sub x14,x3,x1 // is it last iteration?
ldp x10,x11,[x0,#8*4]
sub x15,x2,x14
ldp x12,x13,[x0,#8*6]
cbz x14,Lsqr8x_outer_loop
stp x19,x20,[x2,#8*0]
ldp x19,x20,[x15,#8*0]
stp x21,x22,[x2,#8*2]
ldp x21,x22,[x15,#8*2]
stp x23,x24,[x2,#8*4]
ldp x23,x24,[x15,#8*4]
stp x25,x26,[x2,#8*6]
mov x2,x15
ldp x25,x26,[x15,#8*6]
b Lsqr8x_outer_loop
.align 4
Lsqr8x_outer_break:
// Now multiply above result by 2 and add a[n-1]*a[n-1]|...|a[0]*a[0]
ldp x7,x9,[x14,#8*0] // recall that x14 is &a[0]
ldp x15,x16,[sp,#8*1]
ldp x11,x13,[x14,#8*2]
add x1,x14,#8*4
ldp x17,x14,[sp,#8*3]
stp x19,x20,[x2,#8*0]
mul x19,x7,x7
stp x21,x22,[x2,#8*2]
umulh x7,x7,x7
stp x23,x24,[x2,#8*4]
mul x8,x9,x9
stp x25,x26,[x2,#8*6]
mov x2,sp
umulh x9,x9,x9
adds x20,x7,x15,lsl#1
extr x15,x16,x15,#63
sub x27,x5,#8*4
Lsqr4x_shift_n_add:
adcs x21,x8,x15
extr x16,x17,x16,#63
sub x27,x27,#8*4
adcs x22,x9,x16
ldp x15,x16,[x2,#8*5]
mul x10,x11,x11
ldp x7,x9,[x1],#8*2
umulh x11,x11,x11
mul x12,x13,x13
umulh x13,x13,x13
extr x17,x14,x17,#63
stp x19,x20,[x2,#8*0]
adcs x23,x10,x17
extr x14,x15,x14,#63
stp x21,x22,[x2,#8*2]
adcs x24,x11,x14
ldp x17,x14,[x2,#8*7]
extr x15,x16,x15,#63
adcs x25,x12,x15
extr x16,x17,x16,#63
adcs x26,x13,x16
ldp x15,x16,[x2,#8*9]
mul x6,x7,x7
ldp x11,x13,[x1],#8*2
umulh x7,x7,x7
mul x8,x9,x9
umulh x9,x9,x9
stp x23,x24,[x2,#8*4]
extr x17,x14,x17,#63
stp x25,x26,[x2,#8*6]
add x2,x2,#8*8
adcs x19,x6,x17
extr x14,x15,x14,#63
adcs x20,x7,x14
ldp x17,x14,[x2,#8*3]
extr x15,x16,x15,#63
cbnz x27,Lsqr4x_shift_n_add
ldp x1,x4,[x29,#104] // pull np and n0
adcs x21,x8,x15
extr x16,x17,x16,#63
adcs x22,x9,x16
ldp x15,x16,[x2,#8*5]
mul x10,x11,x11
umulh x11,x11,x11
stp x19,x20,[x2,#8*0]
mul x12,x13,x13
umulh x13,x13,x13
stp x21,x22,[x2,#8*2]
extr x17,x14,x17,#63
adcs x23,x10,x17
extr x14,x15,x14,#63
ldp x19,x20,[sp,#8*0]
adcs x24,x11,x14
extr x15,x16,x15,#63
ldp x6,x7,[x1,#8*0]
adcs x25,x12,x15
extr x16,xzr,x16,#63
ldp x8,x9,[x1,#8*2]
adc x26,x13,x16
ldp x10,x11,[x1,#8*4]
// Reduce by 512 bits per iteration
mul x28,x4,x19 // t[0]*n0
ldp x12,x13,[x1,#8*6]
add x3,x1,x5
ldp x21,x22,[sp,#8*2]
stp x23,x24,[x2,#8*4]
ldp x23,x24,[sp,#8*4]
stp x25,x26,[x2,#8*6]
ldp x25,x26,[sp,#8*6]
add x1,x1,#8*8
mov x30,xzr // initial top-most carry
mov x2,sp
mov x27,#8
Lsqr8x_reduction:
// (*) mul x14,x6,x28 // lo(n[0-7])*lo(t[0]*n0)
mul x15,x7,x28
sub x27,x27,#1
mul x16,x8,x28
str x28,[x2],#8 // put aside t[0]*n0 for tail processing
mul x17,x9,x28
// (*) adds xzr,x19,x14
subs xzr,x19,#1 // (*)
mul x14,x10,x28
adcs x19,x20,x15
mul x15,x11,x28
adcs x20,x21,x16
mul x16,x12,x28
adcs x21,x22,x17
mul x17,x13,x28
adcs x22,x23,x14
umulh x14,x6,x28 // hi(n[0-7])*lo(t[0]*n0)
adcs x23,x24,x15
umulh x15,x7,x28
adcs x24,x25,x16
umulh x16,x8,x28
adcs x25,x26,x17
umulh x17,x9,x28
adc x26,xzr,xzr
adds x19,x19,x14
umulh x14,x10,x28
adcs x20,x20,x15
umulh x15,x11,x28
adcs x21,x21,x16
umulh x16,x12,x28
adcs x22,x22,x17
umulh x17,x13,x28
mul x28,x4,x19 // next t[0]*n0
adcs x23,x23,x14
adcs x24,x24,x15
adcs x25,x25,x16
adc x26,x26,x17
cbnz x27,Lsqr8x_reduction
ldp x14,x15,[x2,#8*0]
ldp x16,x17,[x2,#8*2]
mov x0,x2
sub x27,x3,x1 // done yet?
adds x19,x19,x14
adcs x20,x20,x15
ldp x14,x15,[x2,#8*4]
adcs x21,x21,x16
adcs x22,x22,x17
ldp x16,x17,[x2,#8*6]
adcs x23,x23,x14
adcs x24,x24,x15
adcs x25,x25,x16
adcs x26,x26,x17
//adc x28,xzr,xzr // moved below
cbz x27,Lsqr8x8_post_condition
ldr x4,[x2,#-8*8]
ldp x6,x7,[x1,#8*0]
ldp x8,x9,[x1,#8*2]
ldp x10,x11,[x1,#8*4]
mov x27,#-8*8
ldp x12,x13,[x1,#8*6]
add x1,x1,#8*8
Lsqr8x_tail:
mul x14,x6,x4
adc x28,xzr,xzr // carry bit, modulo-scheduled
mul x15,x7,x4
add x27,x27,#8
mul x16,x8,x4
mul x17,x9,x4
adds x19,x19,x14
mul x14,x10,x4
adcs x20,x20,x15
mul x15,x11,x4
adcs x21,x21,x16
mul x16,x12,x4
adcs x22,x22,x17
mul x17,x13,x4
adcs x23,x23,x14
umulh x14,x6,x4
adcs x24,x24,x15
umulh x15,x7,x4
adcs x25,x25,x16
umulh x16,x8,x4
adcs x26,x26,x17
umulh x17,x9,x4
adc x28,x28,xzr
str x19,[x2],#8
adds x19,x20,x14
umulh x14,x10,x4
adcs x20,x21,x15
umulh x15,x11,x4
adcs x21,x22,x16
umulh x16,x12,x4
adcs x22,x23,x17
umulh x17,x13,x4
ldr x4,[x0,x27]
adcs x23,x24,x14
adcs x24,x25,x15
adcs x25,x26,x16
adcs x26,x28,x17
//adc x28,xzr,xzr // moved above
cbnz x27,Lsqr8x_tail
// note that carry flag is guaranteed
// to be zero at this point
ldp x6,x7,[x2,#8*0]
sub x27,x3,x1 // done yet?
sub x16,x3,x5 // rewinded np
ldp x8,x9,[x2,#8*2]
ldp x10,x11,[x2,#8*4]
ldp x12,x13,[x2,#8*6]
cbz x27,Lsqr8x_tail_break
ldr x4,[x0,#-8*8]
adds x19,x19,x6
adcs x20,x20,x7
ldp x6,x7,[x1,#8*0]
adcs x21,x21,x8
adcs x22,x22,x9
ldp x8,x9,[x1,#8*2]
adcs x23,x23,x10
adcs x24,x24,x11
ldp x10,x11,[x1,#8*4]
adcs x25,x25,x12
mov x27,#-8*8
adcs x26,x26,x13
ldp x12,x13,[x1,#8*6]
add x1,x1,#8*8
//adc x28,xzr,xzr // moved above
b Lsqr8x_tail
.align 4
Lsqr8x_tail_break:
ldr x4,[x29,#112] // pull n0
add x27,x2,#8*8 // end of current t[num] window
subs xzr,x30,#1 // "move" top-most carry to carry bit
adcs x14,x19,x6
adcs x15,x20,x7
ldp x19,x20,[x0,#8*0]
adcs x21,x21,x8
ldp x6,x7,[x16,#8*0] // recall that x16 is &n[0]
adcs x22,x22,x9
ldp x8,x9,[x16,#8*2]
adcs x23,x23,x10
adcs x24,x24,x11
ldp x10,x11,[x16,#8*4]
adcs x25,x25,x12
adcs x26,x26,x13
ldp x12,x13,[x16,#8*6]
add x1,x16,#8*8
adc x30,xzr,xzr // top-most carry
mul x28,x4,x19
stp x14,x15,[x2,#8*0]
stp x21,x22,[x2,#8*2]
ldp x21,x22,[x0,#8*2]
stp x23,x24,[x2,#8*4]
ldp x23,x24,[x0,#8*4]
cmp x27,x29 // did we hit the bottom?
stp x25,x26,[x2,#8*6]
mov x2,x0 // slide the window
ldp x25,x26,[x0,#8*6]
mov x27,#8
b.ne Lsqr8x_reduction
// Final step. We see if result is larger than modulus, and
// if it is, subtract the modulus. But comparison implies
// subtraction. So we subtract modulus, see if it borrowed,
// and conditionally copy original value.
ldr x0,[x29,#96] // pull rp
add x2,x2,#8*8
subs x14,x19,x6
sbcs x15,x20,x7
sub x27,x5,#8*8
mov x3,x0 // x0 copy
Lsqr8x_sub:
sbcs x16,x21,x8
ldp x6,x7,[x1,#8*0]
sbcs x17,x22,x9
stp x14,x15,[x0,#8*0]
sbcs x14,x23,x10
ldp x8,x9,[x1,#8*2]
sbcs x15,x24,x11
stp x16,x17,[x0,#8*2]
sbcs x16,x25,x12
ldp x10,x11,[x1,#8*4]
sbcs x17,x26,x13
ldp x12,x13,[x1,#8*6]
add x1,x1,#8*8
ldp x19,x20,[x2,#8*0]
sub x27,x27,#8*8
ldp x21,x22,[x2,#8*2]
ldp x23,x24,[x2,#8*4]
ldp x25,x26,[x2,#8*6]
add x2,x2,#8*8
stp x14,x15,[x0,#8*4]
sbcs x14,x19,x6
stp x16,x17,[x0,#8*6]
add x0,x0,#8*8
sbcs x15,x20,x7
cbnz x27,Lsqr8x_sub
sbcs x16,x21,x8
mov x2,sp
add x1,sp,x5
ldp x6,x7,[x3,#8*0]
sbcs x17,x22,x9
stp x14,x15,[x0,#8*0]
sbcs x14,x23,x10
ldp x8,x9,[x3,#8*2]
sbcs x15,x24,x11
stp x16,x17,[x0,#8*2]
sbcs x16,x25,x12
ldp x19,x20,[x1,#8*0]
sbcs x17,x26,x13
ldp x21,x22,[x1,#8*2]
sbcs xzr,x30,xzr // did it borrow?
ldr x30,[x29,#8] // pull return address
stp x14,x15,[x0,#8*4]
stp x16,x17,[x0,#8*6]
sub x27,x5,#8*4
Lsqr4x_cond_copy:
sub x27,x27,#8*4
csel x14,x19,x6,lo
stp xzr,xzr,[x2,#8*0]
csel x15,x20,x7,lo
ldp x6,x7,[x3,#8*4]
ldp x19,x20,[x1,#8*4]
csel x16,x21,x8,lo
stp xzr,xzr,[x2,#8*2]
add x2,x2,#8*4
csel x17,x22,x9,lo
ldp x8,x9,[x3,#8*6]
ldp x21,x22,[x1,#8*6]
add x1,x1,#8*4
stp x14,x15,[x3,#8*0]
stp x16,x17,[x3,#8*2]
add x3,x3,#8*4
stp xzr,xzr,[x1,#8*0]
stp xzr,xzr,[x1,#8*2]
cbnz x27,Lsqr4x_cond_copy
csel x14,x19,x6,lo
stp xzr,xzr,[x2,#8*0]
csel x15,x20,x7,lo
stp xzr,xzr,[x2,#8*2]
csel x16,x21,x8,lo
csel x17,x22,x9,lo
stp x14,x15,[x3,#8*0]
stp x16,x17,[x3,#8*2]
b Lsqr8x_done
.align 4
Lsqr8x8_post_condition:
adc x28,xzr,xzr
ldr x30,[x29,#8] // pull return address
// x19-7,x28 hold result, x6-7 hold modulus
subs x6,x19,x6
ldr x1,[x29,#96] // pull rp
sbcs x7,x20,x7
stp xzr,xzr,[sp,#8*0]
sbcs x8,x21,x8
stp xzr,xzr,[sp,#8*2]
sbcs x9,x22,x9
stp xzr,xzr,[sp,#8*4]
sbcs x10,x23,x10
stp xzr,xzr,[sp,#8*6]
sbcs x11,x24,x11
stp xzr,xzr,[sp,#8*8]
sbcs x12,x25,x12
stp xzr,xzr,[sp,#8*10]
sbcs x13,x26,x13
stp xzr,xzr,[sp,#8*12]
sbcs x28,x28,xzr // did it borrow?
stp xzr,xzr,[sp,#8*14]
// x6-7 hold result-modulus
csel x6,x19,x6,lo
csel x7,x20,x7,lo
csel x8,x21,x8,lo
csel x9,x22,x9,lo
stp x6,x7,[x1,#8*0]
csel x10,x23,x10,lo
csel x11,x24,x11,lo
stp x8,x9,[x1,#8*2]
csel x12,x25,x12,lo
csel x13,x26,x13,lo
stp x10,x11,[x1,#8*4]
stp x12,x13,[x1,#8*6]
Lsqr8x_done:
ldp x19,x20,[x29,#16]
mov sp,x29
ldp x21,x22,[x29,#32]
mov x0,#1
ldp x23,x24,[x29,#48]
ldp x25,x26,[x29,#64]
ldp x27,x28,[x29,#80]
ldr x29,[sp],#128
// x30 is popped earlier
AARCH64_VALIDATE_LINK_REGISTER
ret
.align 5
__bn_mul4x_mont:
// Not adding AARCH64_SIGN_LINK_REGISTER here because __bn_mul4x_mont is jumped to
// only from bn_mul_mont or __bn_mul8x_mont which have already signed the
// return address.
stp x29,x30,[sp,#-128]!
add x29,sp,#0
stp x19,x20,[sp,#16]
stp x21,x22,[sp,#32]
stp x23,x24,[sp,#48]
stp x25,x26,[sp,#64]
stp x27,x28,[sp,#80]
sub x26,sp,x5,lsl#3
lsl x5,x5,#3
ldr x4,[x4] // *n0
sub sp,x26,#8*4 // alloca
add x10,x2,x5
add x27,x1,x5
stp x0,x10,[x29,#96] // offload rp and &b[num]
ldr x24,[x2,#8*0] // b[0]
ldp x6,x7,[x1,#8*0] // a[0..3]
ldp x8,x9,[x1,#8*2]
add x1,x1,#8*4
mov x19,xzr
mov x20,xzr
mov x21,xzr
mov x22,xzr
ldp x14,x15,[x3,#8*0] // n[0..3]
ldp x16,x17,[x3,#8*2]
adds x3,x3,#8*4 // clear carry bit
mov x0,xzr
mov x28,#0
mov x26,sp
Loop_mul4x_1st_reduction:
mul x10,x6,x24 // lo(a[0..3]*b[0])
adc x0,x0,xzr // modulo-scheduled
mul x11,x7,x24
add x28,x28,#8
mul x12,x8,x24
and x28,x28,#31
mul x13,x9,x24
adds x19,x19,x10
umulh x10,x6,x24 // hi(a[0..3]*b[0])
adcs x20,x20,x11
mul x25,x19,x4 // t[0]*n0
adcs x21,x21,x12
umulh x11,x7,x24
adcs x22,x22,x13
umulh x12,x8,x24
adc x23,xzr,xzr
umulh x13,x9,x24
ldr x24,[x2,x28] // next b[i] (or b[0])
adds x20,x20,x10
// (*) mul x10,x14,x25 // lo(n[0..3]*t[0]*n0)
str x25,[x26],#8 // put aside t[0]*n0 for tail processing
adcs x21,x21,x11
mul x11,x15,x25
adcs x22,x22,x12
mul x12,x16,x25
adc x23,x23,x13 // can't overflow
mul x13,x17,x25
// (*) adds xzr,x19,x10
subs xzr,x19,#1 // (*)
umulh x10,x14,x25 // hi(n[0..3]*t[0]*n0)
adcs x19,x20,x11
umulh x11,x15,x25
adcs x20,x21,x12
umulh x12,x16,x25
adcs x21,x22,x13
umulh x13,x17,x25
adcs x22,x23,x0
adc x0,xzr,xzr
adds x19,x19,x10
sub x10,x27,x1
adcs x20,x20,x11
adcs x21,x21,x12
adcs x22,x22,x13
//adc x0,x0,xzr
cbnz x28,Loop_mul4x_1st_reduction
cbz x10,Lmul4x4_post_condition
ldp x6,x7,[x1,#8*0] // a[4..7]
ldp x8,x9,[x1,#8*2]
add x1,x1,#8*4
ldr x25,[sp] // a[0]*n0
ldp x14,x15,[x3,#8*0] // n[4..7]
ldp x16,x17,[x3,#8*2]
add x3,x3,#8*4
Loop_mul4x_1st_tail:
mul x10,x6,x24 // lo(a[4..7]*b[i])
adc x0,x0,xzr // modulo-scheduled
mul x11,x7,x24
add x28,x28,#8
mul x12,x8,x24
and x28,x28,#31
mul x13,x9,x24
adds x19,x19,x10
umulh x10,x6,x24 // hi(a[4..7]*b[i])
adcs x20,x20,x11
umulh x11,x7,x24
adcs x21,x21,x12
umulh x12,x8,x24
adcs x22,x22,x13
umulh x13,x9,x24
adc x23,xzr,xzr
ldr x24,[x2,x28] // next b[i] (or b[0])
adds x20,x20,x10
mul x10,x14,x25 // lo(n[4..7]*a[0]*n0)
adcs x21,x21,x11
mul x11,x15,x25
adcs x22,x22,x12
mul x12,x16,x25
adc x23,x23,x13 // can't overflow
mul x13,x17,x25
adds x19,x19,x10
umulh x10,x14,x25 // hi(n[4..7]*a[0]*n0)
adcs x20,x20,x11
umulh x11,x15,x25
adcs x21,x21,x12
umulh x12,x16,x25
adcs x22,x22,x13
adcs x23,x23,x0
umulh x13,x17,x25
adc x0,xzr,xzr
ldr x25,[sp,x28] // next t[0]*n0
str x19,[x26],#8 // result!!!
adds x19,x20,x10
sub x10,x27,x1 // done yet?
adcs x20,x21,x11
adcs x21,x22,x12
adcs x22,x23,x13
//adc x0,x0,xzr
cbnz x28,Loop_mul4x_1st_tail
sub x11,x27,x5 // rewinded x1
cbz x10,Lmul4x_proceed
ldp x6,x7,[x1,#8*0]
ldp x8,x9,[x1,#8*2]
add x1,x1,#8*4
ldp x14,x15,[x3,#8*0]
ldp x16,x17,[x3,#8*2]
add x3,x3,#8*4
b Loop_mul4x_1st_tail
.align 5
Lmul4x_proceed:
ldr x24,[x2,#8*4]! // *++b
adc x30,x0,xzr
ldp x6,x7,[x11,#8*0] // a[0..3]
sub x3,x3,x5 // rewind np
ldp x8,x9,[x11,#8*2]
add x1,x11,#8*4
stp x19,x20,[x26,#8*0] // result!!!
ldp x19,x20,[sp,#8*4] // t[0..3]
stp x21,x22,[x26,#8*2] // result!!!
ldp x21,x22,[sp,#8*6]
ldp x14,x15,[x3,#8*0] // n[0..3]
mov x26,sp
ldp x16,x17,[x3,#8*2]
adds x3,x3,#8*4 // clear carry bit
mov x0,xzr
.align 4
Loop_mul4x_reduction:
mul x10,x6,x24 // lo(a[0..3]*b[4])
adc x0,x0,xzr // modulo-scheduled
mul x11,x7,x24
add x28,x28,#8
mul x12,x8,x24
and x28,x28,#31
mul x13,x9,x24
adds x19,x19,x10
umulh x10,x6,x24 // hi(a[0..3]*b[4])
adcs x20,x20,x11
mul x25,x19,x4 // t[0]*n0
adcs x21,x21,x12
umulh x11,x7,x24
adcs x22,x22,x13
umulh x12,x8,x24
adc x23,xzr,xzr
umulh x13,x9,x24
ldr x24,[x2,x28] // next b[i]
adds x20,x20,x10
// (*) mul x10,x14,x25
str x25,[x26],#8 // put aside t[0]*n0 for tail processing
adcs x21,x21,x11
mul x11,x15,x25 // lo(n[0..3]*t[0]*n0
adcs x22,x22,x12
mul x12,x16,x25
adc x23,x23,x13 // can't overflow
mul x13,x17,x25
// (*) adds xzr,x19,x10
subs xzr,x19,#1 // (*)
umulh x10,x14,x25 // hi(n[0..3]*t[0]*n0
adcs x19,x20,x11
umulh x11,x15,x25
adcs x20,x21,x12
umulh x12,x16,x25
adcs x21,x22,x13
umulh x13,x17,x25
adcs x22,x23,x0
adc x0,xzr,xzr
adds x19,x19,x10
adcs x20,x20,x11
adcs x21,x21,x12
adcs x22,x22,x13
//adc x0,x0,xzr
cbnz x28,Loop_mul4x_reduction
adc x0,x0,xzr
ldp x10,x11,[x26,#8*4] // t[4..7]
ldp x12,x13,[x26,#8*6]
ldp x6,x7,[x1,#8*0] // a[4..7]
ldp x8,x9,[x1,#8*2]
add x1,x1,#8*4
adds x19,x19,x10
adcs x20,x20,x11
adcs x21,x21,x12
adcs x22,x22,x13
//adc x0,x0,xzr
ldr x25,[sp] // t[0]*n0
ldp x14,x15,[x3,#8*0] // n[4..7]
ldp x16,x17,[x3,#8*2]
add x3,x3,#8*4
.align 4
Loop_mul4x_tail:
mul x10,x6,x24 // lo(a[4..7]*b[4])
adc x0,x0,xzr // modulo-scheduled
mul x11,x7,x24
add x28,x28,#8
mul x12,x8,x24
and x28,x28,#31
mul x13,x9,x24
adds x19,x19,x10
umulh x10,x6,x24 // hi(a[4..7]*b[4])
adcs x20,x20,x11
umulh x11,x7,x24
adcs x21,x21,x12
umulh x12,x8,x24
adcs x22,x22,x13
umulh x13,x9,x24
adc x23,xzr,xzr
ldr x24,[x2,x28] // next b[i]
adds x20,x20,x10
mul x10,x14,x25 // lo(n[4..7]*t[0]*n0)
adcs x21,x21,x11
mul x11,x15,x25
adcs x22,x22,x12
mul x12,x16,x25
adc x23,x23,x13 // can't overflow
mul x13,x17,x25
adds x19,x19,x10
umulh x10,x14,x25 // hi(n[4..7]*t[0]*n0)
adcs x20,x20,x11
umulh x11,x15,x25
adcs x21,x21,x12
umulh x12,x16,x25
adcs x22,x22,x13
umulh x13,x17,x25
adcs x23,x23,x0
ldr x25,[sp,x28] // next a[0]*n0
adc x0,xzr,xzr
str x19,[x26],#8 // result!!!
adds x19,x20,x10
sub x10,x27,x1 // done yet?
adcs x20,x21,x11
adcs x21,x22,x12
adcs x22,x23,x13
//adc x0,x0,xzr
cbnz x28,Loop_mul4x_tail
sub x11,x3,x5 // rewinded np?
adc x0,x0,xzr
cbz x10,Loop_mul4x_break
ldp x10,x11,[x26,#8*4]
ldp x12,x13,[x26,#8*6]
ldp x6,x7,[x1,#8*0]
ldp x8,x9,[x1,#8*2]
add x1,x1,#8*4
adds x19,x19,x10
adcs x20,x20,x11
adcs x21,x21,x12
adcs x22,x22,x13
//adc x0,x0,xzr
ldp x14,x15,[x3,#8*0]
ldp x16,x17,[x3,#8*2]
add x3,x3,#8*4
b Loop_mul4x_tail
.align 4
Loop_mul4x_break:
ldp x12,x13,[x29,#96] // pull rp and &b[num]
adds x19,x19,x30
add x2,x2,#8*4 // bp++
adcs x20,x20,xzr
sub x1,x1,x5 // rewind ap
adcs x21,x21,xzr
stp x19,x20,[x26,#8*0] // result!!!
adcs x22,x22,xzr
ldp x19,x20,[sp,#8*4] // t[0..3]
adc x30,x0,xzr
stp x21,x22,[x26,#8*2] // result!!!
cmp x2,x13 // done yet?
ldp x21,x22,[sp,#8*6]
ldp x14,x15,[x11,#8*0] // n[0..3]
ldp x16,x17,[x11,#8*2]
add x3,x11,#8*4
b.eq Lmul4x_post
ldr x24,[x2]
ldp x6,x7,[x1,#8*0] // a[0..3]
ldp x8,x9,[x1,#8*2]
adds x1,x1,#8*4 // clear carry bit
mov x0,xzr
mov x26,sp
b Loop_mul4x_reduction
.align 4
Lmul4x_post:
// Final step. We see if result is larger than modulus, and
// if it is, subtract the modulus. But comparison implies
// subtraction. So we subtract modulus, see if it borrowed,
// and conditionally copy original value.
mov x0,x12
mov x27,x12 // x0 copy
subs x10,x19,x14
add x26,sp,#8*8
sbcs x11,x20,x15
sub x28,x5,#8*4
Lmul4x_sub:
sbcs x12,x21,x16
ldp x14,x15,[x3,#8*0]
sub x28,x28,#8*4
ldp x19,x20,[x26,#8*0]
sbcs x13,x22,x17
ldp x16,x17,[x3,#8*2]
add x3,x3,#8*4
ldp x21,x22,[x26,#8*2]
add x26,x26,#8*4
stp x10,x11,[x0,#8*0]
sbcs x10,x19,x14
stp x12,x13,[x0,#8*2]
add x0,x0,#8*4
sbcs x11,x20,x15
cbnz x28,Lmul4x_sub
sbcs x12,x21,x16
mov x26,sp
add x1,sp,#8*4
ldp x6,x7,[x27,#8*0]
sbcs x13,x22,x17
stp x10,x11,[x0,#8*0]
ldp x8,x9,[x27,#8*2]
stp x12,x13,[x0,#8*2]
ldp x19,x20,[x1,#8*0]
ldp x21,x22,[x1,#8*2]
sbcs xzr,x30,xzr // did it borrow?
ldr x30,[x29,#8] // pull return address
sub x28,x5,#8*4
Lmul4x_cond_copy:
sub x28,x28,#8*4
csel x10,x19,x6,lo
stp xzr,xzr,[x26,#8*0]
csel x11,x20,x7,lo
ldp x6,x7,[x27,#8*4]
ldp x19,x20,[x1,#8*4]
csel x12,x21,x8,lo
stp xzr,xzr,[x26,#8*2]
add x26,x26,#8*4
csel x13,x22,x9,lo
ldp x8,x9,[x27,#8*6]
ldp x21,x22,[x1,#8*6]
add x1,x1,#8*4
stp x10,x11,[x27,#8*0]
stp x12,x13,[x27,#8*2]
add x27,x27,#8*4
cbnz x28,Lmul4x_cond_copy
csel x10,x19,x6,lo
stp xzr,xzr,[x26,#8*0]
csel x11,x20,x7,lo
stp xzr,xzr,[x26,#8*2]
csel x12,x21,x8,lo
stp xzr,xzr,[x26,#8*3]
csel x13,x22,x9,lo
stp xzr,xzr,[x26,#8*4]
stp x10,x11,[x27,#8*0]
stp x12,x13,[x27,#8*2]
b Lmul4x_done
.align 4
Lmul4x4_post_condition:
adc x0,x0,xzr
ldr x1,[x29,#96] // pull rp
// x19-3,x0 hold result, x14-7 hold modulus
subs x6,x19,x14
ldr x30,[x29,#8] // pull return address
sbcs x7,x20,x15
stp xzr,xzr,[sp,#8*0]
sbcs x8,x21,x16
stp xzr,xzr,[sp,#8*2]
sbcs x9,x22,x17
stp xzr,xzr,[sp,#8*4]
sbcs xzr,x0,xzr // did it borrow?
stp xzr,xzr,[sp,#8*6]
// x6-3 hold result-modulus
csel x6,x19,x6,lo
csel x7,x20,x7,lo
csel x8,x21,x8,lo
csel x9,x22,x9,lo
stp x6,x7,[x1,#8*0]
stp x8,x9,[x1,#8*2]
Lmul4x_done:
ldp x19,x20,[x29,#16]
mov sp,x29
ldp x21,x22,[x29,#32]
mov x0,#1
ldp x23,x24,[x29,#48]
ldp x25,x26,[x29,#64]
ldp x27,x28,[x29,#80]
ldr x29,[sp],#128
// x30 is popped earlier
AARCH64_VALIDATE_LINK_REGISTER
ret
.byte 77,111,110,116,103,111,109,101,114,121,32,77,117,108,116,105,112,108,105,99,97,116,105,111,110,32,102,111,114,32,65,82,77,118,56,44,32,67,82,89,80,84,79,71,65,77,83,32,98,121,32,60,97,112,112,114,111,64,111,112,101,110,115,115,108,46,111,114,103,62,0
.align 2
.align 4
#endif // !OPENSSL_NO_ASM && defined(OPENSSL_AARCH64) && defined(__APPLE__)
#endif // defined(__aarch64__) && defined(__APPLE__)
#if defined(__linux__) && defined(__ELF__)
.section .note.GNU-stack,"",%progbits
#endif
|