1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <CCryptoBoringSSL_bn.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <CCryptoBoringSSL_err.h>
#include <CCryptoBoringSSL_mem.h>
#include "internal.h"
#include "../../internal.h"
#define BN_MUL_RECURSIVE_SIZE_NORMAL 16
#define BN_SQR_RECURSIVE_SIZE_NORMAL BN_MUL_RECURSIVE_SIZE_NORMAL
static void bn_abs_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
size_t num, BN_ULONG *tmp) {
BN_ULONG borrow = bn_sub_words(tmp, a, b, num);
bn_sub_words(r, b, a, num);
bn_select_words(r, 0 - borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, num);
}
static void bn_mul_normal(BN_ULONG *r, const BN_ULONG *a, size_t na,
const BN_ULONG *b, size_t nb) {
if (na < nb) {
size_t itmp = na;
na = nb;
nb = itmp;
const BN_ULONG *ltmp = a;
a = b;
b = ltmp;
}
BN_ULONG *rr = &(r[na]);
if (nb == 0) {
OPENSSL_memset(r, 0, na * sizeof(BN_ULONG));
return;
}
rr[0] = bn_mul_words(r, a, na, b[0]);
for (;;) {
if (--nb == 0) {
return;
}
rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
if (--nb == 0) {
return;
}
rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
if (--nb == 0) {
return;
}
rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
if (--nb == 0) {
return;
}
rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
rr += 4;
r += 4;
b += 4;
}
}
// bn_sub_part_words sets |r| to |a| - |b|. It returns the borrow bit, which is
// one if the operation underflowed and zero otherwise. |cl| is the common
// length, that is, the shorter of len(a) or len(b). |dl| is the delta length,
// that is, len(a) - len(b). |r|'s length matches the larger of |a| and |b|, or
// cl + abs(dl).
//
// TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention
// is confusing.
static BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a,
const BN_ULONG *b, int cl, int dl) {
assert(cl >= 0);
BN_ULONG borrow = bn_sub_words(r, a, b, cl);
if (dl == 0) {
return borrow;
}
r += cl;
a += cl;
b += cl;
if (dl < 0) {
// |a| is shorter than |b|. Complete the subtraction as if the excess words
// in |a| were zeros.
dl = -dl;
for (int i = 0; i < dl; i++) {
r[i] = 0u - b[i] - borrow;
borrow |= r[i] != 0;
}
} else {
// |b| is shorter than |a|. Complete the subtraction as if the excess words
// in |b| were zeros.
for (int i = 0; i < dl; i++) {
// |r| and |a| may alias, so use a temporary.
BN_ULONG tmp = a[i];
r[i] = a[i] - borrow;
borrow = tmp < r[i];
}
}
return borrow;
}
// bn_abs_sub_part_words computes |r| = |a| - |b|, storing the absolute value
// and returning a mask of all ones if the result was negative and all zeros if
// the result was positive. |cl| and |dl| follow the |bn_sub_part_words| calling
// convention.
//
// TODO(davidben): Make this take |size_t|. The |cl| + |dl| calling convention
// is confusing.
static BN_ULONG bn_abs_sub_part_words(BN_ULONG *r, const BN_ULONG *a,
const BN_ULONG *b, int cl, int dl,
BN_ULONG *tmp) {
BN_ULONG borrow = bn_sub_part_words(tmp, a, b, cl, dl);
bn_sub_part_words(r, b, a, cl, -dl);
int r_len = cl + (dl < 0 ? -dl : dl);
borrow = 0 - borrow;
bn_select_words(r, borrow, r /* tmp < 0 */, tmp /* tmp >= 0 */, r_len);
return borrow;
}
int bn_abs_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
BN_CTX *ctx) {
int cl = a->width < b->width ? a->width : b->width;
int dl = a->width - b->width;
int r_len = a->width < b->width ? b->width : a->width;
BN_CTX_start(ctx);
BIGNUM *tmp = BN_CTX_get(ctx);
int ok = tmp != NULL &&
bn_wexpand(r, r_len) &&
bn_wexpand(tmp, r_len);
if (ok) {
bn_abs_sub_part_words(r->d, a->d, b->d, cl, dl, tmp->d);
r->width = r_len;
}
BN_CTX_end(ctx);
return ok;
}
// Karatsuba recursive multiplication algorithm
// (cf. Knuth, The Art of Computer Programming, Vol. 2)
// bn_mul_recursive sets |r| to |a| * |b|, using |t| as scratch space. |r| has
// length 2*|n2|, |a| has length |n2| + |dna|, |b| has length |n2| + |dnb|, and
// |t| has length 4*|n2|. |n2| must be a power of two. Finally, we must have
// -|BN_MUL_RECURSIVE_SIZE_NORMAL|/2 <= |dna| <= 0 and
// -|BN_MUL_RECURSIVE_SIZE_NORMAL|/2 <= |dnb| <= 0.
//
// TODO(davidben): Simplify and |size_t| the calling convention around lengths
// here.
static void bn_mul_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
int n2, int dna, int dnb, BN_ULONG *t) {
// |n2| is a power of two.
assert(n2 != 0 && (n2 & (n2 - 1)) == 0);
// Check |dna| and |dnb| are in range.
assert(-BN_MUL_RECURSIVE_SIZE_NORMAL/2 <= dna && dna <= 0);
assert(-BN_MUL_RECURSIVE_SIZE_NORMAL/2 <= dnb && dnb <= 0);
// Only call bn_mul_comba 8 if n2 == 8 and the
// two arrays are complete [steve]
if (n2 == 8 && dna == 0 && dnb == 0) {
bn_mul_comba8(r, a, b);
return;
}
// Else do normal multiply
if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
if (dna + dnb < 0) {
OPENSSL_memset(&r[2 * n2 + dna + dnb], 0,
sizeof(BN_ULONG) * -(dna + dnb));
}
return;
}
// Split |a| and |b| into a0,a1 and b0,b1, where a0 and b0 have size |n|.
// Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used
// for recursive calls.
// Split |r| into r0,r1,r2,r3. We must contribute a0*b0 to r0,r1, a0*a1+b0*b1
// to r1,r2, and a1*b1 to r2,r3. The middle term we will compute as:
//
// a0*a1 + b0*b1 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0
//
// Note that we know |n| >= |BN_MUL_RECURSIVE_SIZE_NORMAL|/2 above, so
// |tna| and |tnb| are non-negative.
int n = n2 / 2, tna = n + dna, tnb = n + dnb;
// t0 = a0 - a1 and t1 = b1 - b0. The result will be multiplied, so we XOR
// their sign masks, giving the sign of (a0 - a1)*(b1 - b0). t0 and t1
// themselves store the absolute value.
BN_ULONG neg = bn_abs_sub_part_words(t, a, &a[n], tna, n - tna, &t[n2]);
neg ^= bn_abs_sub_part_words(&t[n], &b[n], b, tnb, tnb - n, &t[n2]);
// Compute:
// t2,t3 = t0 * t1 = |(a0 - a1)*(b1 - b0)|
// r0,r1 = a0 * b0
// r2,r3 = a1 * b1
if (n == 4 && dna == 0 && dnb == 0) {
bn_mul_comba4(&t[n2], t, &t[n]);
bn_mul_comba4(r, a, b);
bn_mul_comba4(&r[n2], &a[n], &b[n]);
} else if (n == 8 && dna == 0 && dnb == 0) {
bn_mul_comba8(&t[n2], t, &t[n]);
bn_mul_comba8(r, a, b);
bn_mul_comba8(&r[n2], &a[n], &b[n]);
} else {
BN_ULONG *p = &t[n2 * 2];
bn_mul_recursive(&t[n2], t, &t[n], n, 0, 0, p);
bn_mul_recursive(r, a, b, n, 0, 0, p);
bn_mul_recursive(&r[n2], &a[n], &b[n], n, dna, dnb, p);
}
// t0,t1,c = r0,r1 + r2,r3 = a0*b0 + a1*b1
BN_ULONG c = bn_add_words(t, r, &r[n2], n2);
// t2,t3,c = t0,t1,c + neg*t2,t3 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0.
// The second term is stored as the absolute value, so we do this with a
// constant-time select.
BN_ULONG c_neg = c - bn_sub_words(&t[n2 * 2], t, &t[n2], n2);
BN_ULONG c_pos = c + bn_add_words(&t[n2], t, &t[n2], n2);
bn_select_words(&t[n2], neg, &t[n2 * 2], &t[n2], n2);
static_assert(sizeof(BN_ULONG) <= sizeof(crypto_word_t),
"crypto_word_t is too small");
c = constant_time_select_w(neg, c_neg, c_pos);
// We now have our three components. Add them together.
// r1,r2,c = r1,r2 + t2,t3,c
c += bn_add_words(&r[n], &r[n], &t[n2], n2);
// Propagate the carry bit to the end.
for (int i = n + n2; i < n2 + n2; i++) {
BN_ULONG old = r[i];
r[i] = old + c;
c = r[i] < old;
}
// The product should fit without carries.
assert(c == 0);
}
// bn_mul_part_recursive sets |r| to |a| * |b|, using |t| as scratch space. |r|
// has length 4*|n|, |a| has length |n| + |tna|, |b| has length |n| + |tnb|, and
// |t| has length 8*|n|. |n| must be a power of two. Additionally, we must have
// 0 <= tna < n and 0 <= tnb < n, and |tna| and |tnb| must differ by at most
// one.
//
// TODO(davidben): Make this take |size_t| and perhaps the actual lengths of |a|
// and |b|.
static void bn_mul_part_recursive(BN_ULONG *r, const BN_ULONG *a,
const BN_ULONG *b, int n, int tna, int tnb,
BN_ULONG *t) {
// |n| is a power of two.
assert(n != 0 && (n & (n - 1)) == 0);
// Check |tna| and |tnb| are in range.
assert(0 <= tna && tna < n);
assert(0 <= tnb && tnb < n);
assert(-1 <= tna - tnb && tna - tnb <= 1);
int n2 = n * 2;
if (n < 8) {
bn_mul_normal(r, a, n + tna, b, n + tnb);
OPENSSL_memset(r + n2 + tna + tnb, 0, n2 - tna - tnb);
return;
}
// Split |a| and |b| into a0,a1 and b0,b1, where a0 and b0 have size |n|. |a1|
// and |b1| have size |tna| and |tnb|, respectively.
// Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used
// for recursive calls.
// Split |r| into r0,r1,r2,r3. We must contribute a0*b0 to r0,r1, a0*a1+b0*b1
// to r1,r2, and a1*b1 to r2,r3. The middle term we will compute as:
//
// a0*a1 + b0*b1 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0
// t0 = a0 - a1 and t1 = b1 - b0. The result will be multiplied, so we XOR
// their sign masks, giving the sign of (a0 - a1)*(b1 - b0). t0 and t1
// themselves store the absolute value.
BN_ULONG neg = bn_abs_sub_part_words(t, a, &a[n], tna, n - tna, &t[n2]);
neg ^= bn_abs_sub_part_words(&t[n], &b[n], b, tnb, tnb - n, &t[n2]);
// Compute:
// t2,t3 = t0 * t1 = |(a0 - a1)*(b1 - b0)|
// r0,r1 = a0 * b0
// r2,r3 = a1 * b1
if (n == 8) {
bn_mul_comba8(&t[n2], t, &t[n]);
bn_mul_comba8(r, a, b);
bn_mul_normal(&r[n2], &a[n], tna, &b[n], tnb);
// |bn_mul_normal| only writes |tna| + |tna| words. Zero the rest.
OPENSSL_memset(&r[n2 + tna + tnb], 0, sizeof(BN_ULONG) * (n2 - tna - tnb));
} else {
BN_ULONG *p = &t[n2 * 2];
bn_mul_recursive(&t[n2], t, &t[n], n, 0, 0, p);
bn_mul_recursive(r, a, b, n, 0, 0, p);
OPENSSL_memset(&r[n2], 0, sizeof(BN_ULONG) * n2);
if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL &&
tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
bn_mul_normal(&r[n2], &a[n], tna, &b[n], tnb);
} else {
int i = n;
for (;;) {
i /= 2;
if (i < tna || i < tnb) {
// E.g., n == 16, i == 8 and tna == 11. |tna| and |tnb| are within one
// of each other, so if |tna| is larger and tna > i, then we know
// tnb >= i, and this call is valid.
bn_mul_part_recursive(&r[n2], &a[n], &b[n], i, tna - i, tnb - i, p);
break;
}
if (i == tna || i == tnb) {
// If there is only a bottom half to the number, just do it. We know
// the larger of |tna - i| and |tnb - i| is zero. The other is zero or
// -1 by because of |tna| and |tnb| differ by at most one.
bn_mul_recursive(&r[n2], &a[n], &b[n], i, tna - i, tnb - i, p);
break;
}
// This loop will eventually terminate when |i| falls below
// |BN_MUL_RECURSIVE_SIZE_NORMAL| because we know one of |tna| and |tnb|
// exceeds that.
}
}
}
// t0,t1,c = r0,r1 + r2,r3 = a0*b0 + a1*b1
BN_ULONG c = bn_add_words(t, r, &r[n2], n2);
// t2,t3,c = t0,t1,c + neg*t2,t3 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0.
// The second term is stored as the absolute value, so we do this with a
// constant-time select.
BN_ULONG c_neg = c - bn_sub_words(&t[n2 * 2], t, &t[n2], n2);
BN_ULONG c_pos = c + bn_add_words(&t[n2], t, &t[n2], n2);
bn_select_words(&t[n2], neg, &t[n2 * 2], &t[n2], n2);
static_assert(sizeof(BN_ULONG) <= sizeof(crypto_word_t),
"crypto_word_t is too small");
c = constant_time_select_w(neg, c_neg, c_pos);
// We now have our three components. Add them together.
// r1,r2,c = r1,r2 + t2,t3,c
c += bn_add_words(&r[n], &r[n], &t[n2], n2);
// Propagate the carry bit to the end.
for (int i = n + n2; i < n2 + n2; i++) {
BN_ULONG old = r[i];
r[i] = old + c;
c = r[i] < old;
}
// The product should fit without carries.
assert(c == 0);
}
// bn_mul_impl implements |BN_mul| and |bn_mul_consttime|. Note this function
// breaks |BIGNUM| invariants and may return a negative zero. This is handled by
// the callers.
static int bn_mul_impl(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
BN_CTX *ctx) {
int al = a->width;
int bl = b->width;
if (al == 0 || bl == 0) {
BN_zero(r);
return 1;
}
int ret = 0;
BIGNUM *rr;
BN_CTX_start(ctx);
if (r == a || r == b) {
rr = BN_CTX_get(ctx);
if (rr == NULL) {
goto err;
}
} else {
rr = r;
}
rr->neg = a->neg ^ b->neg;
int i = al - bl;
if (i == 0) {
if (al == 8) {
if (!bn_wexpand(rr, 16)) {
goto err;
}
rr->width = 16;
bn_mul_comba8(rr->d, a->d, b->d);
goto end;
}
}
int top = al + bl;
static const int kMulNormalSize = 16;
if (al >= kMulNormalSize && bl >= kMulNormalSize) {
if (-1 <= i && i <= 1) {
// Find the largest power of two less than or equal to the larger length.
int j;
if (i >= 0) {
j = BN_num_bits_word((BN_ULONG)al);
} else {
j = BN_num_bits_word((BN_ULONG)bl);
}
j = 1 << (j - 1);
assert(j <= al || j <= bl);
BIGNUM *t = BN_CTX_get(ctx);
if (t == NULL) {
goto err;
}
if (al > j || bl > j) {
// We know |al| and |bl| are at most one from each other, so if al > j,
// bl >= j, and vice versa. Thus we can use |bn_mul_part_recursive|.
//
// TODO(davidben): This codepath is almost unused in standard
// algorithms. Is this optimization necessary? See notes in
// https://boringssl-review.googlesource.com/q/I0bd604e2cd6a75c266f64476c23a730ca1721ea6
assert(al >= j && bl >= j);
if (!bn_wexpand(t, j * 8) ||
!bn_wexpand(rr, j * 4)) {
goto err;
}
bn_mul_part_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
} else {
// al <= j && bl <= j. Additionally, we know j <= al or j <= bl, so one
// of al - j or bl - j is zero. The other, by the bound on |i| above, is
// zero or -1. Thus, we can use |bn_mul_recursive|.
if (!bn_wexpand(t, j * 4) ||
!bn_wexpand(rr, j * 2)) {
goto err;
}
bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
}
rr->width = top;
goto end;
}
}
if (!bn_wexpand(rr, top)) {
goto err;
}
rr->width = top;
bn_mul_normal(rr->d, a->d, al, b->d, bl);
end:
if (r != rr && !BN_copy(r, rr)) {
goto err;
}
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
if (!bn_mul_impl(r, a, b, ctx)) {
return 0;
}
// This additionally fixes any negative zeros created by |bn_mul_impl|.
bn_set_minimal_width(r);
return 1;
}
int bn_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
// Prevent negative zeros.
if (a->neg || b->neg) {
OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
return 0;
}
return bn_mul_impl(r, a, b, ctx);
}
void bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a,
const BN_ULONG *b, size_t num_b) {
if (num_r != num_a + num_b) {
abort();
}
// TODO(davidben): Should this call |bn_mul_comba4| too? |BN_mul| does not
// hit that code.
if (num_a == 8 && num_b == 8) {
bn_mul_comba8(r, a, b);
} else {
bn_mul_normal(r, a, num_a, b, num_b);
}
}
// tmp must have 2*n words
static void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, size_t n,
BN_ULONG *tmp) {
if (n == 0) {
return;
}
size_t max = n * 2;
const BN_ULONG *ap = a;
BN_ULONG *rp = r;
rp[0] = rp[max - 1] = 0;
rp++;
// Compute the contribution of a[i] * a[j] for all i < j.
if (n > 1) {
ap++;
rp[n - 1] = bn_mul_words(rp, ap, n - 1, ap[-1]);
rp += 2;
}
if (n > 2) {
for (size_t i = n - 2; i > 0; i--) {
ap++;
rp[i] = bn_mul_add_words(rp, ap, i, ap[-1]);
rp += 2;
}
}
// The final result fits in |max| words, so none of the following operations
// will overflow.
// Double |r|, giving the contribution of a[i] * a[j] for all i != j.
bn_add_words(r, r, r, max);
// Add in the contribution of a[i] * a[i] for all i.
bn_sqr_words(tmp, a, n);
bn_add_words(r, r, tmp, max);
}
// bn_sqr_recursive sets |r| to |a|^2, using |t| as scratch space. |r| has
// length 2*|n2|, |a| has length |n2|, and |t| has length 4*|n2|. |n2| must be
// a power of two.
static void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, size_t n2,
BN_ULONG *t) {
// |n2| is a power of two.
assert(n2 != 0 && (n2 & (n2 - 1)) == 0);
if (n2 == 4) {
bn_sqr_comba4(r, a);
return;
}
if (n2 == 8) {
bn_sqr_comba8(r, a);
return;
}
if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) {
bn_sqr_normal(r, a, n2, t);
return;
}
// Split |a| into a0,a1, each of size |n|.
// Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used
// for recursive calls.
// Split |r| into r0,r1,r2,r3. We must contribute a0^2 to r0,r1, 2*a0*a1 to
// r1,r2, and a1^2 to r2,r3.
size_t n = n2 / 2;
BN_ULONG *t_recursive = &t[n2 * 2];
// t0 = |a0 - a1|.
bn_abs_sub_words(t, a, &a[n], n, &t[n]);
// t2,t3 = t0^2 = |a0 - a1|^2 = a0^2 - 2*a0*a1 + a1^2
bn_sqr_recursive(&t[n2], t, n, t_recursive);
// r0,r1 = a0^2
bn_sqr_recursive(r, a, n, t_recursive);
// r2,r3 = a1^2
bn_sqr_recursive(&r[n2], &a[n], n, t_recursive);
// t0,t1,c = r0,r1 + r2,r3 = a0^2 + a1^2
BN_ULONG c = bn_add_words(t, r, &r[n2], n2);
// t2,t3,c = t0,t1,c - t2,t3 = 2*a0*a1
c -= bn_sub_words(&t[n2], t, &t[n2], n2);
// We now have our three components. Add them together.
// r1,r2,c = r1,r2 + t2,t3,c
c += bn_add_words(&r[n], &r[n], &t[n2], n2);
// Propagate the carry bit to the end.
for (size_t i = n + n2; i < n2 + n2; i++) {
BN_ULONG old = r[i];
r[i] = old + c;
c = r[i] < old;
}
// The square should fit without carries.
assert(c == 0);
}
int BN_mul_word(BIGNUM *bn, BN_ULONG w) {
if (!bn->width) {
return 1;
}
if (w == 0) {
BN_zero(bn);
return 1;
}
BN_ULONG ll = bn_mul_words(bn->d, bn->d, bn->width, w);
if (ll) {
if (!bn_wexpand(bn, bn->width + 1)) {
return 0;
}
bn->d[bn->width++] = ll;
}
return 1;
}
int bn_sqr_consttime(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) {
int al = a->width;
if (al <= 0) {
r->width = 0;
r->neg = 0;
return 1;
}
int ret = 0;
BN_CTX_start(ctx);
BIGNUM *rr = (a != r) ? r : BN_CTX_get(ctx);
BIGNUM *tmp = BN_CTX_get(ctx);
if (!rr || !tmp) {
goto err;
}
int max = 2 * al; // Non-zero (from above)
if (!bn_wexpand(rr, max)) {
goto err;
}
if (al == 4) {
bn_sqr_comba4(rr->d, a->d);
} else if (al == 8) {
bn_sqr_comba8(rr->d, a->d);
} else {
if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) {
BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2];
bn_sqr_normal(rr->d, a->d, al, t);
} else {
// If |al| is a power of two, we can use |bn_sqr_recursive|.
if (al != 0 && (al & (al - 1)) == 0) {
if (!bn_wexpand(tmp, al * 4)) {
goto err;
}
bn_sqr_recursive(rr->d, a->d, al, tmp->d);
} else {
if (!bn_wexpand(tmp, max)) {
goto err;
}
bn_sqr_normal(rr->d, a->d, al, tmp->d);
}
}
}
rr->neg = 0;
rr->width = max;
if (rr != r && !BN_copy(r, rr)) {
goto err;
}
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) {
if (!bn_sqr_consttime(r, a, ctx)) {
return 0;
}
bn_set_minimal_width(r);
return 1;
}
void bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a) {
if (num_r != 2 * num_a || num_a > BN_SMALL_MAX_WORDS) {
abort();
}
if (num_a == 4) {
bn_sqr_comba4(r, a);
} else if (num_a == 8) {
bn_sqr_comba8(r, a);
} else {
BN_ULONG tmp[2 * BN_SMALL_MAX_WORDS];
bn_sqr_normal(r, a, num_a, tmp);
OPENSSL_cleanse(tmp, 2 * num_a * sizeof(BN_ULONG));
}
}
|