1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#include <CCryptoBoringSSL_bn.h>
#include <CCryptoBoringSSL_err.h>
#include <CCryptoBoringSSL_mem.h>
#include "internal.h"
#include "../../internal.h"
// kPrimes contains the first 1024 primes.
static const uint16_t kPrimes[] = {
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,
97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223,
227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281,
283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359,
367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433,
439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503,
509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593,
599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659,
661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743,
751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827,
829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911,
919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997,
1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069,
1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163,
1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249,
1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321,
1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439,
1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511,
1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601,
1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693,
1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783,
1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877,
1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987,
1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069,
2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143,
2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267,
2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347,
2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423,
2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543,
2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657,
2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713,
2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801,
2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903,
2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011,
3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119,
3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221,
3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323,
3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413,
3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527,
3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607,
3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697,
3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797,
3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907,
3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003,
4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093,
4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211,
4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283,
4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409,
4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513,
4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621,
4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721,
4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813,
4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937,
4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011,
5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113,
5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233,
5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351,
5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443,
5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531,
5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653,
5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743,
5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849,
5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939,
5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073,
6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173,
6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271,
6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359,
6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473,
6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581,
6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701,
6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803,
6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907,
6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997,
7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121,
7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229,
7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349,
7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487,
7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561,
7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669,
7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757,
7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879,
7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009,
8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111,
8117, 8123, 8147, 8161,
};
// BN_prime_checks_for_size returns the number of Miller-Rabin iterations
// necessary for generating a 'bits'-bit candidate prime.
//
//
// This table is generated using the algorithm of FIPS PUB 186-4
// Digital Signature Standard (DSS), section F.1, page 117.
// (https://doi.org/10.6028/NIST.FIPS.186-4)
// The following magma script was used to generate the output:
// securitybits:=125;
// k:=1024;
// for t:=1 to 65 do
// for M:=3 to Floor(2*Sqrt(k-1)-1) do
// S:=0;
// // Sum over m
// for m:=3 to M do
// s:=0;
// // Sum over j
// for j:=2 to m do
// s+:=(RealField(32)!2)^-(j+(k-1)/j);
// end for;
// S+:=2^(m-(m-1)*t)*s;
// end for;
// A:=2^(k-2-M*t);
// B:=8*(Pi(RealField(32))^2-6)/3*2^(k-2)*S;
// pkt:=2.00743*Log(2)*k*2^-k*(A+B);
// seclevel:=Floor(-Log(2,pkt));
// if seclevel ge securitybits then
// printf "k: %5o, security: %o bits (t: %o, M: %o)\n",k,seclevel,t,M;
// break;
// end if;
// end for;
// if seclevel ge securitybits then break; end if;
// end for;
//
// It can be run online at: http://magma.maths.usyd.edu.au/calc
// And will output:
// k: 1024, security: 129 bits (t: 6, M: 23)
// k is the number of bits of the prime, securitybits is the level we want to
// reach.
// prime length | RSA key size | # MR tests | security level
// -------------+--------------|------------+---------------
// (b) >= 6394 | >= 12788 | 3 | 256 bit
// (b) >= 3747 | >= 7494 | 3 | 192 bit
// (b) >= 1345 | >= 2690 | 4 | 128 bit
// (b) >= 1080 | >= 2160 | 5 | 128 bit
// (b) >= 852 | >= 1704 | 5 | 112 bit
// (b) >= 476 | >= 952 | 5 | 80 bit
// (b) >= 400 | >= 800 | 6 | 80 bit
// (b) >= 347 | >= 694 | 7 | 80 bit
// (b) >= 308 | >= 616 | 8 | 80 bit
// (b) >= 55 | >= 110 | 27 | 64 bit
// (b) >= 6 | >= 12 | 34 | 64 bit
static int BN_prime_checks_for_size(int bits) {
if (bits >= 3747) {
return 3;
}
if (bits >= 1345) {
return 4;
}
if (bits >= 476) {
return 5;
}
if (bits >= 400) {
return 6;
}
if (bits >= 347) {
return 7;
}
if (bits >= 308) {
return 8;
}
if (bits >= 55) {
return 27;
}
return 34;
}
// num_trial_division_primes returns the number of primes to try with trial
// division before using more expensive checks. For larger numbers, the value
// of excluding a candidate with trial division is larger.
static size_t num_trial_division_primes(const BIGNUM *n) {
if (n->width * BN_BITS2 > 1024) {
return OPENSSL_ARRAY_SIZE(kPrimes);
}
return OPENSSL_ARRAY_SIZE(kPrimes) / 2;
}
// BN_PRIME_CHECKS_BLINDED is the iteration count for blinding the constant-time
// primality test. See |BN_primality_test| for details. This number is selected
// so that, for a candidate N-bit RSA prime, picking |BN_PRIME_CHECKS_BLINDED|
// random N-bit numbers will have at least |BN_prime_checks_for_size(N)| values
// in range with high probability.
//
// The following Python script computes the blinding factor needed for the
// corresponding iteration count.
/*
import math
# We choose candidate RSA primes between sqrt(2)/2 * 2^N and 2^N and select
# witnesses by generating random N-bit numbers. Thus the probability of
# selecting one in range is at least sqrt(2)/2.
p = math.sqrt(2) / 2
# Target around 2^-8 probability of the blinding being insufficient given that
# key generation is a one-time, noisy operation.
epsilon = 2**-8
def choose(a, b):
r = 1
for i in xrange(b):
r *= a - i
r /= (i + 1)
return r
def failure_rate(min_uniform, iterations):
""" Returns the probability that, for |iterations| candidate witnesses, fewer
than |min_uniform| of them will be uniform. """
prob = 0.0
for i in xrange(min_uniform):
prob += (choose(iterations, i) *
p**i * (1-p)**(iterations - i))
return prob
for min_uniform in (3, 4, 5, 6, 8, 13, 19, 28):
# Find the smallest number of iterations under the target failure rate.
iterations = min_uniform
while True:
prob = failure_rate(min_uniform, iterations)
if prob < epsilon:
print min_uniform, iterations, prob
break
iterations += 1
Output:
3 9 0.00368894873911
4 11 0.00363319494662
5 13 0.00336215573898
6 15 0.00300145783158
8 19 0.00225214119331
13 27 0.00385610026955
19 38 0.0021410539126
28 52 0.00325405801769
16 iterations suffices for 400-bit primes and larger (6 uniform samples needed),
which is already well below the minimum acceptable key size for RSA.
*/
#define BN_PRIME_CHECKS_BLINDED 16
static int probable_prime(BIGNUM *rnd, int bits);
static int probable_prime_dh(BIGNUM *rnd, int bits, const BIGNUM *add,
const BIGNUM *rem, BN_CTX *ctx);
static int probable_prime_dh_safe(BIGNUM *rnd, int bits, const BIGNUM *add,
const BIGNUM *rem, BN_CTX *ctx);
BN_GENCB *BN_GENCB_new(void) {
BN_GENCB *callback = OPENSSL_malloc(sizeof(BN_GENCB));
if (callback == NULL) {
return NULL;
}
OPENSSL_memset(callback, 0, sizeof(BN_GENCB));
return callback;
}
void BN_GENCB_free(BN_GENCB *callback) { OPENSSL_free(callback); }
void BN_GENCB_set(BN_GENCB *callback,
int (*f)(int event, int n, struct bn_gencb_st *),
void *arg) {
callback->callback = f;
callback->arg = arg;
}
int BN_GENCB_call(BN_GENCB *callback, int event, int n) {
if (!callback) {
return 1;
}
return callback->callback(event, n, callback);
}
void *BN_GENCB_get_arg(const BN_GENCB *callback) { return callback->arg; }
int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add,
const BIGNUM *rem, BN_GENCB *cb) {
BIGNUM *t;
int found = 0;
int i, j, c1 = 0;
BN_CTX *ctx;
int checks = BN_prime_checks_for_size(bits);
if (bits < 2) {
// There are no prime numbers this small.
OPENSSL_PUT_ERROR(BN, BN_R_BITS_TOO_SMALL);
return 0;
} else if (bits == 2 && safe) {
// The smallest safe prime (7) is three bits.
OPENSSL_PUT_ERROR(BN, BN_R_BITS_TOO_SMALL);
return 0;
}
ctx = BN_CTX_new();
if (ctx == NULL) {
goto err;
}
BN_CTX_start(ctx);
t = BN_CTX_get(ctx);
if (!t) {
goto err;
}
loop:
// make a random number and set the top and bottom bits
if (add == NULL) {
if (!probable_prime(ret, bits)) {
goto err;
}
} else {
if (safe) {
if (!probable_prime_dh_safe(ret, bits, add, rem, ctx)) {
goto err;
}
} else {
if (!probable_prime_dh(ret, bits, add, rem, ctx)) {
goto err;
}
}
}
if (!BN_GENCB_call(cb, BN_GENCB_GENERATED, c1++)) {
// aborted
goto err;
}
if (!safe) {
i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb);
if (i == -1) {
goto err;
} else if (i == 0) {
goto loop;
}
} else {
// for "safe prime" generation, check that (p-1)/2 is prime. Since a prime
// is odd, We just need to divide by 2
if (!BN_rshift1(t, ret)) {
goto err;
}
// Interleave |ret| and |t|'s primality tests to avoid paying the full
// iteration count on |ret| only to quickly discover |t| is composite.
//
// TODO(davidben): This doesn't quite work because an iteration count of 1
// still runs the blinding mechanism.
for (i = 0; i < checks; i++) {
j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, NULL);
if (j == -1) {
goto err;
} else if (j == 0) {
goto loop;
}
j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, NULL);
if (j == -1) {
goto err;
} else if (j == 0) {
goto loop;
}
if (!BN_GENCB_call(cb, BN_GENCB_PRIME_TEST, i)) {
goto err;
}
// We have a safe prime test pass
}
}
// we have a prime :-)
found = 1;
err:
if (ctx != NULL) {
BN_CTX_end(ctx);
BN_CTX_free(ctx);
}
return found;
}
static int bn_trial_division(uint16_t *out, const BIGNUM *bn) {
const size_t num_primes = num_trial_division_primes(bn);
for (size_t i = 1; i < num_primes; i++) {
if (bn_mod_u16_consttime(bn, kPrimes[i]) == 0) {
*out = kPrimes[i];
return 1;
}
}
return 0;
}
int bn_odd_number_is_obviously_composite(const BIGNUM *bn) {
uint16_t prime;
return bn_trial_division(&prime, bn) && !BN_is_word(bn, prime);
}
int bn_miller_rabin_init(BN_MILLER_RABIN *miller_rabin, const BN_MONT_CTX *mont,
BN_CTX *ctx) {
// This function corresponds to steps 1 through 3 of FIPS 186-4, C.3.1.
const BIGNUM *w = &mont->N;
// Note we do not call |BN_CTX_start| in this function. We intentionally
// allocate values in the containing scope so they outlive this function.
miller_rabin->w1 = BN_CTX_get(ctx);
miller_rabin->m = BN_CTX_get(ctx);
miller_rabin->one_mont = BN_CTX_get(ctx);
miller_rabin->w1_mont = BN_CTX_get(ctx);
if (miller_rabin->w1 == NULL ||
miller_rabin->m == NULL ||
miller_rabin->one_mont == NULL ||
miller_rabin->w1_mont == NULL) {
return 0;
}
// See FIPS 186-4, C.3.1, steps 1 through 3.
if (!bn_usub_consttime(miller_rabin->w1, w, BN_value_one())) {
return 0;
}
miller_rabin->a = BN_count_low_zero_bits(miller_rabin->w1);
if (!bn_rshift_secret_shift(miller_rabin->m, miller_rabin->w1,
miller_rabin->a, ctx)) {
return 0;
}
miller_rabin->w_bits = BN_num_bits(w);
// Precompute some values in Montgomery form.
if (!bn_one_to_montgomery(miller_rabin->one_mont, mont, ctx) ||
// w - 1 is -1 mod w, so we can compute it in the Montgomery domain, -R,
// with a subtraction. (|one_mont| cannot be zero.)
!bn_usub_consttime(miller_rabin->w1_mont, w, miller_rabin->one_mont)) {
return 0;
}
return 1;
}
int bn_miller_rabin_iteration(const BN_MILLER_RABIN *miller_rabin,
int *out_is_possibly_prime, const BIGNUM *b,
const BN_MONT_CTX *mont, BN_CTX *ctx) {
// This function corresponds to steps 4.3 through 4.5 of FIPS 186-4, C.3.1.
int ret = 0;
BN_CTX_start(ctx);
// Step 4.3. We use Montgomery-encoding for better performance and to avoid
// timing leaks.
const BIGNUM *w = &mont->N;
BIGNUM *z = BN_CTX_get(ctx);
if (z == NULL ||
!BN_mod_exp_mont_consttime(z, b, miller_rabin->m, w, ctx, mont) ||
!BN_to_montgomery(z, z, mont, ctx)) {
goto err;
}
// is_possibly_prime is all ones if we have determined |b| is not a composite
// witness for |w|. This is equivalent to going to step 4.7 in the original
// algorithm. To avoid timing leaks, we run the algorithm to the end for prime
// inputs.
crypto_word_t is_possibly_prime = 0;
// Step 4.4. If z = 1 or z = w-1, b is not a composite witness and w is still
// possibly prime.
is_possibly_prime = BN_equal_consttime(z, miller_rabin->one_mont) |
BN_equal_consttime(z, miller_rabin->w1_mont);
is_possibly_prime = 0 - is_possibly_prime; // Make it all zeros or all ones.
// Step 4.5.
//
// To avoid leaking |a|, we run the loop to |w_bits| and mask off all
// iterations once |j| = |a|.
for (int j = 1; j < miller_rabin->w_bits; j++) {
if (constant_time_eq_int(j, miller_rabin->a) & ~is_possibly_prime) {
// If the loop is done and we haven't seen z = 1 or z = w-1 yet, the
// value is composite and we can break in variable time.
break;
}
// Step 4.5.1.
if (!BN_mod_mul_montgomery(z, z, z, mont, ctx)) {
goto err;
}
// Step 4.5.2. If z = w-1 and the loop is not done, this is not a composite
// witness.
crypto_word_t z_is_w1_mont = BN_equal_consttime(z, miller_rabin->w1_mont);
z_is_w1_mont = 0 - z_is_w1_mont; // Make it all zeros or all ones.
is_possibly_prime |= z_is_w1_mont; // Go to step 4.7 if |z_is_w1_mont|.
// Step 4.5.3. If z = 1 and the loop is not done, the previous value of z
// was not -1. There are no non-trivial square roots of 1 modulo a prime, so
// w is composite and we may exit in variable time.
if (BN_equal_consttime(z, miller_rabin->one_mont) & ~is_possibly_prime) {
break;
}
}
*out_is_possibly_prime = is_possibly_prime & 1;
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
int BN_primality_test(int *out_is_probably_prime, const BIGNUM *w, int checks,
BN_CTX *ctx, int do_trial_division, BN_GENCB *cb) {
// This function's secrecy and performance requirements come from RSA key
// generation. We generate RSA keys by selecting two large, secret primes with
// rejection sampling.
//
// We thus treat |w| as secret if turns out to be a large prime. However, if
// |w| is composite, we treat this and |w| itself as public. (Conversely, if
// |w| is prime, that it is prime is public. Only the value is secret.) This
// is fine for RSA key generation, but note it is important that we use
// rejection sampling, with each candidate prime chosen independently. This
// would not work for, e.g., an algorithm which looked for primes in
// consecutive integers. These assumptions allow us to discard composites
// quickly. We additionally treat |w| as public when it is a small prime to
// simplify trial decryption and some edge cases.
//
// One RSA key generation will call this function on exactly two primes and
// many more composites. The overall cost is a combination of several factors:
//
// 1. Checking if |w| is divisible by a small prime is much faster than
// learning it is composite by Miller-Rabin (see below for details on that
// cost). Trial division by p saves 1/p of Miller-Rabin calls, so this is
// worthwhile until p exceeds the ratio of the two costs.
//
// 2. For a random (i.e. non-adversarial) candidate large prime and candidate
// witness, the probability of false witness is very low. (This is why FIPS
// 186-4 only requires a few iterations.) Thus composites not discarded by
// trial decryption, in practice, cost one Miller-Rabin iteration. Only the
// two actual primes cost the full iteration count.
//
// 3. A Miller-Rabin iteration is a modular exponentiation plus |a| additional
// modular squares, where |a| is the number of factors of two in |w-1|. |a|
// is likely small (the distribution falls exponentially), but it is also
// potentially secret, so we loop up to its log(w) upper bound when |w| is
// prime. When |w| is composite, we break early, so only two calls pay this
// cost. (Note that all calls pay the modular exponentiation which is,
// itself, log(w) modular multiplications and squares.)
//
// 4. While there are only two prime calls, they multiplicatively pay the full
// costs of (2) and (3).
//
// 5. After the primes are chosen, RSA keys derive some values from the
// primes, but this cost is negligible in comparison.
*out_is_probably_prime = 0;
if (BN_cmp(w, BN_value_one()) <= 0) {
return 1;
}
if (!BN_is_odd(w)) {
// The only even prime is two.
*out_is_probably_prime = BN_is_word(w, 2);
return 1;
}
// Miller-Rabin does not work for three.
if (BN_is_word(w, 3)) {
*out_is_probably_prime = 1;
return 1;
}
if (do_trial_division) {
// Perform additional trial division checks to discard small primes.
uint16_t prime;
if (bn_trial_division(&prime, w)) {
*out_is_probably_prime = BN_is_word(w, prime);
return 1;
}
if (!BN_GENCB_call(cb, BN_GENCB_PRIME_TEST, -1)) {
return 0;
}
}
if (checks == BN_prime_checks_for_generation) {
checks = BN_prime_checks_for_size(BN_num_bits(w));
}
BN_CTX *new_ctx = NULL;
if (ctx == NULL) {
new_ctx = BN_CTX_new();
if (new_ctx == NULL) {
return 0;
}
ctx = new_ctx;
}
// See C.3.1 from FIPS 186-4.
int ret = 0;
BN_CTX_start(ctx);
BIGNUM *b = BN_CTX_get(ctx);
BN_MONT_CTX *mont = BN_MONT_CTX_new_consttime(w, ctx);
BN_MILLER_RABIN miller_rabin;
if (b == NULL || mont == NULL ||
// Steps 1-3.
!bn_miller_rabin_init(&miller_rabin, mont, ctx)) {
goto err;
}
// The following loop performs in inner iteration of the Miller-Rabin
// Primality test (Step 4).
//
// The algorithm as specified in FIPS 186-4 leaks information on |w|, the RSA
// private key. Instead, we run through each iteration unconditionally,
// performing modular multiplications, masking off any effects to behave
// equivalently to the specified algorithm.
//
// We also blind the number of values of |b| we try. Steps 4.1–4.2 say to
// discard out-of-range values. To avoid leaking information on |w|, we use
// |bn_rand_secret_range| which, rather than discarding bad values, adjusts
// them to be in range. Though not uniformly selected, these adjusted values
// are still usable as Miller-Rabin checks.
//
// Miller-Rabin is already probabilistic, so we could reach the desired
// confidence levels by just suitably increasing the iteration count. However,
// to align with FIPS 186-4, we use a more pessimal analysis: we do not count
// the non-uniform values towards the iteration count. As a result, this
// function is more complex and has more timing risk than necessary.
//
// We count both total iterations and uniform ones and iterate until we've
// reached at least |BN_PRIME_CHECKS_BLINDED| and |iterations|, respectively.
// If the latter is large enough, it will be the limiting factor with high
// probability and we won't leak information.
//
// Note this blinding does not impact most calls when picking primes because
// composites are rejected early. Only the two secret primes see extra work.
crypto_word_t uniform_iterations = 0;
// Using |constant_time_lt_w| seems to prevent the compiler from optimizing
// this into two jumps.
for (int i = 1; (i <= BN_PRIME_CHECKS_BLINDED) |
constant_time_lt_w(uniform_iterations, checks);
i++) {
// Step 4.1-4.2
int is_uniform;
if (!bn_rand_secret_range(b, &is_uniform, 2, miller_rabin.w1)) {
goto err;
}
uniform_iterations += is_uniform;
// Steps 4.3-4.5
int is_possibly_prime = 0;
if (!bn_miller_rabin_iteration(&miller_rabin, &is_possibly_prime, b, mont,
ctx)) {
goto err;
}
if (!is_possibly_prime) {
// Step 4.6. We did not see z = w-1 before z = 1, so w must be composite.
*out_is_probably_prime = 0;
ret = 1;
goto err;
}
// Step 4.7
if (!BN_GENCB_call(cb, BN_GENCB_PRIME_TEST, i - 1)) {
goto err;
}
}
assert(uniform_iterations >= (crypto_word_t)checks);
*out_is_probably_prime = 1;
ret = 1;
err:
BN_MONT_CTX_free(mont);
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
int BN_is_prime_ex(const BIGNUM *candidate, int checks, BN_CTX *ctx,
BN_GENCB *cb) {
return BN_is_prime_fasttest_ex(candidate, checks, ctx, 0, cb);
}
int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx,
int do_trial_division, BN_GENCB *cb) {
int is_probably_prime;
if (!BN_primality_test(&is_probably_prime, a, checks, ctx, do_trial_division,
cb)) {
return -1;
}
return is_probably_prime;
}
int BN_enhanced_miller_rabin_primality_test(
enum bn_primality_result_t *out_result, const BIGNUM *w, int checks,
BN_CTX *ctx, BN_GENCB *cb) {
// Enhanced Miller-Rabin is only valid on odd integers greater than 3.
if (!BN_is_odd(w) || BN_cmp_word(w, 3) <= 0) {
OPENSSL_PUT_ERROR(BN, BN_R_INVALID_INPUT);
return 0;
}
if (checks == BN_prime_checks_for_generation) {
checks = BN_prime_checks_for_size(BN_num_bits(w));
}
int ret = 0;
BN_MONT_CTX *mont = NULL;
BN_CTX_start(ctx);
BIGNUM *w1 = BN_CTX_get(ctx);
if (w1 == NULL ||
!BN_copy(w1, w) ||
!BN_sub_word(w1, 1)) {
goto err;
}
// Write w1 as m*2^a (Steps 1 and 2).
int a = 0;
while (!BN_is_bit_set(w1, a)) {
a++;
}
BIGNUM *m = BN_CTX_get(ctx);
if (m == NULL ||
!BN_rshift(m, w1, a)) {
goto err;
}
BIGNUM *b = BN_CTX_get(ctx);
BIGNUM *g = BN_CTX_get(ctx);
BIGNUM *z = BN_CTX_get(ctx);
BIGNUM *x = BN_CTX_get(ctx);
BIGNUM *x1 = BN_CTX_get(ctx);
if (b == NULL ||
g == NULL ||
z == NULL ||
x == NULL ||
x1 == NULL) {
goto err;
}
// Montgomery setup for computations mod w
mont = BN_MONT_CTX_new_for_modulus(w, ctx);
if (mont == NULL) {
goto err;
}
// The following loop performs in inner iteration of the Enhanced Miller-Rabin
// Primality test (Step 4).
for (int i = 1; i <= checks; i++) {
// Step 4.1-4.2
if (!BN_rand_range_ex(b, 2, w1)) {
goto err;
}
// Step 4.3-4.4
if (!BN_gcd(g, b, w, ctx)) {
goto err;
}
if (BN_cmp_word(g, 1) > 0) {
*out_result = bn_composite;
ret = 1;
goto err;
}
// Step 4.5
if (!BN_mod_exp_mont(z, b, m, w, ctx, mont)) {
goto err;
}
// Step 4.6
if (BN_is_one(z) || BN_cmp(z, w1) == 0) {
goto loop;
}
// Step 4.7
for (int j = 1; j < a; j++) {
if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) {
goto err;
}
if (BN_cmp(z, w1) == 0) {
goto loop;
}
if (BN_is_one(z)) {
goto composite;
}
}
// Step 4.8-4.9
if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) {
goto err;
}
// Step 4.10-4.11
if (!BN_is_one(z) && !BN_copy(x, z)) {
goto err;
}
composite:
// Step 4.12-4.14
if (!BN_copy(x1, x) ||
!BN_sub_word(x1, 1) ||
!BN_gcd(g, x1, w, ctx)) {
goto err;
}
if (BN_cmp_word(g, 1) > 0) {
*out_result = bn_composite;
} else {
*out_result = bn_non_prime_power_composite;
}
ret = 1;
goto err;
loop:
// Step 4.15
if (!BN_GENCB_call(cb, BN_GENCB_PRIME_TEST, i - 1)) {
goto err;
}
}
*out_result = bn_probably_prime;
ret = 1;
err:
BN_MONT_CTX_free(mont);
BN_CTX_end(ctx);
return ret;
}
static int probable_prime(BIGNUM *rnd, int bits) {
do {
if (!BN_rand(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD)) {
return 0;
}
} while (bn_odd_number_is_obviously_composite(rnd));
return 1;
}
static int probable_prime_dh(BIGNUM *rnd, int bits, const BIGNUM *add,
const BIGNUM *rem, BN_CTX *ctx) {
int ret = 0;
BIGNUM *t1;
BN_CTX_start(ctx);
if ((t1 = BN_CTX_get(ctx)) == NULL) {
goto err;
}
if (!BN_rand(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD)) {
goto err;
}
// we need ((rnd-rem) % add) == 0
if (!BN_mod(t1, rnd, add, ctx)) {
goto err;
}
if (!BN_sub(rnd, rnd, t1)) {
goto err;
}
if (rem == NULL) {
if (!BN_add_word(rnd, 1)) {
goto err;
}
} else {
if (!BN_add(rnd, rnd, rem)) {
goto err;
}
}
// we now have a random number 'rand' to test.
const size_t num_primes = num_trial_division_primes(rnd);
loop:
for (size_t i = 1; i < num_primes; i++) {
// check that rnd is a prime
if (bn_mod_u16_consttime(rnd, kPrimes[i]) <= 1) {
if (!BN_add(rnd, rnd, add)) {
goto err;
}
goto loop;
}
}
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
static int probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd,
const BIGNUM *rem, BN_CTX *ctx) {
int ret = 0;
BIGNUM *t1, *qadd, *q;
bits--;
BN_CTX_start(ctx);
t1 = BN_CTX_get(ctx);
q = BN_CTX_get(ctx);
qadd = BN_CTX_get(ctx);
if (qadd == NULL) {
goto err;
}
if (!BN_rshift1(qadd, padd)) {
goto err;
}
if (!BN_rand(q, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD)) {
goto err;
}
// we need ((rnd-rem) % add) == 0
if (!BN_mod(t1, q, qadd, ctx)) {
goto err;
}
if (!BN_sub(q, q, t1)) {
goto err;
}
if (rem == NULL) {
if (!BN_add_word(q, 1)) {
goto err;
}
} else {
if (!BN_rshift1(t1, rem)) {
goto err;
}
if (!BN_add(q, q, t1)) {
goto err;
}
}
// we now have a random number 'rand' to test.
if (!BN_lshift1(p, q)) {
goto err;
}
if (!BN_add_word(p, 1)) {
goto err;
}
const size_t num_primes = num_trial_division_primes(p);
loop:
for (size_t i = 1; i < num_primes; i++) {
// check that p and q are prime
// check that for p and q
// gcd(p-1,primes) == 1 (except for 2)
if (bn_mod_u16_consttime(p, kPrimes[i]) == 0 ||
bn_mod_u16_consttime(q, kPrimes[i]) == 0) {
if (!BN_add(p, p, padd)) {
goto err;
}
if (!BN_add(q, q, qadd)) {
goto err;
}
goto loop;
}
}
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
|