File: rsaz_exp.c

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (137 lines) | stat: -rw-r--r-- 4,886 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
/*
 * Copyright 2013-2016 The OpenSSL Project Authors. All Rights Reserved.
 * Copyright (c) 2012, Intel Corporation. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 *
 * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1)
 * (1) Intel Corporation, Israel Development Center, Haifa, Israel
 * (2) University of Haifa, Israel
 */

#include "rsaz_exp.h"

#if defined(RSAZ_ENABLED)

#include <CCryptoBoringSSL_mem.h>

#include <assert.h>

#include "internal.h"
#include "../../internal.h"


// rsaz_one is 1 in RSAZ's representation.
alignas(64) static const BN_ULONG rsaz_one[40] = {
    1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
// rsaz_two80 is 2^80 in RSAZ's representation. Note RSAZ uses base 2^29, so this is
// 2^(29*2 + 22) = 2^80, not 2^(64*2 + 22).
alignas(64) static const BN_ULONG rsaz_two80[40] = {
    0, 0, 1 << 22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0,       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

void RSAZ_1024_mod_exp_avx2(BN_ULONG result_norm[16],
                            const BN_ULONG base_norm[16],
                            const BN_ULONG exponent[16],
                            const BN_ULONG m_norm[16], const BN_ULONG RR[16],
                            BN_ULONG k0,
                            BN_ULONG storage[MOD_EXP_CTIME_STORAGE_LEN]) {
  static_assert(MOD_EXP_CTIME_ALIGN % 64 == 0,
                "MOD_EXP_CTIME_ALIGN is too small");
  assert((uintptr_t)storage % 64 == 0);

  BN_ULONG *a_inv, *m, *result, *table_s = storage + 40 * 3, *R2 = table_s;
  // Note |R2| aliases |table_s|.
  if (((((uintptr_t)storage & 4095) + 320) >> 12) != 0) {
    result = storage;
    a_inv = storage + 40;
    m = storage + 40 * 2;  // should not cross page
  } else {
    m = storage;  // should not cross page
    result = storage + 40;
    a_inv = storage + 40 * 2;
  }

  rsaz_1024_norm2red_avx2(m, m_norm);
  rsaz_1024_norm2red_avx2(a_inv, base_norm);
  rsaz_1024_norm2red_avx2(R2, RR);

  // Convert |R2| from the usual radix, giving R = 2^1024, to RSAZ's radix,
  // giving R = 2^(36*29) = 2^1044.
  rsaz_1024_mul_avx2(R2, R2, R2, m, k0);
  // R2 = 2^2048 * 2^2048 / 2^1044 = 2^3052
  rsaz_1024_mul_avx2(R2, R2, rsaz_two80, m, k0);
  // R2 = 2^3052 * 2^80 / 2^1044 = 2^2088 = (2^1044)^2

  // table[0] = 1
  // table[1] = a_inv^1
  rsaz_1024_mul_avx2(result, R2, rsaz_one, m, k0);
  rsaz_1024_mul_avx2(a_inv, a_inv, R2, m, k0);
  rsaz_1024_scatter5_avx2(table_s, result, 0);
  rsaz_1024_scatter5_avx2(table_s, a_inv, 1);
  // table[2] = a_inv^2
  rsaz_1024_sqr_avx2(result, a_inv, m, k0, 1);
  rsaz_1024_scatter5_avx2(table_s, result, 2);
  // table[4] = a_inv^4
  rsaz_1024_sqr_avx2(result, result, m, k0, 1);
  rsaz_1024_scatter5_avx2(table_s, result, 4);
  // table[8] = a_inv^8
  rsaz_1024_sqr_avx2(result, result, m, k0, 1);
  rsaz_1024_scatter5_avx2(table_s, result, 8);
  // table[16] = a_inv^16
  rsaz_1024_sqr_avx2(result, result, m, k0, 1);
  rsaz_1024_scatter5_avx2(table_s, result, 16);
  for (int i = 3; i < 32; i += 2) {
    // table[i] = table[i-1] * a_inv = a_inv^i
    rsaz_1024_gather5_avx2(result, table_s, i - 1);
    rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
    rsaz_1024_scatter5_avx2(table_s, result, i);
    for (int j = 2 * i; j < 32; j *= 2) {
      // table[j] = table[j/2]^2 = a_inv^j
      rsaz_1024_sqr_avx2(result, result, m, k0, 1);
      rsaz_1024_scatter5_avx2(table_s, result, j);
    }
  }

  // Load the first window.
  const uint8_t *p_str = (const uint8_t *)exponent;
  int wvalue = p_str[127] >> 3;
  rsaz_1024_gather5_avx2(result, table_s, wvalue);

  int index = 1014;
  while (index > -1) {  // Loop for the remaining 127 windows.
    rsaz_1024_sqr_avx2(result, result, m, k0, 5);

    uint16_t wvalue_16;
    memcpy(&wvalue_16, &p_str[index / 8], sizeof(wvalue_16));
    wvalue = wvalue_16;
    wvalue = (wvalue >> (index % 8)) & 31;
    index -= 5;

    rsaz_1024_gather5_avx2(a_inv, table_s, wvalue);  // Borrow |a_inv|.
    rsaz_1024_mul_avx2(result, result, a_inv, m, k0);
  }

  // Square four times.
  rsaz_1024_sqr_avx2(result, result, m, k0, 4);

  wvalue = p_str[0] & 15;

  rsaz_1024_gather5_avx2(a_inv, table_s, wvalue);  // Borrow |a_inv|.
  rsaz_1024_mul_avx2(result, result, a_inv, m, k0);

  // Convert from Montgomery.
  rsaz_1024_mul_avx2(result, result, rsaz_one, m, k0);

  rsaz_1024_red2norm_avx2(result_norm, result);
  BN_ULONG scratch[16];
  bn_reduce_once_in_place(result_norm, /*carry=*/0, m_norm, scratch, 16);

  OPENSSL_cleanse(storage, MOD_EXP_CTIME_STORAGE_LEN * sizeof(BN_ULONG));
}

#endif  // RSAZ_ENABLED