1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
/* ====================================================================
* Copyright (c) 2008 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==================================================================== */
#include <CCryptoBoringSSL_aead.h>
#include <assert.h>
#include <CCryptoBoringSSL_cipher.h>
#include <CCryptoBoringSSL_err.h>
#include <CCryptoBoringSSL_mem.h>
#include "../delocate.h"
#include "../service_indicator/internal.h"
#include "internal.h"
struct ccm128_context {
block128_f block;
ctr128_f ctr;
unsigned M, L;
};
struct ccm128_state {
union {
uint64_t u[2];
uint8_t c[16];
} nonce, cmac;
};
static int CRYPTO_ccm128_init(struct ccm128_context *ctx, const AES_KEY *key,
block128_f block, ctr128_f ctr, unsigned M,
unsigned L) {
if (M < 4 || M > 16 || (M & 1) != 0 || L < 2 || L > 8) {
return 0;
}
ctx->block = block;
ctx->ctr = ctr;
ctx->M = M;
ctx->L = L;
return 1;
}
static size_t CRYPTO_ccm128_max_input(const struct ccm128_context *ctx) {
return ctx->L >= sizeof(size_t) ? (size_t)-1
: (((size_t)1) << (ctx->L * 8)) - 1;
}
static int ccm128_init_state(const struct ccm128_context *ctx,
struct ccm128_state *state, const AES_KEY *key,
const uint8_t *nonce, size_t nonce_len,
const uint8_t *aad, size_t aad_len,
size_t plaintext_len) {
const block128_f block = ctx->block;
const unsigned M = ctx->M;
const unsigned L = ctx->L;
// |L| determines the expected |nonce_len| and the limit for |plaintext_len|.
if (plaintext_len > CRYPTO_ccm128_max_input(ctx) ||
nonce_len != 15 - L) {
return 0;
}
// Assemble the first block for computing the MAC.
OPENSSL_memset(state, 0, sizeof(*state));
state->nonce.c[0] = (uint8_t)((L - 1) | ((M - 2) / 2) << 3);
if (aad_len != 0) {
state->nonce.c[0] |= 0x40; // Set AAD Flag
}
OPENSSL_memcpy(&state->nonce.c[1], nonce, nonce_len);
for (unsigned i = 0; i < L; i++) {
state->nonce.c[15 - i] = (uint8_t)(plaintext_len >> (8 * i));
}
(*block)(state->nonce.c, state->cmac.c, key);
size_t blocks = 1;
if (aad_len != 0) {
unsigned i;
// Cast to u64 to avoid the compiler complaining about invalid shifts.
uint64_t aad_len_u64 = aad_len;
if (aad_len_u64 < 0x10000 - 0x100) {
state->cmac.c[0] ^= (uint8_t)(aad_len_u64 >> 8);
state->cmac.c[1] ^= (uint8_t)aad_len_u64;
i = 2;
} else if (aad_len_u64 <= 0xffffffff) {
state->cmac.c[0] ^= 0xff;
state->cmac.c[1] ^= 0xfe;
state->cmac.c[2] ^= (uint8_t)(aad_len_u64 >> 24);
state->cmac.c[3] ^= (uint8_t)(aad_len_u64 >> 16);
state->cmac.c[4] ^= (uint8_t)(aad_len_u64 >> 8);
state->cmac.c[5] ^= (uint8_t)aad_len_u64;
i = 6;
} else {
state->cmac.c[0] ^= 0xff;
state->cmac.c[1] ^= 0xff;
state->cmac.c[2] ^= (uint8_t)(aad_len_u64 >> 56);
state->cmac.c[3] ^= (uint8_t)(aad_len_u64 >> 48);
state->cmac.c[4] ^= (uint8_t)(aad_len_u64 >> 40);
state->cmac.c[5] ^= (uint8_t)(aad_len_u64 >> 32);
state->cmac.c[6] ^= (uint8_t)(aad_len_u64 >> 24);
state->cmac.c[7] ^= (uint8_t)(aad_len_u64 >> 16);
state->cmac.c[8] ^= (uint8_t)(aad_len_u64 >> 8);
state->cmac.c[9] ^= (uint8_t)aad_len_u64;
i = 10;
}
do {
for (; i < 16 && aad_len != 0; i++) {
state->cmac.c[i] ^= *aad;
aad++;
aad_len--;
}
(*block)(state->cmac.c, state->cmac.c, key);
blocks++;
i = 0;
} while (aad_len != 0);
}
// Per RFC 3610, section 2.6, the total number of block cipher operations done
// must not exceed 2^61. There are two block cipher operations remaining per
// message block, plus one block at the end to encrypt the MAC.
size_t remaining_blocks = 2 * ((plaintext_len + 15) / 16) + 1;
if (plaintext_len + 15 < plaintext_len ||
remaining_blocks + blocks < blocks ||
(uint64_t) remaining_blocks + blocks > UINT64_C(1) << 61) {
return 0;
}
// Assemble the first block for encrypting and decrypting. The bottom |L|
// bytes are replaced with a counter and all bit the encoding of |L| is
// cleared in the first byte.
state->nonce.c[0] &= 7;
return 1;
}
static int ccm128_encrypt(const struct ccm128_context *ctx,
struct ccm128_state *state, const AES_KEY *key,
uint8_t *out, const uint8_t *in, size_t len) {
// The counter for encryption begins at one.
for (unsigned i = 0; i < ctx->L; i++) {
state->nonce.c[15 - i] = 0;
}
state->nonce.c[15] = 1;
uint8_t partial_buf[16];
unsigned num = 0;
if (ctx->ctr != NULL) {
CRYPTO_ctr128_encrypt_ctr32(in, out, len, key, state->nonce.c, partial_buf,
&num, ctx->ctr);
} else {
CRYPTO_ctr128_encrypt(in, out, len, key, state->nonce.c, partial_buf, &num,
ctx->block);
}
return 1;
}
static int ccm128_compute_mac(const struct ccm128_context *ctx,
struct ccm128_state *state, const AES_KEY *key,
uint8_t *out_tag, size_t tag_len,
const uint8_t *in, size_t len) {
block128_f block = ctx->block;
if (tag_len != ctx->M) {
return 0;
}
// Incorporate |in| into the MAC.
union {
uint64_t u[2];
uint8_t c[16];
} tmp;
while (len >= 16) {
OPENSSL_memcpy(tmp.c, in, 16);
state->cmac.u[0] ^= tmp.u[0];
state->cmac.u[1] ^= tmp.u[1];
(*block)(state->cmac.c, state->cmac.c, key);
in += 16;
len -= 16;
}
if (len > 0) {
for (size_t i = 0; i < len; i++) {
state->cmac.c[i] ^= in[i];
}
(*block)(state->cmac.c, state->cmac.c, key);
}
// Encrypt the MAC with counter zero.
for (unsigned i = 0; i < ctx->L; i++) {
state->nonce.c[15 - i] = 0;
}
(*block)(state->nonce.c, tmp.c, key);
state->cmac.u[0] ^= tmp.u[0];
state->cmac.u[1] ^= tmp.u[1];
OPENSSL_memcpy(out_tag, state->cmac.c, tag_len);
return 1;
}
static int CRYPTO_ccm128_encrypt(const struct ccm128_context *ctx,
const AES_KEY *key, uint8_t *out,
uint8_t *out_tag, size_t tag_len,
const uint8_t *nonce, size_t nonce_len,
const uint8_t *in, size_t len,
const uint8_t *aad, size_t aad_len) {
struct ccm128_state state;
return ccm128_init_state(ctx, &state, key, nonce, nonce_len, aad, aad_len,
len) &&
ccm128_compute_mac(ctx, &state, key, out_tag, tag_len, in, len) &&
ccm128_encrypt(ctx, &state, key, out, in, len);
}
static int CRYPTO_ccm128_decrypt(const struct ccm128_context *ctx,
const AES_KEY *key, uint8_t *out,
uint8_t *out_tag, size_t tag_len,
const uint8_t *nonce, size_t nonce_len,
const uint8_t *in, size_t len,
const uint8_t *aad, size_t aad_len) {
struct ccm128_state state;
return ccm128_init_state(ctx, &state, key, nonce, nonce_len, aad, aad_len,
len) &&
ccm128_encrypt(ctx, &state, key, out, in, len) &&
ccm128_compute_mac(ctx, &state, key, out_tag, tag_len, out, len);
}
#define EVP_AEAD_AES_CCM_MAX_TAG_LEN 16
struct aead_aes_ccm_ctx {
union {
double align;
AES_KEY ks;
} ks;
struct ccm128_context ccm;
};
static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >=
sizeof(struct aead_aes_ccm_ctx),
"AEAD state is too small");
static_assert(alignof(union evp_aead_ctx_st_state) >=
alignof(struct aead_aes_ccm_ctx),
"AEAD state has insufficient alignment");
static int aead_aes_ccm_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
size_t key_len, size_t tag_len, unsigned M,
unsigned L) {
assert(M == EVP_AEAD_max_overhead(ctx->aead));
assert(M == EVP_AEAD_max_tag_len(ctx->aead));
assert(15 - L == EVP_AEAD_nonce_length(ctx->aead));
if (key_len != EVP_AEAD_key_length(ctx->aead)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
return 0; // EVP_AEAD_CTX_init should catch this.
}
if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
tag_len = M;
}
if (tag_len != M) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE);
return 0;
}
struct aead_aes_ccm_ctx *ccm_ctx = (struct aead_aes_ccm_ctx *)&ctx->state;
block128_f block;
ctr128_f ctr = aes_ctr_set_key(&ccm_ctx->ks.ks, NULL, &block, key, key_len);
ctx->tag_len = tag_len;
if (!CRYPTO_ccm128_init(&ccm_ctx->ccm, &ccm_ctx->ks.ks, block, ctr, M, L)) {
OPENSSL_PUT_ERROR(CIPHER, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
static void aead_aes_ccm_cleanup(EVP_AEAD_CTX *ctx) {}
static int aead_aes_ccm_seal_scatter(
const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag,
size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce,
size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in,
size_t extra_in_len, const uint8_t *ad, size_t ad_len) {
const struct aead_aes_ccm_ctx *ccm_ctx =
(struct aead_aes_ccm_ctx *)&ctx->state;
if (in_len > CRYPTO_ccm128_max_input(&ccm_ctx->ccm)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
return 0;
}
if (max_out_tag_len < ctx->tag_len) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
return 0;
}
if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
return 0;
}
if (!CRYPTO_ccm128_encrypt(&ccm_ctx->ccm, &ccm_ctx->ks.ks, out, out_tag,
ctx->tag_len, nonce, nonce_len, in, in_len, ad,
ad_len)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
return 0;
}
*out_tag_len = ctx->tag_len;
AEAD_CCM_verify_service_indicator(ctx);
return 1;
}
static int aead_aes_ccm_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out,
const uint8_t *nonce, size_t nonce_len,
const uint8_t *in, size_t in_len,
const uint8_t *in_tag, size_t in_tag_len,
const uint8_t *ad, size_t ad_len) {
const struct aead_aes_ccm_ctx *ccm_ctx =
(struct aead_aes_ccm_ctx *)&ctx->state;
if (in_len > CRYPTO_ccm128_max_input(&ccm_ctx->ccm)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
return 0;
}
if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
return 0;
}
if (in_tag_len != ctx->tag_len) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
return 0;
}
uint8_t tag[EVP_AEAD_AES_CCM_MAX_TAG_LEN];
assert(ctx->tag_len <= EVP_AEAD_AES_CCM_MAX_TAG_LEN);
if (!CRYPTO_ccm128_decrypt(&ccm_ctx->ccm, &ccm_ctx->ks.ks, out, tag,
ctx->tag_len, nonce, nonce_len, in, in_len, ad,
ad_len)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
return 0;
}
if (CRYPTO_memcmp(tag, in_tag, ctx->tag_len) != 0) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
return 0;
}
AEAD_CCM_verify_service_indicator(ctx);
return 1;
}
static int aead_aes_ccm_bluetooth_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
size_t key_len, size_t tag_len) {
return aead_aes_ccm_init(ctx, key, key_len, tag_len, 4, 2);
}
DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_ccm_bluetooth) {
memset(out, 0, sizeof(EVP_AEAD));
out->key_len = 16;
out->nonce_len = 13;
out->overhead = 4;
out->max_tag_len = 4;
out->init = aead_aes_ccm_bluetooth_init;
out->cleanup = aead_aes_ccm_cleanup;
out->seal_scatter = aead_aes_ccm_seal_scatter;
out->open_gather = aead_aes_ccm_open_gather;
}
static int aead_aes_ccm_bluetooth_8_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
size_t key_len, size_t tag_len) {
return aead_aes_ccm_init(ctx, key, key_len, tag_len, 8, 2);
}
DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_ccm_bluetooth_8) {
memset(out, 0, sizeof(EVP_AEAD));
out->key_len = 16;
out->nonce_len = 13;
out->overhead = 8;
out->max_tag_len = 8;
out->init = aead_aes_ccm_bluetooth_8_init;
out->cleanup = aead_aes_ccm_cleanup;
out->seal_scatter = aead_aes_ccm_seal_scatter;
out->open_gather = aead_aes_ccm_open_gather;
}
static int aead_aes_ccm_matter_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
size_t key_len, size_t tag_len) {
return aead_aes_ccm_init(ctx, key, key_len, tag_len, 16, 2);
}
DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_ccm_matter) {
memset(out, 0, sizeof(EVP_AEAD));
out->key_len = 16;
out->nonce_len = 13;
out->overhead = 16;
out->max_tag_len = 16;
out->init = aead_aes_ccm_matter_init;
out->cleanup = aead_aes_ccm_cleanup;
out->seal_scatter = aead_aes_ccm_seal_scatter;
out->open_gather = aead_aes_ccm_open_gather;
}
|